+高级检索
V含量对等原子比NiTi形状记忆合金微观组织、相变行为和显微硬度的影响
作者:
作者单位:

1.广东省科学院新材料研究所,广东 广州 510650;2.安徽工业大学 冶金工程学院,安徽 马鞍山 243002;3.广东省金属强韧化技术与应用重点实验室,广东 广州 510650

基金项目:

Guangdong province science and technology plan project (Grant No. 2019B090905009); Guangzhou science and technology plan project (Grant No. 201704030067)


Effect of V Content on Microstructure, Phase Transforma-tion Behavior and Microhardness of Equiatomic NiTi Shape Memory Alloy
Author:
Affiliation:

1.Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China;2.College of Metallurgical Engineering, Anhui University of Technology, Maanshan 243002, China;3.Guangdong Provincial Key Laboratory of Metal Toughening Technology and Application, Guangzhou 510650, China

Fund Project:

Guangdong Province Science and Technology Plan Project (2019B090905009); Guangzhou Science and Technology Plan Project (201704030067)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用光学显微镜、扫描电子显微镜、X射线衍射仪、差示扫描量热仪和显微硬度计等测试手段,研究了V含量对等原子比NiTi形状记忆合金微观组织、相变行为和显微硬度的影响规律。结果表明:当V含量为0.5at%时,具有等轴晶组织的NiTiV形状记忆合金包含B19' 和 Ti2Ni相;当V 含量大于0.5at%时,NiTiV形状记忆合金形成B19'相、Ti2Ni相和V的富集相,并且随着V含量增加,V的富集相越来越多聚集于晶界。进一步分析表明,Ni49.75Ti49.75V0.5和Ni49.25Ti49.25V1.5 形状记忆合金发生了B2?B19'的一级相变,而Ni48.75Ti48.75V2.5和Ni48.25Ti48.25V3.5形状记忆合金发生了B2?R?B19'的二级相变,尽管降温过程中同时发生了部分的R相变与B19'马氏体相变。随着V含量增加,相变温度随着V含量增加逐渐降低,其主要原因是Ni/Ti比例的增加。此外,随着V含量增加,合金的显微硬度值呈现先降低然后几乎保持不变的变化规律。

    Abstract:

    The effect of vanadium (V) content on the microstructure, phase transformation behavior, and microhardness of the as-cast equiatomic NiTi shape memory alloy was investigated by optical microscope (OM), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Vickers microhardness tester. Results indicate that the as-cast Ni50-x/2Ti50-x/2Vx alloys with equiaxed grains consist mainly of B19' and Ti2Ni phases when V content is 0.5at%, above which Ni50-x/2Ti50-x/2Vx (x=1.5~3.5, at%) alloys exhibit a three-phase structure consisting of B19', Ti2Ni and V-rich phases, and the V-rich phases are more segregated at grain boundaries with the increase of V content. Further analysis reveals that both Ni49.75Ti49.75V0.5 and Ni49.25Ti49.25V1.5 alloys show a one-stage B2?B19' transformation. However, a two-stage B2?R?B19' transformation occurs in Ni48.75Ti48.75V2.5 and Ni48.25Ti48.25V3.5 alloys although R-phase transformation partially overlaps B19' martensitic transformation upon cooling. The transformation temperatures drop down with increasing the V content, which is attributed to the increase of Ni/Ti ratio in the matrix. In addition, as V element increases from 0.5at% to 3.5at%, the microhardness of the alloys first decreases and then remains almost unchanged.

    参考文献
    [1] Kaya I, Tobe H, Karaca H E et al. Materials Science Engineering A[J], 2016, 678: 93
    [2] Jaureguizahar S M, Chapetti M D, Yawny A. International Journal of Fatigue[J], 2018, 16: 300
    [3] Marattukalam J J, Balla V K, Das M et al. Journal of Alloys and Compounds[J], 2018, 744: 337
    [4] Toker S M, Canadinc D. Materials Science Engineering C[J], 2014, 40: 142
    [5] Elibol C, Wagner M F X. Materials Science Engineering A[J], 2015, 621: 76
    [6] Sun B, Fu M W, Lin J P et al. Materials Design[J], 2017, 131: 49
    [7] Chen Z B, Qin S J, Shang J X et al. Intermetallics[J], 2018, 94: 47
    [8] Velmurugan C, Senthilkumar V, Dinesh S et al. Materials Today: Proceedings[J], 2018, 5: 14 597
    [9] Frenzel J, Wieczorek A, Opahle I et al. Acta Materialia[J], 2015, 90: 213
    [10] Yuan Zhishan, Lin Dezhi, Cui Yue et al. Rare Metal Materials and Engineering [J], 2018, 47(7): 2269 (in Chinese)
    [11] Mao H, Yang H, Shi X et al. Materials Letters[J], 2018, 228: 391
    [12] Jang J Y, Chun S J, Choi E et al. Materials Research Bulletin[J], 2012, 47: 2939
    [13] Lin H, Lin K, Chang S et al. Journal of Alloys and Compounds[J], 1999, 284: 213
    [14] Lin H C, Yang C H, Lin M C et al. Journal of Alloys and Compounds[J], 2008, 499: 119
    [15] Nam T H, Lee J H, Jung D W et al. Materials Science Engineering A[J], 2007, 449-451: 1041
    [16] Qin Q H, Peng H B, Fan Q C. Journal of Alloys and Compounds[J], 2018, 739: 873
    [17] Kim J H, Jung K T, Noh J P et al. Journal of Alloys and Compounds[J], 2013, 577: 200
    [18] Chun S J, Noh J P, Yeom J T et al. Intermetallics[J], 2014, 46: 91
    [19] Hsieh S F, Wu S K, Lin H C et al. Journal of Alloys and Compounds[J], 2005, 387: 121
    [20] Otsuka K, Ren X. Progress in Materials Science[J], 2005, 50: 511
    [21] Liu A L, Cai W, Gao Z Y et al. Materials. Science Engineering A[J], 2006, 438-440: 634
    [22] Liu A L, Gao Z Y, Gao L. Journal of Alloys and Compounds[J], 2007, 437: 339
    [23] Frenzel J, George E P, Dlouhy A et al. Acta Materialia[J], 2010, 58(9): 3444
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

甘春雷,陈志伟,黎小辉,周楠,钱健清,郑开宏,李继林.V含量对等原子比NiTi形状记忆合金微观组织、相变行为和显微硬度的影响[J].稀有金属材料与工程,2021,50(12):4245~4250.[Gan Chunlei, Chen Zhiwei, Li Xiaohui, Zhou Nan, Qian Jianqing, Zheng Kaihong, Li Jilin. Effect of V Content on Microstructure, Phase Transforma-tion Behavior and Microhardness of Equiatomic NiTi Shape Memory Alloy[J]. Rare Metal Materials and Engineering,2021,50(12):4245~4250.]
DOI:10.12442/j. issn.1002-185X. E20210015

复制
文章指标
  • 点击次数:466
  • 下载次数: 1237
  • HTML阅读次数: 266
  • 引用次数: 0
历史
  • 收稿日期:2021-05-19
  • 最后修改日期:2021-06-22
  • 录用日期:2021-07-09
  • 在线发布日期: 2021-12-30
  • 出版日期: 2021-12-24