Fe-Nd-Al 系非晶合金条带的磁性机理

何建明,白琴,赵清,徐晖,夏爽

(上海大学 微结构重点实验室, 上海 200444)

摘 要: 对 $F_{e_{53}}Nd_{37}Al_{10}$ 合金甩带速度为 40 和 20 m/s 条带样品的磁性能、磁粘滞行为和微观结构进行研究,分析了该 合金条带的矫顽力机理。结果表明: $F_{e_{53}}Nd_{37}Al_{10}$ 合金甩带速度为 40 和 20 m/s 条带样品的剩余磁化强度 M_r 分别为 33.50 和 36 .05 (A m²) kg⁻¹, 矫顽力 $_{1}H_c$ 为 62.00 和 121.50 kA/m。 40 m/s 条带样品的热涨落场 H_f ,激活体积 V_a 和激活直径 D_a 分别为 2.47 mT, 3.90×10^{-18} cm³ 和 19.53 nm; 而 20 m/s 条带样品为 2.73 mT, 3.53×10^{-18} cm³ 和 18.89 nm。 40 m/s 条带 样品里面存在直径小于 5 nm 的纳米团簇,而 20 m/s 条带样品的纳米团簇直径为 5~10 nm,且纳米团簇数量更多。Fe-Nd-Al 非晶条带里面同时存在交换耦合和钉扎 2 种作用,纳米团簇的尺寸和数量,以及多个团簇组成的作用单元是影响非 晶条带矫顽力的主要原因。

关键词:磁粘滞行为;交换耦合;钉扎作用 中图法分类号:TG139⁺.8;TG115.27

文献标识码: A

文章编号: 1002-185X(2016)11-2878-06

自 A. Inoue 等人^[1,2]1996 年成功制备出室温下具 有硬磁性的 Nd-Fe-Al 大块非晶合金以来,该系列非晶 合金良好的非晶形成能力和磁性能引起了研究者们的 广泛关注。通常,非晶合金由于其具备的结构各向同 性,作为磁性材料应该表现为软磁性。然而,Nd-Fe-Al 非晶合金室温下的矫顽力可以达到 300 kA/m,属于硬 磁性材料。研究者们^[1-9]对其微观结构和磁性能已经 进行了多年的研究,但对于矫顽力机理并没有一致的 认识。

目前,对于该系列非晶合金具有较高矫顽力的原因主要有3种解释:随机各向异性模型;交换耦合模型;强钉扎模型。

A. Inoue 等人^[3-5]在 Nd(Pr)-Fe-Al 系非晶合金中观 察到 Nd(Pr)-Fe 团簇和 Nd(Pr)-Fe-Al 团簇,这些具有 各 向 异 性 的 团 簇 对 矫 顽 力 有 很 大 影 响 。 R. Ortega-Zempoalteca 等人^[6]也观察到了类似的结构。穆 斯堡尔谱测试也证实了 Nd(Pr)-Fe 纳米团簇的存在^[9]。

磁性颗粒间相互作用时,不同取向的磁矩会产生 交换耦合作用,使混乱取向的磁矩趋于平行排列,产 生剩磁增强效应。H. Chiriac 等人^[10]认为非晶基体中的 铁磁性团簇之间的交换耦合作用使材料内部形成了磁 畴,试样的磁滞回线越平滑说明交换耦合作用越好。

R. W. McCallum 等人^[11]也得到了类似的结果,并通过 亨克曲线进行了验证。 S. J. Collocott 等人^[12]运用 P. Gaunt^[13]的强钉扎模 型证实了 Nd-Fe-Al 非晶合金矫顽力与温度的关系; A. Bracchi 等人^[14]也得到了类似的结果,认为矫顽力 来源于顺磁性相、纳米晶等对畴壁移动的阻碍但钉扎 作用的强弱会有所不同。

磁粘滞现象是铁磁材料的一个显著特征,是热激 活过程中铁磁材料由亚稳态转变为稳态时引起的,也 是铁磁材料被磁化时磁历史的反应^[15]。通过研究磁性 材料的磁粘滞行为,可以更好地理解磁性材料的磁性 机理。在一定的时间范围内,磁极化强度 J 随时间 t 的变化,可以用下式来描述^[15,16]:

 $J(t) = s \ln(t) + const$ (1) 式中, s 是磁粘滞系数。热涨落场(H_t)定义如下^[15]:

$$\Delta H = \frac{k_{\rm B}}{\partial E / \partial H |_J} T \ln(t_{\rm i}) = H_{\rm f} \ln(t_{\rm i})$$
⁽²⁾

式中,*t*_i是磁极化强度,*J*为某一定值时与曲线交点的时间值。

近年来, S. J. Collocott 等人^[17-20]通过观察磁粘滞 行为对 Nd-Fe-Al-(Co) 和 Pr-Fe-Al 非晶合金的磁性机 理进行研究,得到了热涨落场 H_f 、激活体积 V_a 、激活 直径 D_a 等磁粘滞参数,例如 $H_f(Nd_{60}Fe_{30}Al_{10})=11.1$ mT, $H_f(Nd_{60}Fe_{20}Co_{10}Al_{10})=9.4$ mT。

本课题组前期研究结果表明,铜辊甩带速度在 20 m/s 以上时 Fe₅₃Nd₃₇Al₁₀ 合金条带基本是非晶态结

收稿日期: 2015-11-08

基金项目:国家自然科学基金(51001066)

作者简介: 何建明, 男, 1989年生, 硕士生, 上海大学微结构重点实验室, 上海 200444, E-mail: hejianming89@163.com

构^[21,22], 微观结构简单,适用于矫顽力机理研究。本研究选择甩带速度为40和20m/s的Fe₅₃Nd₃₇Al₁₀合金条带样品进行磁性能、磁粘滞行为和微观结构的观察,研究 Fe-Nd-Al 非晶合金条带的矫顽力机理。

1 实 验

用电弧炉熔炼法在高纯氩气气氛下制备名义成分 为 Fe₅₃Nd₃₇Al₁₀的母合金(各组元的纯度高于 99.9%)。 为保证母合金成分的均匀性,每个铸锭反复熔炼 4 次。 实验所需条带样品由熔体快淬法在高纯氩气气氛保护 下制成,辊轮的线速度分别为 40 和 20 m/s。采用 D/max-2200V 型全自动 X 射线衍射仪(Cu 靶,Kα射 线)进行物相分析; JEM-2010F/200KV 发射透射电子 显微镜进行结构分析;采用 NETZSCH DSC 404C 高温 差示扫描热量仪进行热分析,实验中加热速度为 20 K/min;磁性能和磁粘滞行为测量在 Lake Shore 7407 型振动样品磁强计(VSM)上进行。

磁粘滞行为研究通常采用"一步法"(也叫等待时间法^[20]),即先给样品加正向磁场 H_s (本实验为1.8T) 至饱和,然后磁场以一定速度下降至负矫顽力附近一 个合适的值(μ_0H_a)并保持不变,测量磁极化强度J随时间t的变化。取不同的外加磁场 μ_0H_a ,可以得到 一系列的J-t曲线,在J-t曲线中分别取不同的磁极化 强度J值,得到外加磁场 μ_0H_a 和时间t的关系,通过 公式(2)计算得到热涨落场 H_f 。

2 结果与讨论

2.1 相组成和显微结构

Fe₅₃Nd₃₇Al₁₀ 合金甩带速度为 40 和 20 m/s 条带样 品的 XRD 图谱如图 1 所示。可知 2 个冷却速度的条 带样品均主要为非晶态结构。与 40 m/s 条带样品相比,

图 1 Fe₅₃Nd₃₇Al₁₀合金甩带速度为 40 和 20 m/s 条带样品 的 XRD 图谱

Fig.1 XRD patterns of the ribbons of the Fe₅₃Nd₃₇Al₁₀ alloy with different cooling rates

20 m/s 条带样品 XRD 图谱上有更多小的衍射峰,表明 20 m/s 条带样品里面可能含有更多的纳米团簇。为进 一步研究条带样品的微观结构,采用 HRTEM 进行微 观结构观察,如图 2 和图 3 所示。

从图 2 可以看出,两样品形貌均一,没有明显的 衬度,主体为非晶相结构,该结论与 XRD 图谱(图 1) 显示的结果一致。观察图 3 可知,两样品的非晶基体 上均匀分布着纳米团簇,40 m/s 条带样品的纳米团簇 直径小于 5 nm,而 20 m/s 条带样品的纳米团簇直径为 5~10 nm,且纳米团簇数量更多。这些团簇会阻碍畴壁 的移动,对磁畴有钉扎作用。类似的情况在 Nd (Pr) -Fe-Al 非晶合金中也有报道,R. W. McCallum 等人^[11] 在 Nd₆₀Fe_{30-x}Al_{10+x} ($-2 \le x \le 6.5$)条带中发现了平均直 径为 1.2 nm 左右的团簇 (Nd₆Fe_{13-x}Al_{1+x});A. Bracchi 等人^[23]在 Nd₆₀Fe₃₀Al₁₀ 快淬条带中观察到平均直径为 15 nm 的团簇;N. Lupu 等人^[24]通过蒙特卡洛法计算 Nd_{90-x}Fe_xAl₁₀ (x=20~60)条带样品中均匀存在直径为 2~3 nm 的团簇;M. X. Pan 等人^[25]在 Nd₆₀Fe₂₀Co₁₀Al₁₀ 大块金属玻璃中观察到平均直径为 5 nm 的团簇。

图 4 是 Fe₅₃Nd₃₇Al₁₀合金甩带速度为 40 和 20 m/s 条带样品的 DSC 曲线。从中可以看出两样品在晶化前 有明显的玻璃转变和过冷液相区。40 m/s 条带样品的 过冷液相区宽度为 72 K,在 823 K 附近出现放热峰,

- 图 2 Fe₅₃Nd₃₇Al₁₀ 合金甩带速度为 40 和 20 m/s 条带样品的 HRTEM 图
- Fig.2 HRTEM images of the ribbons of the Fe₅₃Nd₃₇Al₁₀ alloy with cooling rates of 40 m/s (a) and 20 m/s (b)

- 图 3 Fe₅₃Nd₃₇Al₁₀合金甩带速度为 40 和 20 m/s 条带样品的 HRTEM 照片
- Fig.3 HRTEM images of the ribbons of $Fe_{53}Nd_{37}Al_{10}$ alloy with cooling rates of 40 m/s (a) and 20 m/s (b)

- 图 4 Fe₅₃Nd₃₇Al₁₀ 合金甩带速度为 40 和 20 m/s 条带样品的 DSC 曲线
- Fig.4 DSC curves of the ribbons of the Fe₅₃Nd₃₇Al₁₀ alloy with different cooling rates

放热焓为 12.37 J/g; 20 m/s 条带样品的过冷液相区宽 度为 81 K,放热峰温度为 840 K,放热焓为 11.87 J/g, 表明两条带样品有良好的非晶形成能力,且 40 m/s 条 带样品里面含有更多的非晶相。该结果与 XRD 和 HRTEM 关于相组成和微观结构得到的结论一致。

2.2 磁性能和磁粘滞测试

图 5 是 Fe₅₃Nd₃₇Al₁₀合金甩带速度为 40 和 20 m/s 条带样品的磁滞回线,图中的磁滞回线平滑,说明交

- 图 5 Fe₅₃Nd₃₇Al₁₀合金甩带速度为 40 和 20 m/s 条带样品 的磁滞回线
- Fig.5 Hysteresis loops for the ribbons of the $Fe_{53}Nd_{37}Al_{10}$ alloy with different cooling rates

换耦合作用较好。两样品在室温下均表现为硬磁性, 且最大外加磁场下的磁化强度 *M* 很接近,而两者的矫 顽力相差较大,40 和 20 m/s 条带样品的矫顽力_iH_c分 别为 62.00 和 121.50 kA/m。

40 和 20 m/s 条带样品的不可逆磁化率曲线如图 6 所示,两者的不可逆磁化率曲线在各自的矫顽力附近 都出现了单峰,说明两样品均为单磁性相;且 20 m/s 条带样品的峰更尖锐,说明其磁性相(团簇)尺寸更 大^[16,26]。与 HRTEM 观察到的纳米团簇尺寸结论一致。

"一步法"测得 Fe₅₃Nd₃₇Al₁₀ 合金甩带速度为 40 和 20 m/s 条带样品的磁极化强度 J 随时间 lnt 的变化, 如图 7 和图 8。图 7 中的外加磁场 μ₀H_a(从上到下) 分别为–38, –40, –44, –46, –47 mT;图 8 中的外加 磁场 μ₀H_a(从上到下)分别为–75, –77, –79, –81, –83 mT。在图 7 和图 8 中分别取不同磁极化强度(J)

- 图 6 Fe₅₃Nd₃₇Al₁₀ 合金甩带速度为 40 和 20 m/s 条带样品的 不可逆磁化率曲线
 - Fig.6 Irreversible magnetic susceptibility curves for the ribbons of $Fe_{53}Nd_{37}Al_{10}$ alloy with different cooling rates

- 图 7 Fe₅₃Nd₃₇Al₁₀合金甩带速度为 40 m/s 条带,在一定外加 磁场(μ₀H_a)下,磁极化强度(*J*)随时间(*t*)的变化关系
- Fig.7 Experimental results for the $Fe_{53}Nd_{37}Al_{10}$ amorphous alloy with the cooling rate of 40 m/s, showing the decay of the magnetic polarization (*J*) as a function of time (*t*) (note the logarithmic time dependence)

- 图 8 Fe₅₃Nd₃₇Al₁₀合金甩带速度为 20 m/s 条带,在一定外加磁场(μ₀H_a)下,磁极化强度(J)随时间(t)的变化关系
- Fig.8 Experimental results for the $Fe_{53}Nd_{37}Al_{10}$ amorphous alloy with the cooling rate of 20 m/s, showing the decay of the magnetic polarization (*J*), as a function of time (*t*) (note the logarithmic time dependence)

值与各曲线的交点,将对应交点的外加磁场 $\mu_0 H_a$ 与时间 $\ln(t_i)$ 做线性拟合,如图 9 和图 10。

根据公式(2),直线的斜率即为热涨落场 H_f ,通 过计算可知 40 和 20 m/s 条带样品的热涨落 H_f 分别为 2.47 和 2.73 mT,2 条带样品的热涨落场 H_f 很接近。 说明合金甩带速度在 20 m/s 以上时,冷却速度对 Fe₅₃-Nd₃₇Al₁₀ 非晶条带的热涨落场 H_f 影响很小。Fe₅₃Nd₃₇-Al₁₀条带样品的热涨落场 H_f 小于其他稀土基非晶合金 的(Nd₅₁Pr₉Fe₃₀Al₁₀大块非晶合金的热涨落场 H_f 为 10.4 mT^[16], Pr₅₈Fe₂₄Al₁₈大块非晶合金的热涨落场 H_f 为 5.9 mT^[17], Nd₆₀Fe₂₀Co₁₀Al₁₀大块非晶合金的热涨落场 H_f

- 图 9 Fe₅₃Nd₃₇Al₁₀合金甩带速度为 40 m/s 条带,外加磁场 (μ₀H_a)与时间对数 ln(t_i)拟合的直线(图中直线的斜 率即热涨落场(H_f),为 2.47 mT)
- Fig.9 $\mu_0 H_a$ and $\ln(t_i)$ determined from the intersections of lines from the experimental curves in Fig.7 for the Fe₅₃Nd₃₇Al₁₀ amorphous alloy with the cooling rate of 40 m/s. The average slope of the lines is 2.47 mT, which is the fluctuation field (H_f)

- 图 10 Fe₅₃Nd₃₇Al₁₀合金甩带速度为 20 m/s 条带,外加磁场 (μ₀H_a)对时间对数 ln(t_i)拟合的直线(图中直线的斜 率即热涨落场(H_f),为 2.73 mT)
- Fig.10 $\mu_0 H_a$ and $\ln(t_i)$ determined from the intersections of lines for the Fe₅₃Nd₃₇Al₁₀ amorphous alloy with the cooling rate of 20 m/s. The average slope of the lines is 2.73 mT, which is the fluctuation field (H_f)

为9.4 mT^[18], NdFeB 条带的热涨落场 H_f 为8.0 mT^[27]), 表明 $Fe_{53}Nd_{37}Al_{10}$ 非晶条带比其他稀土基非晶合金具 有更好的稳定性。

微观结构影响材料的磁性能,其中激活体积 V_a 可看作热激活过程中磁畴在 2 个钉扎中心翻转时畴壁 移动的体积^[15,16]:

$$V_{\rm a} = \frac{k_{\rm B}}{H_{\rm f} M_{\rm s}} T \tag{3}$$

式中, k_B是玻尔兹曼常数, T是开尔文温度, M_s是饱 和磁化强度。根据公式(3)可得到激活体积 V_a, 如 果把团簇当作球型,可算得激活直径 D_a(见表 1)。

从表 1 可以看出 Fe53Nd37Al10 合金甩带速度为 40 和 20 m/s 条带样品的剩余磁化强度 M_r接近;而两者 的矫顽力_iH_c相差较大。40和20m/s条带样品的激活 直径 D_a分别为 19.53 和 18.89 nm,相当于多个团簇之 间的距离。本课题组前期研究结果^[22]已用实验手段证 明 Fe53Nd37Al10 非晶条带里面同时存在交换耦合和钉 扎 2 种作用,但不同甩带速度条带里面的交换耦合和 钉扎作用各自对矫顽力的贡献有所不同。在前期研究 工作的基础上,探讨了交换耦合和钉扎作用对条带样 品矫顽力共同作用的途径和方法, 与磁粘滞测试结果 结合起来分析可以发现,纳米团簇不是单独作用的, 可能是邻近的多个团簇组成一个作用单元再与其他单 元相互作用,从而影响非晶条带的矫顽力^[28]。20 m/s 条带比 40 m/s 条带含有更多的团簇,从而作用单元更 多,使得矫顽力较大。Fe-Nd-Al 非晶条带里面同时存 在交换耦合和钉扎2种作用,纳米团簇的尺寸和数量, 以及多个团簇组成的作用单元是影响非晶条带矫顽力 的主要原因^[22]。

- 表 1 Fe₅₃Nd₃₇Al₁₀合金甩带速度为 40 和 20 m/s 条带样品的 矫顽力(_iH_c)、剩磁 (M_r)、热涨落场 (H_f)、激活体积 (V_a)、 激活直径 (D_a)
- Table 1Coercivity ($_iH_c$), remanent magnetization (M_r), fluctuation
field (H_f), activation volume (V_a) and activation diameter
(D_a) for the Fe₅₃Nd₃₇Al₁₀ alloy with different cooling
rates

Iutes					
Cooling rate/m s ⁻¹	$_{\rm i}H_{\rm c}/$ kA m ⁻¹	$M_{\rm r}/$ (A m ²) kg ⁻¹	H _f / mT	$V_{\rm a}/$ $ imes 10^{-18} { m cm}^3$	D _a /nm
40	62.00	33.50	2.47	3.90	19.53
20	121.50	36.05	2.73	3.53	18.89

3 结 论

Fe₅₃Nd₃₇Al₁₀ 合金甩带速度为 40 和 20 m/s 条带样品的剩余磁化强度 *M*_r分别为 33.50 和 36.05 (A m²)/kg,相差不大;而矫顽力;*H*_c差别较大,分别为 62.00 和 121.50 kA/m。

2) 40 m/s 条带的热涨落场 H_f,激活体积 V_a和激活 直径为D_a分别为2.47 mT,3.90×10⁻¹⁸ cm³和19.53 nm;
而 20 m/s 条带的分别为 2.73 mT, 3.53×10⁻¹⁸ cm³和
18.89 nm。由磁粘滞研究得到的磁粘滞参数变化不大。

3) 40 和 20 m/s 条带的非晶基体上均匀分布着纳 米团簇。40 m/s 条带里面的纳米团簇直径小于 5 nm, 而 20 m/s 条带里面的纳米团簇直径为 5~10 nm,且纳 米团簇数量更多。Fe-Nd-Al 非晶条带里面同时存在交换耦合和钉扎 2 种作用,纳米团簇的尺寸和数量,以及多个团簇组成的作用单元是影响非晶条带矫顽力的主要原因。

参考文献 References

- Inoue A, Zhang T, Zhang W *et al. Mater Trans JIM*[J], 1996, 37(2): 99
- [2] Inoue A, Zhang T, Takeuchi A et al. Mater Trans JIM[J], 1996, 37(4): 636
- [3] Inoue A, Takeuchi A, Zhang T. Metall Mater Trans A[J], 1998, 29: 1779
- [4] Li J C M E ed. Microstructure and Properties of Materials[M].
 Tokyo: World Scientific Publishing Company C/O Science Press, 2000: 351
- [5] Inoue A, Zhang T, Takeuchi A. *IEEE Trans Magn*[J], 1997, 33(5): 3814
- [6] Ortega-Zempoalteca R, Valenzuela R, Betancourt I. Phys Status Solidi[J], 2011, 8(11-12): 3062
- [7] Kramer M J, O'Connor A S, Dennis K W et al. IEEE Trans Magn[J], 2001, 37(41): 2497
- [8] Schneider S, Bracchi A, Samwer K *et al. Appl Phys*[J], 2002, 80(10): 1749
- [9] Chiriac H, Lupu N, Rao K V et al. IEEE Transactions on Magnetics[J], 2001, 37(41): 2509
- [10] Chiriac H, Marinescu M, Tiberto P et al. Mater Sci Eng A[J], 2001, 304-306: 957
- [11] McCallum R W, Lewis L H, Kramer M J et al. J Magn Magn Mater[J], 2006, 299(2): 265
- [12] Collocott S J. J Magn Magn Mater[J], 2010, 322(16): 2281
- [13] Gaunt P. Philos Mag B[J], 1983, 48(3): 261
- [14] Bracchi A, Schneider S, Thiyagarajan P et al. J Magn Magn Mater[J], 2004, S272-276(2): 1423
- [15] Street R, Brown S D. J Appl Phys[J], 1994, 76(10): 6386
- [16] Fan Haipin(范海平), Xu Hui(徐 晖), Tan Xiaohua(谭晓华) et al. Rare Metal Materials and Engineering(稀有金属材料 与工程)[J], 2012, 41(7): 1251
- [17] Collocott S J , Dunlop J B. J Magn Magn Mater[J] , 2009, 321(19): 3293
- [18] Collocott S J, Dunlop J B. J Phys Conf Ser[J], 2009, 144: 012 059
- [19] Collocott S J, Dunlop J B. Phys Rev B[J], 2002, 66: 224 420
- [20] Collocott S J. J Appl Phys[J], 2010, 107(9): 09A 720
- [21] Bai Q, Xu H, Tan X H et al. J Alloy Compd[J], 2009, 473: 11
- [22] Bai Q, Wang J, Hao Y F et al. Phys B[J], 2014, 438: 131

- [23] Bracchi A, Samwer K, Niermann T et al. Appl Phys Lett[J], 2004, 116(10): 343
- [24] Lupu N, McGreevy R L, Chiriac H et al. Mater Sci Eng A[J], 2004, 375-377: 1105
- [25] Pan M X, Wang B C, Xai L et a. Intermetallics[J], 2002, 10(11-12): 1215
- [26] Billoni O V, Villafuerte M, Urreta S et al. Phys B[J], 2002, 320: 288
- [27] Ferguson G B, O'Grady K, Popplewell J et al. J Appl Phys[J], 1991, 69(8): 5495
- [28] Tan X H, Xu H, Man H et al. J Appl Phys[J], 2011, 109(8): 083 9271

Mechanism of the Magnetic Behavior in Fe-Nd-Al Amorphous Alloy Ribbons

He Jianming, Bai Qin, Zhao Qing, Xu Hui, Xia Shuang

(Laboratory for Microstructures, Shanghai University, Shanghai 200444, China)

Abstract: Ribbons of the Fe₅₃Nd₃₇Al₁₀ alloy with different cooling rates, 40 and 20 m/s, were prepared by a melt spinning method. The magnetic behavior, magnetic viscosity behavior and microstructure of the ribbons were investigated. The remanent magnetization M_r of the ribbons with the cooling rate of 40 and 20 m/s is 33.50 and 36.05 (A·m²/kg), and the coercivity _i H_c is 62.00 and 121.50 kA/m, respectively. The fluctuation field H_f , activation volume V_a and activation diameter D_a of the ribbons with the cooling rate of 40 m/s are 2.47 mT, 3.90×10^{-18} cm³ and 19.53 nm, respectively. The H_f , V_a , and D_a of the ribbons with the cooling rate of 20 m/s are 2.73 mT, 3.53×10^{-18} cm³ and 18.89 nm, respectively. The size of nanoclusters in the ribbons with the cooling rate of 40 m/s the size of nanoclusters in the ribbons with the cooling rate of 20 m/s are 1.73 mT. The hard magnetic property of the ribbons melt-spun at 40 and 20 m/s would be due to the exchange coupling interactions and pinning effect. The main influencing factors of the coercivity of Fe-Nd-Al amorphous alloy ribbons are the size and amount of nanoclusters and the interactive units composed of many nanoclusters.

Key words: magnetic viscosity behavior; exchange coupling interactions; pinning effect

Corresponding author: Bai Qin, Ph. D., Associate Professor, Laboratory for Microstructures, Shanghai University, Shanghai 200444, P. R. China, Tel: 0086-21-66135030, E-mail: baiqin31@shu.edu.cn