碳包裹纳米Co粒子的制备及其磁性

赵 军,肖乐勤,李 煜,周伟良,徐复铭

(南京理工大学, 江苏 南京 210094)

摘 要:采用离子交换树脂(D113)经过与Co二价离子交换后形成含金属的前驱体(Co/D113),经热解制备碳包裹纳米Co 粒子。TG分析表明,Co/D113的热稳定性要强于D113。XRD、TEM结果表明,在400~700℃热解Co/D113可获得碳包裹 面心立方结构(fcc)的纳米Co粒子,而且纳米Co粒子的粒径随热解温度的升高而增大。室温磁性能测试结果表明,400~700 ℃热解产物的矫顽力H_c均远大于相应的块体材料,并与产物中纳米Co粒子的尺寸有关;所有热解产物的比饱和磁化强 度M_s小于相应的块体材料,并随其中纳米Co粒子尺寸的增大而增加。

关键词:复合材料;碳包裹纳米粒子;磁性能

中图法分类号: TB333; TB383

文献标识码:A

文章编号: 1002-185X(2009)09-1646-04

金属纳米粒子的许多独特性质使其在磁性材料、 催化材料、医用材料和纳米器件等领域有着广泛的应 用前景。但同时由于金属颗粒变小,它的氧化性增强, 纳米级的金属遇到空气就会自燃,无法直接应用。自 从20世纪90年代初Ruoff等^[1]及Saito等^[2]相继采用电弧 放电法制备出具有核壳结构的多层石墨包裹金属纳米 晶,用碳包裹纳米金属粒子引起材料科学家的极大兴 趣,成为材料科学研究的热门课题。性质相对稳定的 碳层可以保护金属粒子不发生物理、化学变化,防止 金属纳米粒子长大和团聚,甚至可以将碳层的性能赋 予被包裹的粒子,使其在电子、磁记录、电波屏蔽/ 吸收、催化剂、抗菌剂、生物医学等方面有广泛的应 用前景^[3,4]。研究人员在对传统的电弧放电制备法改 进[5~7]的同时,还采用其它方法,如化学气相沉积法 (CVD)^[8~10]、热解法^[11~14]、等离子体法等^[15,16]也成功 地制备出了碳包裹纳米金属粒子。如Bingshe Xu^[7]等 以石墨为电极,在浓度为0.05 mol·L⁻¹ 的NiSO4、CoSO4 和 FeSO4水溶液中采用电弧放电方法制备碳包裹纳 米Ni、Co和Fe颗粒。Liu等^[10]采用CVD法,以NaCl为 载体担载催化剂,制备出碳包裹纳米Co颗粒。K Park 等[15]以铝板为靶板,乙烯气为碳源,采用直流等离子 体技术制备出碳壳层厚度为1~3 nm的碳包覆纳米金属 Al颗粒,研究表明,由于碳壳层的保护作用使其热稳 定性及抗氧化性比未包裹的纳米铝粒子大幅提高,即 使在700℃时仍保持稳定。

本研究以弱酸型聚丙烯酸系阳离子交换树脂 (D113)为碳前驱体,经与Co二价离子交换后再热解制 备纳米 Co 粒子均匀分散于碳基体并为碳所包裹的材料。该研究为低成本、易控制工艺提供技术依据。

1 实 验

称取4g干的H型D113型离子交换树脂,预处 理后加入去离子高纯水中,搅拌均匀后,边搅拌边滴 加0.2 mol·L⁻¹二价Co的盐溶液110 mL后,继续搅拌 24 h,过滤,洗去掉多余的离子,将其置于烘箱中于 70℃保温24 h 得到担载Co的D113 树脂前驱体 (Co/D113);将其放入管式炉中,在氮气流速为300 mL·min⁻¹的条件下,以5℃·min⁻¹的升温速率,升至 150℃后,保温0.5 h,然后升温至设定的热解温度(*T*) 保温一定时间。所得热解产物在沸水中煮沸约0.5 h, 除去灰分及可溶物,于110℃干燥。所得试样标为 Co/C-*T*,*T*代表热解温度。

将一定量的Co /D113放在空气中灼烧,残余物用 浓HCl-HNO₃溶解后、配成溶液,用OPTIMA 2000等 离子发射光谱仪(ICP)测定溶液中钴含量。通过热失重 (TG, Shimadzu TGA)分析D113、Co /D113前驱体的热 解特征,测试条件为:试样在氮气中以20 ℃·min⁻¹升 温至50 ℃,保温5 min除去试样中吸附的水分,然后 以 20 ℃·min⁻¹升温至设定温度,氮气流速为 20 mL·min⁻¹;碳包裹纳米Co粒子的物相分析用Bruker D8 X射线衍射仪(Cu靶, λ=0.154 06 nm);通过JEM-2100 型TEM观察热解产物的微观形貌,工作电压200 kV; 用振动样品磁强计 (Lakeshore7307 美国)测量试样的 室温磁滞回线。

收稿日期: 2008-10-11

作者简介:赵 军,男,1973年生,博士,南京理工大学化工学院,江苏 南京 210094, 电话: 025-84303909, E-mail: slamjun2@yahoo.com.cn

2 结果与讨论

2.1 前驱体的热解特征

用 TG 对 D113 与 Co/D113 前驱体进行热失重分 析(见图 1)。由图 1 可见, D113 在 200 ℃左右时开始 失重,并且在 220~500 ℃区域内产生了约 88.1 %的 失重, 700 ℃时失重为 90.7 %, 说明 D113 的热稳定性 差, 目残碳率较低: DTG 显示有 2 个失重峰, 一个在 299.2 ℃左右, 一个在 431.1 ℃左右。而 Co/D113 在 420 ℃左右才开始大幅失重,较 D113 有明显滞后,到 600 ℃时失重基本结束,失重在 60 %左右,低于 D113 的 90.7 %; Co/D113 在 420~500 ℃很短的区域内产生 了约 50 %的失重,失重区间要比 D113 小。DTG 结果 显示其失重峰有只有1个,失重峰温为464.5℃,失 重峰温相比 D113 第二失重峰滞后了 33.4 ℃, 说明 Co²⁺ 的引入后与树脂前驱体形成的结构的热稳定性要强于 D113。根据 TG 结果,选择 400, 500, 600 和 700 ℃保 温 60 min 将 Co/D113 试样进行热解处理,其热解数据 见表 1。从表中可以看出, Co/D113 试样在热解炉中 的失重率随热解温度的升高略有增加。

2.2 热解产物结构分析

图 2 是试样 Co/C-*T* 的 XRD 谱图。可以看出,所 有 Co/C-*T* 在 2 θ 为 44.4°, 51.6°和 76.1°左右有宽化衍 射峰,与 fcc 结构的 Co(111)、Co(200)和 Co(220)晶面 的标准卡片值相吻合^[17];这说明产物中的钴主要以单 质形态存在,产物中不含有钴离子和钴的化合物。其 中 Co/C-400 和 Co/C-500 峰的强度较小,而且有宽化, 说明 Co 的晶粒较小,结晶程度比较差。在 Co/C-600、 Co/C-700 的谱图中,单质 Co 的特征衍射峰很尖锐且 强度较大,表明 Co 的晶粒已经长大,结晶也开始变得比 较完整。此外,在 Co/C-600 和 Co/C-700 的谱图中, 2 θ ≈26.3°还出现了归属于石墨(002)晶面的特征衍射峰^[17], Co/C-400 和 Co/C-500 试样中的碳基本为无定型结构。

图 1 前驱体D113和Co/D113的热重曲线

表 1 Co/D113 在热解炉中热解的失重值

Table 1 Mass loss data of Co/D113 samples pyrolysed in

furnace			
Pyrolytic temperature/°C	Mass loss/ %	Co content, ω /%	
400	68.1	75.1	
500	70.3	80.7	
600	71.7	84.7	
700	72.3	86.5	

图 3 为 Co/C-400, 500, 600, 700 ℃的 TEM 照片。 在 Co/C-400, 500 ℃的 TEM 照片中可以观察到, 深色的 钴颗粒均匀分散于碳基质中为碳所包裹, 钴的颗粒细小均 匀, 形状为比较规则的球形; Co/C-400 ℃中的钴粒径(*D*_{Co}) 在 20 nm 左右(如图 3a); Co/C-500 ℃中的 *D*_{Co} 在 25 nm 左 右(如图 3b)。热解温度从 400 ℃升到 500 ℃时, Co 颗粒仅 长大 5 nm 左右。但随着热解温度的升高, 钴粒子急剧长 大, 形状不再是比较规则的球形, 粒径分别在 40~70 nm 和 80~100 nm, 而且颗粒表面有比较明显的壳层(如图 3c, 3d)。

图 3 Co/C-T的 TEM 照片 Fig.3 TEM images of Co/C-T at (a) 400 °C, (b) 500 °C, (c) 600 °C, and (d) 700 °C

用HRTEM进一步研究热解产物的结构。图4为500 ℃和700 ℃的热解产物的HRTEM图。可观察到,比较 完整的球形颗粒是由外壳和内核组成,内核Co颗粒的 颜色较深,颗粒外壳碳层的颜色较浅。500℃热解产物 中的壳层没有表现出晶体结构特征,与文献[9~14]所制 备无定形碳包裹纳米金属颗粒的壳层碳结构相一致, 推测应为无定形碳,包裹层厚度为3~4 nm左右;而700 ℃热解产物中的壳层与500℃热解产物明显不同,显示 出明显的晶体结构特征,说明壳层物质是有晶型的, 由图上测量出晶体的晶面距d为0.34 nm,对应于石墨 (002)的晶间距,与Saito等^[3]和Bingshe Xu等^[7]采用电弧电 弓法制备的石墨碳包裹纳米金属颗粒的壳层碳结构相 同,说明经700℃高温热解后低温阶段所得的无定形碳 壳层石墨化了,壳层厚度在10~20 nm。HRTEM像显示, 壳层的外边缘部分的条纹有些紊乱,说明石墨化程度 不高。至于壳层的外边缘不如内部石墨化程度高的原 因是钴对无定型碳的石墨化有催化作用。

图 4 500 ℃和 700 ℃热解产物 Co/C-T 的 HRTEM 照片 Fig.4 HRTEM images of Co/C-T pyrolysed at 500 and 700 ℃

根据以上TG、XRD和TEM的结果,初步分析其形成机制为:由于Co²⁺的引入,与D113树脂发生离子交换反应。在Co/D113中形成COO-Co-OOC结构(羧酸钴盐)。在加热前驱体的过程中,首先,此结构达到分解温度时,钴原子分解出来(或被碳还原),被禁锢在聚合物前驱体交联网络的一个很小的空间范围内,相邻的原子合并形成纳米级钴的小颗粒;同时在热解过程中聚合物前驱体也在发生不断缩聚,生成高聚合度的稠环芳烃结构的无定形碳,并将这些纳米级钴的小颗粒包裹在其中,在较低的热解温度下(如500℃)便得到了无定形碳包裹的纳米钴粒子;随着热解温度的升高(如700℃),包裹碳层由于进一步缩聚,有可能会发生破裂,使得临近的纳米钴的小颗粒合并、长大,根据文献[13]的报道,围绕在这些纳米钴粒子周围的无定形碳在其催化作用下将发生石墨化,从而得到由多层石墨

包裹的纳米钴粒子。

2.3 热解产物的磁性能

图5是试样Co/C-T的室温磁滞回线。表2为Co/C-T 和块体Co(bulk metal)的室温磁性能值。从图5和表2的 数据看, Co/C-400, 500, 600, 700 ℃试样都有很强的磁 滞效应,在5000×79.6 A/m的外磁场作用下,几乎达到 饱和磁化状态,具有铁磁特性,矫顽力H_c分别为 412.4×79.6, 461.7×79.6, 411.4×79.6和390.2×79.6 A/m, 都远大于块体钴的796 A/m。矫顽力H。和比饱和磁化强 度M。与热解温度有关,分析认为热解温度影响试样中 的磁性Co粒子尺寸。根据磁畴结构理论,存在一个单 畴颗粒临界尺寸D_s,当微粒尺寸小于D_s时,颗粒中只 含一个磁畴,单畴畴颗粒的矫顽力和比饱和磁化强度 随颗粒尺寸的减小而减小; 当微粒尺寸大于D。时, 为 保持能量最低,单畴微粒将变为多畴微粒,同时矫顽 力逐渐减小,比饱和磁化强度逐渐接近块体材料的值, 因而微粒粒径接近单畴颗粒临界尺寸D。时,矫顽力最 大。在上述Co/C-T试样中,根据XRD及TEM的分析结 果可知,Co平均粒径随热解温度的升高而增大,造成 Co/C-T试样中单畴颗粒所占比例随热解温度升高而增 大; 当热解温度为500 ℃时, 可能接近Co单畴颗粒临 界尺寸的粒子比例最大,因而矫顽力也最大,为 461.7×79.6 A/m; 而后随着热解温度的进一步升高, Co/C-T试样中多畴颗粒逐渐增多、单畴颗粒所占比例 减小,矫顽力又开始下降。

从图5和表2的数据还可知,所有Co/C-T试样的比 饱和磁化强度M_s都低于相应块体材料,这是由于纳米 磁性粒子表面的自旋钉扎^[18]、表面磁矩^[18]的消失等表 面效应以及非磁性物质碳的引入造成的。试样 Co/C-400,500,600,700 ℃的M_s分别为块体Co的32.2 %,53.0%,76.0%和80.1%,而且M_s随着热解温度升

图 5 Co/C-T 的室温磁滞回线

Fig.5 Magnetic hysteresis loops of Co/C-T at room temperature

表 2 Co/C-T 与块体钴的室温磁性能值

Table 2 The magnetic properties of Co/C-T and bulk iron at

room	temperature
------	-------------

Sample	$\frac{M_{\rm s}}{(\rm A\cdot m^2)\cdot kg^{-1}}$	$\frac{M_{\rm r}}{({\rm A}\cdot{ m m}^2)\cdot{ m kg}^{-1}}$	$H_{\rm c}/$ ×79.6 A·m ⁻¹	$M_{\rm r}/M_{\rm s}$
Co/C-400	51.7	15.1	412.4	0.292
Co/C-500	85.1	21.6	461.7	0.254
Co/C-600	122.1	26.3	411.4	0.215
Co/C-700	128.7	21.7	390.2	0.169
Bulk metal Co ^[18]	160.7		10	

高而增加;同时 *M*_r 先随着热解温度的升高而增大,在 热解温度为 600 ℃达到最大 26.3(A·m²)·kg⁻¹,而后随热 解温度的升高有所下降; *M*_r/*M*_s则随着热解温度的升 高而单调下降。

3 结 论

1) 以D113型离子交换树脂为碳源,经与钴的二价 离子交换后所制备的含钴的树脂前驱体Co/D113,在 一定工艺条件下热解可以制备出碳包裹纳米Co粒子。

2) 由于钻离子的引入,改变了D113的热分解特性。400~700℃热解Co/D113所得热解产物中的钻为面 心立方结构,而且其晶粒尺寸随热解温的升高而增大; 包裹纳米钴粒子的碳层因热解温度的不同而有所不 同,在400,500℃热解所得产物中包裹层为无定型碳; 600,700℃热解所得产物中则为石墨;400~700℃的热 解产物(Co/C-T)的*H*_c、*M*_s与其中的钴粒子尺寸有关。

3) H_c值先随试样中钴粒子尺寸的增大而增大,在 某一热解温度下产物的H_c达到极值,然后随钴粒子尺 寸的增大而减小。

4) *M*s值则随试样中钴粒子尺寸的增大而单调增大,逐渐接近块体材料的值。

参考文献 References

- [1] Ruoff R S et al. Science [J], 1993, 259(5093): 346
- [2] Saito Y et al. Chem Phys Lett[J], 1993, 204(3~4): 277
- [3] Saito Y. Carbon [J], 1995, 33(7): 979
- [4] Miyanaga S et al. Macromol Sci-Chem[J], 1990, A27(9~11): 1347
- [5] Dravid V P et al. Nature [J], 1995, 374(6523): 602
- [6] Jiao J et al. J Appl Phys [J], 1998, 83(5): 2442
- [7] Bingshe Xu et al. Carbon [J], 2006, 44 (13): 2631
- [8] Hongming Cao et al. Journal of Alloys and Compounds [J], 2008, 448: 272
- [9] Wang Z H et al. Carbon [J], 2003, 41(9): 1751
- [10] Liu B H et al. Chemical Physics Letters [J], 2002, 358: 96
- [11] Yuri Koltypin et al. Chem Mater J], 1999, 11: 1331
- [12] Harris P J F et al. Chemical Physics Letters [J], 1998, 293: 53
- [13] Junping Huo et al. Carbon [J], 2004, 42(15): 3177
- [14] Wu W et al. Carbon [J], 2002, 40(11): 2034
- [15] Park K et al. Journal of Nanoparticle Research [J], 2006, 8: 455
- [16] Michał B et al. Sensors and Actuators B [J], 2005, 109(1): 81
- [17] Urszula N, Marcin P, Walerian A et al. Materials Science and Engineering C [J], 2007, 27: 1273
- [18] Dai Daosheng (戴道生) et al. Ferromagnetics (铁磁学)[M]. Beijing: Science Publishing Company, 1987

Preparation and Magnetism Study of Carbon Coated Nano Co Particles

Zhao Jun, Xiao Leqin, Li Yu, Zhou Weiliang, Xu Fuming

(Nanjing University of Science and Technology, Nanjing 210094, China)

Abstract: Carbon coated nano Co particles were prepared by pyrolysis of Co-exchanged resin (Co/D113) at 400 to 700 °C. The TG results show that the thermal stability of Co/D113 is better than that of pure D113 resin. The XRD and TEM results reveal that the cobalt particles existed mainly in the form of fcc Co phase, and the particle size of nano-Co increase with the increase of pyrolytic temperature. The magnetic tests show that the coercivity(H_c) of the pyrolyzates obtained at 400 to 700 °C at room temperature are much higher than that of the corresponding bulk material, and the H_c value is influenced by the size of the nano particles. The saturation magnetizations (M_s) of all the pyrolyzates are lower than that of bulk material and increase with the increase of pyrolytic temperature.

Key words: composite materials; carbon coated nano particle; magnetic properties

Biography: Zhao Jun, Ph. D., School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China, Tel: 0086-25-84303909, E-mail: slamjun2@yahoo.com.cn