+高级检索
Er元素对定向凝固Al-Zn-Mg-Cu-Zr合金微观组织和共晶相形貌的影响
作者:
作者单位:

北京航空航天大学 材料科学与工程学院,北京 100191

基金项目:

国家重点研发计划( 2016YFB0300901)


Effects of Er on the Microstructure and Eutectic Phase Morphology of Directionally Solidified Al-Zn-Mg-Cu-Zr Alloys
Author:
Affiliation:

School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Fund Project:

National Key Research and Development Program of China (2016YFB0300901)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用定向凝固方法制备了Al-Zn-Mg-Cu-Zr-xEr(x=0,0.1,0.2,0.5,质量分数,%)4种合金棒。利用光学显微镜(OM)、电子探针(EPMA)、能谱分析(EDS)和其他方法研究了铸态合金的微观组织和第二相形貌。结果表明:Er元素能增加Al-Zn-Mg-Cu-Zr合金定向凝固组织的枝晶数量,并能减小合金的一次枝晶臂间距和二次枝晶臂间距。适量Er元素能减少合金第二相的含量并有利于形成圆形第二相。生成的Al8Cu4Er相会降低T相(AlZnMgCu)中的Cu含量,起到圆润T相边界的作用,改变了T相的形貌和内部结构,并且Al8Cu4Er相能充当T相的形核位置,使得一部分T相围绕该相生长。Er的添加会提高合金的显微硬度。

    Abstract:

    Four alloy rods of Al-Zn-Mg-Cu-Zr-xEr (x=0, 0.1, 0.2, 0.5, wt%) were prepared by directional solidification. The microstructure and second phase morphology of alloys were investigated by optical microscopy (OM), electron probe micro-analysis (EPMA), energy dispersive spectrometer (EDS) and other methods. The results indicate that Er element can increase the number of dendrites in the directional solidification structure of Al-Zn-Mg-Cu-Zr alloy, and reduce the primary dendrite arm spacing and secondary dendrite arm spacing of the alloy. A proper amount of Er element can reduce the content of second phase in the alloy and increase the tendency to form round second phase. The formation of Al8Cu4Er phase can reduce the Cu content in the T phase (AlZnMgCu phase), which plays a role of rounding the boundary of the T phase, and can change the morphology and internal structure of the T phase. The Al8Cu4Er phase serves as the nucleation position of the T phase, and part of the T phase grows around this phase. The addition of Er can improve the microhardness of the alloy.

    参考文献
    [1] Cong Fuguan, Zhao Gang, Tian Ni et al. Light Alloy Fabrication Technology[J], 2012, 10(3): 23
    [2] Zhou Wansheng, Yao Junshan. Welding of Aluminum and Aluminum Alloys[M]. Beijing: Machinery Industry Press, 2006: 3
    [3] Liu Jingan, Xie Shuisheng. Application and Technical Development of Aluminum Alloy Materials[M]. Beijing: Metallurgical Industry Press, 2011: 5
    [4] Heinz A, Haszler A, Keidel C. Materials Science and Engineering A[J], 2000, 280(1): 102
    [5] Mukhopadhyay A. Transactions of the Indian Institute of Metals[J], 2009, 62(2): 113
    [6] Jian Haigen, Jiangfeng, Xu Zhongyan et al. Hot Working Technology[J], 2006, 35(12): 61
    [7] Liu Bing, Peng Chaoqun, Wang Richu et al. The Chinese Journal of Nonferrous Metals[J], 2010, 20(9): 1705
    [8] Shen Chen, Sun Hui, Zhi Dongdong. Nonferrous Metal Materials and Engineering[J], 2018, 9(4): 70
    [9] Wang Shaohua, Meng Linggang, Yang Shoujie et al. Transactions of Nonferrous Metals Society of China[J], 2011, 21(7): 1449
    [10] Wu Hao, Wen Shengping, Huang Hui et al. Materials Science and Engineering A[J], 2017, 689: 313
    [11] Wu Hao, Wen Shengping, Lu Juntai et al. Transactions of Nonferrous Metals Society of China[J], 2017, 27(7): 1476
    [12] Wang Xudong, Nie Zuoren, Lin Shuangping et al. Special Casting and Nonferrous Alloys[J], 2009, 29(1): 76
    [13] Wang Ziyue, Chen Ziyong, Nie Zuoren et al. Hot Working Technology[J], 2015, 44(2): 118
    [14] Mehdi Malekan, Massoud Emamy, Nima Mossayebi. Journal of Materials Engineering and Performance[J], 2019, 29(5): 3432
    [15] Liu Shengdan, Li Chengbo, Ouyang Hui et al. The Chinese Journal of Nonferrous Metals[J], 2013, 23(4): 927 (in Chinese)
    [16] Zhang Xinming, Liu Wenjun, Liu Shengdan et al. Materials Science and Engineering A[J], 2011, 528(3): 795
    [17] Chen Songyi, Chen Kanghua, Peng Guosheng et al. Materials and Design[J], 2012, 35: 93
    [18] Li P Y, Xiong B Q, Zhang Y A et al. The Chinese Journal of Nonferrous Metals[J], 2011, 21(3): 513 (in Chinese)
    [19] Zhang Xinming, Liu Wenjun, Li Hongping et al. The Chinese Journal of Nonferrous Metals[J], 2011, 21(9): 2060 (in Chinese)
    [20] Li Peiyue, Xiong Baiqing, Zhang Yongan et al. Transactions of Nonferrous Metals Society of China [J], 2012, 22(2): 268
    [21] Liu Ying, Zhu Baohong, Zhang Yongan et al. Rare Metals[J], 2012, 36(4): 529 (in Chinese)
    [22] Chandan Mondal, Mukhopadhyay A K, Raghu T et al. Materials and Manufacturing Processes[J], 2007, 22(4): 424
    [23] Liu Yan, Jiang Daming, Xie Wenlong et al. Materials Characterization[J], 2014, 93: 173
    [24] Clark D A, Johnson W S. International Journal of Fatigue[J], 2003, 25(2):159
    [25] Wang Haijun, Xu Ju, Kang Yonglin et al. Journal of Alloys and Compounds[J], 2014, 585(5): 19
    [26] Song R G, Dietzel W, Zhang B J et al. Acta Materiala[J], 2004, 52(16): 4727
    [27] Liu Guili, Fang Geliang. Rare Metal Materials and Engineering[J], 2009, 38(9):1598 (in Chinese)
    [28] Zhu Ranran, Zhang Yongan, Xiong Baiqing et al. Journal of Aeronautical Materials[J], 2012, 32(5): 37
    [29] Fang Hongjie, Sun Jie, Liu Hui et al. Heat Treatment of Metals[J], 2017, 42(4): 53
    [30] Chen Xiangkai, Li Xiangming. Materials Reports[J], 2019, 33(5): 871
    [31] Emine Acer, Emin ?ad?rl?, Harun Erol et al. Metallurgical and Materials Transactions A[J], 2016, 47(6): 3040
    [32] Wang Jingtao, Cui Jianzhong, Ma Longxiang. Journal of Xi'an University of Architecture and Technology, Natural Science Edition[J], 1993, 25(4): 445
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

袁帅,贾丽娜,张虎.Er元素对定向凝固Al-Zn-Mg-Cu-Zr合金微观组织和共晶相形貌的影响[J].稀有金属材料与工程,2021,50(10):3477~3484.[Yuan Shuai, Jia Lina, Zhang Hu. Effects of Er on the Microstructure and Eutectic Phase Morphology of Directionally Solidified Al-Zn-Mg-Cu-Zr Alloys[J]. Rare Metal Materials and Engineering,2021,50(10):3477~3484.]
DOI:10.12442/j. issn.1002-185X. E20200036

复制
文章指标
  • 点击次数:485
  • 下载次数: 1028
  • HTML阅读次数: 318
  • 引用次数: 0
历史
  • 收稿日期:2020-08-10
  • 最后修改日期:2020-09-30
  • 录用日期:2020-10-20
  • 在线发布日期: 2021-10-28
  • 出版日期: 2021-10-25