变形温度对 TC11 钛合金超塑性的影响

李 鑫^{1,2},鲁世强¹,王克鲁¹,丁林海¹

(1. 南昌航空大学,江西 南昌 330063)(2. 南京航空航天大学,江苏 南京 210016)

摘 要:通过高温拉伸试验研究 TC11 钛合金在应变速率 0.001 s⁻¹、变形温度 810~1050 ℃的超塑性变形行为,并用金 相显微镜和透射电镜对变形试样的微观组织进行观察和分析。结果表明,在 β 单相区,TC11 钛合金不能呈现超塑性; 而在 α+β 两相区的 810~980℃温度范围内,TC11 钛合金呈现出超塑性,且最佳温度在 900 ℃附近,其最大延伸率为 595%, 此时的超塑性变形过程中有晶内变形、界面滑动、动态再结晶或扩散蠕变的参与,且界面滑动出现在 α/β 相界面。α 相 和 β 相的相对含量对超塑性有较大的影响,初生 α 相含量在 70%附近时对应着 TC11 钛合金的最佳超塑性。 关键词: TC11 钛合金; 拉伸变形; 超塑性; 变形温度; 微观组织; 变形机制

中图法分类号: TG 146.2⁺3 文献标识码: A 文章编号: 1002-185X(2009)11-1920-04

钛合金由于具有密度小、比强度高和抗腐蚀性能 优异等良好的综合性能,在航空航天领域得到广泛的 应用,据统计约占钛总产量的70%左右^[1.2]。钛合金在 变形时一般具有变形抗力大、热力参数容差小的特点, 且成品率低,而采用超塑性成形工艺则可以极大地降 低变形抗力,显著提高塑性和成品率,因此国内外关 于钛合金超塑性的研究颇多^[3~10]。在变形机制方面, Lee 等^[3]利用非弹性变形理论对 TC4 钛合金的超塑性 变形行为进行了研究,认为超塑性变形是由晶粒基体 变形和晶界滑移共同产生的,但在不同的温度范围起 主要作用的机制不同。在材料制备方面, Sergueeva 等^[4]和 Yoshimura 等^[5]分别通过高压扭转变形和氡处 理制备具有超细晶组织的 TC4 钛合金, 顾家琳等^[6]通 过旋锻获得具有超细晶组织的 TC11 钛合金,这些钛 合金均可在较低的温度和较高的应变速率下获得超塑 性。在变形工艺方面,崔保坤等^[7]和高钢强等^[8]对 TC11 钛合金超塑性变形的工艺条件进行了研究,探讨影响 超塑性的变形温度、应变速率等。另外,曾立英等^[9] 和郭鸿镇等^[10]分别对 SPZ 钛合金和 TC21 钛合金的超 塑性变形行为以及微观组织演变进行了研究。这些研 究对于钛合金超塑性材料的制备、钛合金材料在超塑 性变形时工艺参数的优化以及控制超塑性变形后的微 观组织等方面具有重要意义。

本实验拟以具有等轴组织的 TC11 钛合金为研究

对象,通过在应变速率为 0.001 s⁻¹时不同变形温度下的高温拉伸试验,研究变形温度对拉伸超塑性的影响,并探讨不同温度下的超塑性变形机制,以期对 TC11 钛合金超塑性变形时的工艺参数设计和超塑性材料的研制起一定的指导作用。

1 实 验

实验材料为等轴组织的 TC11 钛合金,其 β 相变 点为 1008 ℃,金相组织如图 1 所示。经测量 α 相平 均直径约 4.1 μm。超塑性高温拉伸试样采用棒试样。

拉伸试验设备为 10KN 国产 CMT4104 型电子万 能拉伸试验机,通过计算机程序控制可实现恒应变速

图 1 TC11 钛合金的金相组织 Fig.1 Optical microstructure of titanium alloy TC11

作者简介: 李 鑫, 男, 1975 年生, 博士研究生, 讲师, 南昌航空大学材料学院, 江西 南昌 330063, E-mail: lixin572@163.com; 通讯 作者: 鲁世强, 博士, 教授, 博士生导师, 电话/传真: 0791-3863039, E-mail: niatlusq@126.com

收稿日期: 2008-10-30

基金项目: 江西省自然科学基金(2007GQC1575); 江西省教育厅科技项目(GJJ08203); 江西省材料科学与工程研究中心预研基金资助项目 (ZX200601002)

率拉伸。高温加热装置由高温加热炉和人工智能调节 器组成,通过热电偶实现控温精度±2 ℃。拉伸应变 速率恒为 0.001 s⁻¹,拉伸温度覆盖了 α+β 两相区和 β 单相区,分别为: 810, 850, 900, 940, 980, 1050 ℃。 为了防止拉伸试样在高温下氧化,在试样表面涂抹玻 璃防护氧化剂。试样拉伸完毕后,立即取下水淬,以 保留高温拉伸组织。用 XJP-6A 型金相显微镜和 H-800 型透射电子显微镜进行微观组织观察。

2 结果及分析

2.1 延伸率和拉伸应力-应变曲线

图 2 是 TC11 钛合金试样在不同温度下拉伸前后 的实物图及延伸率。图 3 是与图 2 相对应的拉伸应力-应变曲线。从图 2 可以看出,在 α + β 两相区的 810~980 ℃范围内,TC11 钛合金均呈现出超塑性,而在 β 单相 区的 1050 ℃,则没有呈现出超塑性。尽管 Salam 等^[11] 利用钛合金 Ti-3Al-8V-6Cr-4Mo-4Zr 在 β 单相区获得了 超塑性,但不是在恒应变速率下获得的,而是利用应 变速率循环方法。对于 TC11 钛合金,通过恒应变速 率拉伸在 β 单相区很难呈现出超塑性。延伸率先随

图 2 试样拉伸前后的实物图和延伸率

Fig.2 Specimen photos and elongations before and after tension and elongation

Fig.3 Tensile stress-strain curves of the sample

温度的升高而增加,在 900 ℃达到最大值 595%,然 后随温度继续升高延伸率开始下降,在 980 ℃,延伸 率已降低到 159%,在 1050℃,延伸率仅为 87%。其 原因可能是,当温度小于 900℃时,随着温度的升高, 原子的动能增加,因而位错活动性提高,扩散蠕变和 晶间滑移作用增强,导致塑性增加;当温度超过 900 ℃后,α相含量开始明显减少,不能有效地阻止β晶 粒长大,致使塑性开始降低。另外,从图 2 还可以看 出,在与 900 ℃上下相差 50 ℃左右的 850 和 940 ℃ 相比,延伸率和 900 ℃的相差不大,这对超塑性等温 锻造时的温度控制是非常有利的,同时也说明在这 3 个温度下变形机制可能是相似的。通过以上分析可知, 最佳超塑性变形温度在 900 ℃附近。

从图 3 可以看出,在 α+β 两相区,除 810 ℃外, 拉伸应力-应变曲线基本上为水平的,这表明超塑性变 形时的软化机制能与硬化机制相平衡。而在 β 单相区 的 1050℃,虽然材料不具有超塑性,但拉伸应力-应 变曲线仍然是水平的,这表明仅通过拉伸应力-应变曲 线的形状并不能说明材料是否进行超塑性变形。

2.2 组织分析

2.2.1 金相组织分析

图 4 是 TC11 钛合金试样在 810、900、980 ℃以 相同的应变速率 0.001 s⁻¹拉伸后的横截面(T)和纵截面

- 图 4 试样在不同条件下拉伸的横截面和纵截面的金相组织
- Fig.4 Optical microstructures of transverse sections (T) and longitudinal sections (L) of specimens after tension at: (a_T, a_L) 810 °C, 0.001 s⁻¹; (b_T, b_L) 900 °C, 0.001 s⁻¹; and (c_T, c_L) 980 °C, 0.001 s⁻¹

(L)的金相组织。图 5 为 TC11 钛合金加热温度与初生 α 相含量的关系^[12]。

对照图 $4a_T$ 、 $4b_T$ 和 $4c_T$ 可看出,在 810 和 900 °C 时, α 相尺寸较为细小, 所占比例分别约为 40%和 46%, 而从图 5 可以看出,在 810 和 900 °C 时 α 相含量分别 约 85%和 70%, 这说明在拉伸变形过程中发生了 $\alpha \rightarrow \beta$ 的相变。由于这 2 个温度较低,且在变形过程中相变 的发生使得 α 相和 β 相的含量逐渐趋于接近,能相互 阻止其长大,故两相较为细小,塑性较高。而在 980 °C 时,变形组织中的 α 相含量仅约 21%,而图 5 中的 α 相含量约为 38%,同样说明在拉伸过程中发生了 $\alpha \rightarrow \beta$ 的相变,只不过在 980 °C 时,由于温度较高, α 相含 量较少, α 和 β 两相不能相互阻止长大,导致变形后 的晶粒尤其是 β 晶粒较为粗大,塑性降低。

对照图 4a_L、4b_L和 4c_L可以看出,在 810 和 980 ℃, α 相明显被拉长,而在 900 ℃,α 相则相对较为等轴, 这说明在 900 ℃时的变形过程中发生了动态再结晶 或有扩散蠕变的存在^[13]。通过以上分析可知,在 TC11 钛合金超塑性变形时,α 相和 β 相之间的体积比起着 比较重要的作用,由于最大延伸率出现在 900 ℃附 近,结合图 5 可知,初生 α 相的含量在 70%左右能获 得最大的延伸率。另外,变形过程中 α→β 的相变可能 是应力动态松弛的一种方式。

2.2.2 透射电镜分析

图 6a 是试样在 980 ℃, 0.001 s⁻¹ 拉伸后横截面的 TEM 照片。从图可以看出,试样变形后, a/a 界面平 直、清晰,没有滑动的痕迹,并且α相内没有观察到 位错。对于β相,由于在变形后水淬时转变成马氏体, 内部的位错不容易观察到。但考虑到在 980 ℃时, β 相含量较多,且变形抗力比α相低,塑性比α相好, 因此可以认为变形主要由较软的 β 相承担而不是由 α 承担。一般说来,有两种限制的变形模型来描述双相 合金的变形^[14]:一种是等应变速率模型,此模型中, 应变速率在两相中是相同的,但在两相之间有一个应 力梯度分布:另一种是等应力模型,此模型中,应力 在两相中是相等的,但在两相之间有一个应变速率梯 度分布。在双相钛合金中,由于β相比α相具有较低 的流动应力,因此在等应变速率模型中, β 相的变形 受到 α 相的限制,这样,合金的变形特征主要由 α 相 来决定。相反,在等应力模型中,合金的变形特征由 β相来决定。考虑到在 980 ℃, 0.001 s⁻¹时, α相内没 有观察到位错,变形主要由β相承担,因此可以认为 变形模型为等应力模型。

图 6b 和 6c 是试样在 900 °C, 0.001 s⁻¹ 拉伸后横截 面的 TEM 照片。从图可看出,在 α 晶粒的三叉区域, 晶界清晰、平直,说明 a/α 界面没有发生滑动,而 a/β 界面呈弧形且较为扭曲,表明 a/β 界面发生了滑动。 这说明在变形时,相(晶)界滑动出现在 a/β 界面而不是 a/α 界面,与文献[14,15]的研究结果相吻合。从图 6c 可以看出,在左上角的 α 晶粒内可以观察到位错,表 明 α 相参与了变形,这说明合金的变形具有等应变速 率模型的特征;而 β 相的变形抗力比 α 相低,因此 β 相应该发生了变形,这说明合金的变形也具有等应力 模型的特征。所以,当温度从 980 °C降低到 900 °C, 变形模型发生了变化,从等应力模型转变为等应变速

图 6 试样在不同条件下拉伸后的横截面 TEM 照片

Fig.6 TEM images of transverse sections of specimens after tension under different conditions: (a) 980 °C, 0.001 s⁻¹; (b, c) 900 °C, 0.001 s⁻¹; and (d) 810 °C, 0.001 s⁻¹

率模型和等应力模型的混和型。图 6d 是试样在 810 ℃, 0.001 s⁻¹拉伸后横截面的 TEM 照片。从图 6d 可 以看出,在 α 晶粒中有大量的位错,根据前面的分析 可知,在 810℃, 0.001 s⁻¹时的变形模型也为混和型。

通过 TEM 观察和分析可知,在 α+β 两相区的高 温区,变形主要由β相承担,是等应力模型,随着温 度的降低,α相也参与了变形,变形模型为等应力模 型和等应变速率模型的混和型。另外,超塑性变形时 界面的滑移出现在 α/β 相界面。

3 结 论

当应变速率为 0.001 s⁻¹时, TC11 钛合金在 β
単相区不能呈现出超塑性,但在 α+β 两相区的 810~980
℃温度范围内能呈现出超塑性。

2) 呈现超塑性的最佳温度在 900 ℃附近,其最 大延伸率为 595%,此时变形过程中有晶内变形、动 态再结晶(或扩散蠕变)和界面滑动的参与,且界面滑 动出现在 α/β 相界面。

3) α相和β相的相对含量对超塑性具有较大的影响,当初生α相含量在70%时对应着最佳的超塑性, 在超塑性变形过程中伴随着 α→β 的相变使得两相的 体积分数趋于相近,能相互阻止长大。

4) 当应变速率为 0.001 s⁻¹时, TC11 钛合金在 980
℃时的变形模型为等应力模型,在 900 ℃和 810 ℃时
的变形模型为等应力模型和等应变速率模型的混和型。

参考文献 References

- [1] Qian Jiuhong (钱九红). Chinese Journal of Rare Metals (稀有 金属)[J], 2000, 24(3): 218
- [2] Li Liang (李 梁) et al. Titanium Industry Progress (钛工业进展)[J], 2004, 21(5): 19
- [3] Lee C S et al. Intern J Mech Sci[J], 2000, 42: 1555
- [4] Sergueeva A V et al. Mater Sci Eng A[J], 2002, 323: 318
- [5] Yoshimura H et al. Intern J Hydrogen Ener[J], 2002, 27: 769
- [6] Gu Jialin (顾家琳) et al. Acta Metallurgica Sinica(金属学报) [J], 2002, 38(9): 378
- [7] Cui Baokun (崔保坤) et al. Journal of Shanghai Iron & Steel Research (上海钢研)[J], 1996 (3): 22
- [8] Gao Gangqiang (高钢强), Xu Yongguo (徐永国). Metal Physics Examination and Testing (物理测试)[J], 1997(4): 11
- [9] Zeng Liying (曾立英)et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2005, 34(12): 1940
- [10] Guo Hongzhen (郭鸿镇) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2005, 34(12): 1935
- [11] Salam A et al. J Mater Sci[J], 2005, 40: 5475
- [12] Zhou Yigang (周义刚) et al. Engineering Science(中国工程 科学)[J], 2001(5): 61
- [13] Ashby M F et al. Acta Metallurgica[J], 1973, 21(2): 149
- [14] Kim J S et al. Mater Sci Eng A[J], 1999, 263: 272
- [15] Kim J H et al. Mater Sci Eng A[J], 2005, 394: 366

Effect of Deformation Temperature on the Superplasicity of Titanium Alloy TC11

Li Xin^{1,2}, Lu Shiqiang¹, Wang Kelu¹, Ding Linhai¹ (1. Nanchang Hangkong University, Nanchang 330063, China)

(2. Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract: The superplastic deformation behavior of titanium alloy TC11 has been investigated in the temperature range of 810~1050 °C at the strain rate of 0.001 s⁻¹ by tensile tests at high temperature, and the microstructures of samples deformed have been observed and analysed by metallographic microscope and transmission electron microscope. The results showed that the titanium alloy TC11 would not exhibit superplasicity in the β phase field, but exhibit in the temperature range of 810~980 °C in the $\alpha+\beta$ phase field with an optimal deformation temperature of near 900 °C and maximum elongation of 595%. The intracrystalline deformation, interface sliding, dynamic recrystallization or diffusion creep take part in the superplastic deformation at 900 °C, and the interface sliding appears at α/β phase interface. The relative content of α and β phases has a heavy effect on the superplasicity and the titanium alloy TC11 exhibits an optimal superplasicity when the content of primary α phase is about 70%.

Key words: titanium alloy TC11; tensile deformation; superplasticity; deformation temperature; microstructure; deformation mechanism

Biography: Li Xin, Candidate for Ph. D., Lecture, School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China, E-mail: lixin572@163.com; Corresponding Author, Lu Shiqiang, Ph. D., Professor, Superviser of Ph. D. Candidate, Tel/Fax: 0086-791-3863039, E-mail: niatlusq@126.com