+高级检索
基于小冲杆试验的TC4氢脆行为和机理研究
作者单位:

中国矿业大学

基金项目:

中央高校基础经费研究(中国矿业大学)(2017XKQY011)


Hydrogen embrittlement behavior and mechanisms of Ti-6Al-4V alloy based on small punch test
Author:
Affiliation:

China University of Mining and Technology

Fund Project:

Fundamental Research Funds for the Central Universities (China University of Mining and Technology) (2017XKQY011)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    Ti-6Al-4V合金(TC4)广泛应用于海洋和航空领域,其恶劣的使用环境容易引发氢脆(HE)失效而使得TC4的机械性能退化,导致突然的灾难性断裂。为了研究TC4合金的氢脆行为和机理,首先采用小冲孔试验(SPT)测试了TC4合金在不同充氢时间下的力学性能。然后利用原子力显微镜(AFM)和X射线衍射(XRD)技术对TC4合金在不同充氢时间下的氢分布和相转变进行了详细的研究。小冲杆试验(SPT)拟合数据显示,随着充氢时间的增加,TC4合金的强度和伸长率均发生明显的劣化,同时其宏观断口形态由韧性向脆性转变。与此同时,研究还证明了电解充氢后氢化物的生成是导致TC4合金氢脆现象产生的主要原因。本文的研究结果为在役TC4设备的氢脆性能检测提供了一种有效、简便的方法。

    Abstract:

    Ti-6Al-4V alloy (TC4) is widely used in the field of marine and aviation, and its severe service environment is easy to lead to hydrogen embrittlement (HE) which can cause the degradation of mechanical properties and a sudden catastrophic fracture for the material. To investigate the HE behavior and mechanisms, mechanical properties of the TC4 alloy after different electrochemical hydrogen charging (EHC) time were measured by small punch test (SPT) first. Then, hydrogen distribution and the phase transition of the TC4 alloy with different EHC time were discussed in detail based on the atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The strength and elongation obtained by SPT fitting data show obvious deterioration with increasing EHC time while the macroscopic fracture morphology of the TC4 alloy exhibits a transformation from ductile mode to brittle mode. At the same time, the generation of hydride after EHC is proved a main contributor to the HE of the TC4 alloy. The results in this paper provide an effective and convenient method to assess the HE behavior of TC4 alloy in service.

    参考文献
    [1] N.E. Paton, J.C. William, Effect of hydrogen on tatanium and its alloys, Hydrogen in metals[M],Oxford: Pergamon Press, 1974, P. 49.
    [2] E.T. macher, D. Eliezer, D. Eylon, The effects of low fugacity hydrogen in duplex-and beta-annealed Ti-6Al-4V alloy [J], Mater. Sci. Eng. 381 (2004) 230.
    [3] T.K. Kim, J.H. Baek, B. Seon, Characteristics of hydriding and hydrogen embrittlement of the Ti-Al-Zr alloy[J], Annals of Nuclear Energy. 29 (2002) 2041.
    [4] D.F. Teter, I.M. Robertson, H.K. Birnbaum, The effects of hydrogen on the deformation and fracture of β-titanium[J], Acta Material. 49 (2001) 313.
    [5] K.R. Mprash, D.F. Bahr, The effects of hydrogen on deformation and cross slip in BCC titanium alloy[J], Script. Mater. 45 (2001) 839.
    [6] S.S.M. Tavares, M.B. Silva, M.C.S. deMacêdo, T.R. Strohaecker, V.M. Costa. Characterization of fracture behavior of a Ti alloyed supermatensitic 12% Cr stainless steel using charpy instrumented impact tests[J], Engineering Failure Analysis, 2017.
    [7] D. Birenis, Y. Ogawa, H. Matsunaga, O. Takakuwa, J. Yamabe, O. Prytz, A. Thogersen, Hydrogen-assisted crack propagation in α-iron during elasto-plastic fracture toughness tests[J], Mater. Sci. Eng. A (2019) 756.
    [8] T.E. García, C. Rodríguez, F.J. Belzunce, C. Suárez, Estimation of the mechanical properties of metallic materials by means of the small punch test, Journal of Alloys and Compounds. 582 (2014) 708–717.
    [9]M.P. Manahan, A.S. Argon, O.K. Harling, J. Nucl, Mater. 104 (1981) 1545-1550.
    [10]X. Mao, H. Takahashi, J. Nucl. Mater. 150 (1987) 42-52.
    [11] B. Arroyo, J.A. álvarez, R. Lacalle, F. Gutiérrez-Solana, T.E. García, Environmental effects on R5 steel under cathodic protection and cathodic charge Characterization using the small punch tests, in: Proceedings of 3rd International Conference SSTT, Graz, Austria, 2014.
    [12] T. Misawa, Y. Hamaguchi, M. Saito, J. Nucl. Mater. 155–157 (1988) 749–753.
    [13] S.-I. Komazaki, A. Koyama, T. Misawa, Mater. Trans. 43 (9) (2002) 2213–2218.
    [14] T. Nambu, K. Shimizu, Y. Matsumoto, et al., J. Alloy Compd. 446-447 (2007)588–592.
    [15] Y. Matsumoto, H. Yukawa, T. Nambu. Quantitative evaluation of hydrogen embrittlement of metal membrane detected by In-situ small punch test under hydrogen permeation, in: Proceedings of the 1st International Conference SSTT, Ostrava, Czech Republic, 2010.
    [16] T.E. García, C. Rodríguez, F.J. Belzunce, I. Pe?uelas, B. Arroyo, Mater. Sci. Eng.A-Struct. 626 (2015) 342–351.
    [17] T.E. García, C. Rodríguez,F.J. Belzunce, Effects of hydrogen embrittlement on heknsile properties of CrMoV steels by means of the small punch test[J]. Mater. Sci. Eng. A. 664 (2016) 165-176.
    [18] S.S. Yang,Y.C. Xiang, L.Y. Qian, Assessment of mechanical properties of Incoloy800H by means of small punch test and inverse analysis[J]. Journal of Alloys and Compounds. (2017) 695.
    [19] B. Arroyo, J.A. álvarez, R. Lacalle, C. Uribe, T.E. García, C. Rodríguez, Analysis of Key Factors of Hydrogen Environmental Assisted Cracking Evaluation by Small Punch Test on Medium and High Strength Steels [J]. Mater. Sci. Eng. A. 2017.
    [20] C. Roger, R. Hurst, J. Lancaster, P. Spencer, M. Jeffs, R. Bache, The contribution of small punch testing towards the development of materials for aero-engine applications [J]. Theoretical and Applied Fracture Mechanics, (2016) 86.
    [21] P.A.S. Pereira, C.S.G. Franco, J.L.M. Guerra Filho, D.S. dos Santos. Hydrogen effects on the microstructure of a 2.25Cr–1Mo–0.25 V steel welded joint[J]. International Journal of Hydrogen Energy. 47 (2015) 40.
    [22] B. Ramírez, L. Bucio, Microcrystalline cellulose (MCC) analysis and quantitative phase analysis of ciprofloxacin/MCC mixtures by Rietveld XRD refinement with physically based background[J]. Cellulose. 5 (2018) 25.
    [23] T.E. García, C. Rodríguez, F.J. Belzunce, C. Suárez, [J] Alloys Compd. 582 (2014) 708–717.
    [24] F. Dobe? F, P. Dymá?ek , M. Besterci, Mater. Sci. Eng. A. 626 (2015) 313.
    [25]T.E. García, C. Rodríguez, F.J. Belzunce, C. Suárez, [ J] Alloys Compd. 582 (2014) 708.
    [26] X. Mao, H. Takahashi, Development of a further-miniaturized specimen of 3 mm diameter for TJZM disk (0.3 mm) small punch tests, J. Nucl. Mater. 150 (1987) 42–52.
    [27] E. Fleury, J.S. Ha, Small punch tests to estimate the mechanical properties of steels for steam power plant: I. Mechanical strength, Int. J. Pres. Ves. Pip. 75(1998) 699–706.
    [28] A. Tehranchi, W.A. Curtin, Atomistic study of hydrogen embrittlement of grain boundaries in nickel: I. Fracture. J. Mech. Phys. Solids 101 (2017) 150–165.
    [29] T. Zhu, J. Li, S. Yip, Atomistic study of dislocation loop emission from a crack tip. Phys. Rev. Lett. 93 (2004) 503.
    [30] T. Zhu, J. Li, S. Yip, Atomistic configurations and energetics of crack extension in silicon. Phys. Rev. Lett. 93 (2004) 504.
    [31] N. Saintier, T. Awane, J.M. Olive, S. Matsuoka, Y. Murakami, Int. J. Hydrog. Energy 36 (2011) 8630.
    [32] D. Eliezer , E. Tal-Gutelmacher , C.E. Cross, T. Boellinghaus, Hydrogen absorption and desorption in a duplex-annealed Ti–6Al–4V alloy during exposure to different hydrogen-containing environments: Materials Science and Engineering A 433 (2006) 298–304.
    [33] Zhengli Hua, Shengyi Zhu, Bai An, Takashi Iijima, Chaohua Gu, Jinyang Zheng, The finding of hydrogen trapping at phase boundary in austenitic stainless steel by scanning Kelvin probe force microscopy: Scripta Materialia, 162 (2019) 219–222.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱荣涛,王贤,李超永,王香,黄鹏飞.基于小冲杆试验的TC4氢脆行为和机理研究[J].稀有金属材料与工程,2020,49(11):3769~3775.[Zhu Rongtao, Wang Xian, Li Chaoyong, Wang Xiang, Huang Pengfei. Hydrogen embrittlement behavior and mechanisms of Ti-6Al-4V alloy based on small punch test[J]. Rare Metal Materials and Engineering,2020,49(11):3769~3775.]
DOI:10.12442/j. issn.1002-185X. E20190105

复制
文章指标
  • 点击次数:965
  • 下载次数: 1400
  • HTML阅读次数: 172
  • 引用次数: 0
历史
  • 收稿日期:2019-11-01
  • 最后修改日期:2019-12-10
  • 录用日期:2019-12-10
  • 在线发布日期: 2020-12-09