+高级检索
基于人工神经网络的亚共晶Al-7Si合金力学性能与显微组织定量关系分析
作者:
作者单位:

1.北京科技大学 高效轧制国家工程研究中心,北京 100083;2.北京航空航天大学 材料科学与工程学院,北京 100191

作者简介:

通讯作者:

中图分类号:

基金项目:

中央高校基本科研业务费 (项目号FRF-TP-19-083A1); 航空科学基金资助项目(项目号20181174001);广西创新驱动发展专项基金项目(桂科AA17202008)


Quantitative Relationship Analysis Between Mechanical Properties and Microstructures of Al-7Si Aluminum Alloys by Artificial Neural Network
Author:
Affiliation:

1.National Engineering Research Center of Advanced Rolling Technology, University of Science and Technology Beijing, Beijing 100083, China;2.School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Fund Project:

Fundamental Research Funds for the Central Universities (FRF-TP-19-083A1); Aviation Science Foundation Project (20181174001); Guangxi Special Funding Program for Innovation-Driven Development (GKAA17202008)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以亚共晶Al-7Si合金为研究对象,基于Matlab神经网络工具箱开发了铝合金性能和组织关系预测程序,获得了高精度的材料性能与组织特征的关系预测模型。通过控制增压铸造过程中保压压力(85~300 kPa)和冷却速度(1~10 k/s)参数,获得具有不同力学性能和组织特征的铝合金。拉伸试样力学性能测试结果表明:抗拉强度为310~350 MPa,延伸率为3%~12%。采用IPP 6.0软件统计组织特征参数结果表明:二次枝晶间距为18.56~33.04 μm,共晶Si相面积为6.37~13.37 μm2,缺陷面积百分数为0%~0.363%,最大Fe相面积百分数为0%~0.06%。通过人工神经网络(ANN)预测模型,探究了单因素和双因素协同作用对合金力学性能的影响规律,建立了合金性能优化的组织控制路径。预测结果表明,该合金强度和塑性均与4种组织特征呈负相关,且缺陷和Fe相的存在对合金性能有较大的不利影响。因此,缩小枝晶间距(<20 μm)、变质共晶Si相(<12 μm2)、控制孔洞缺陷(<0.35%)、严格控制富Fe相的尺寸和形态,是制备高性能铝合金的关键。

    Abstract:

    An artificial neural network model with high accuracy and good generation ability was developed to predict and optimize the mechanical properties of Al-7Si alloys. The results show that Al-7Si alloys with tensile strength of 310~350 MPa, elongation of 3%~12%, and different microstructures are obtained by controlling the holding pressure (85~300 kPa) and cooling rate (1~10 k/s) of the casting process. The quantitative correlation relationships of the mechanical properties with microstructures of the secondary dendrite arm spacing (18.56~33.04 μm), area of eutectic Si phase (6.37~13.37 μm2), area fraction of porosity defects (0%~0.363%),and area fraction of maximum Fe-rich intermetallics (0%~0.06%) in the alloy were established. The individual and combined influences of these microstructure characteristics on the mechanical properties were simulated. Both tensile strength and elongation are inversely related to the above-mentioned structural characteristics, and the presence of defects and Fe-rich intermetallics have great adverse effects on the properties of the alloy. Therefore, narrowing the dendrite spacing (<20 μm), modifying the eutectic Si phase (<12 μm2), and controlling the porosity defects (<0.35%) and the morphology of the Fe-rich intermetallics are keys to prepare high-performance aluminum alloys.

    参考文献
    相似文献
    引证文献
引用本文

武晓燕,张花蕊,张虎,吴彦欣,米振莉,江海涛.基于人工神经网络的亚共晶Al-7Si合金力学性能与显微组织定量关系分析[J].稀有金属材料与工程,2021,50(7):2329~2336.[Wu Xiaoyan, Zhang Huarui, Zhang Hu, Wu Yanxin, Mi Zhenli, Jiang Haitao. Quantitative Relationship Analysis Between Mechanical Properties and Microstructures of Al-7Si Aluminum Alloys by Artificial Neural Network[J]. Rare Metal Materials and Engineering,2021,50(7):2329~2336.]
DOI:10.12442/j. issn.1002-185X. E20200028

复制
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-02
  • 最后修改日期:2020-09-01
  • 录用日期:2020-09-18
  • 在线发布日期: 2021-08-09
  • 出版日期: 2021-07-31