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Abstract: A highly active photocatalyst TiO,/g-C3sN4 was synthesized by a facile two-step method including sol-gel and calcination,
using Ti(OBu),4 as a Ti source and melamine as a nitrogen source. The resultant photocatalysts were characterized by XRD, TEM
and UV-vis diffuse reflectance spectra. The results show that TiO»/g-C3N, is formed and TiO; is beset with graphite-like carbon
nitride of layer structure. TiO,/g-CsN4 exhibits obviously enhanced visible light photocatalytic activity, and the degradation
efficiency of Methylene blue (MB) reaches 94.46% after irradiation for 1 h, which is much higher than that of g-CsN4 and TiO.. The
improved photocatalytic activity of TiO,/g-CsN, is attributable to its wide spectrum responsive range, strong visible light adsorption

capability, and the synergistic effect between TiO and g-CsN4. The mechanism of photocatalytic reaction was discussed.
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Semiconductor photocatalysis has attracted much
attention in the past few decades because of its extensive
applications in the fields of renewable hydrogen energy
supply and environmental protection™. TiO, is the most
promising photoelectrode semiconductor material owing to
its nontoxicity, low cost, and cyclic stability'. However,
owing to the large band gap energy of anatase TiO,, UV
light is vital to its photocatalytic reaction®. As a result,
tremendous efforts such as doping, deposition of metals and
hybrid composite have been employed to enhance visible
light photocatalytic activity of TiO,??.

As a novel function material, g-C3N,4 has attracted much
attention in recent years for its particular properties, high
electron mobility and metal-free with visible light
absorption™. g-C;N, has superior reduction ability due to
the low band gap . However, its oxidation ability is
inferior as compared to TiOz[sl. Currently, a number of
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synthesis routes of hybrid TiO,/g-C;N, have been
introduced by treatment of the mixture of TiO, and CsN,®,
TiO, and nitrogen source™ or the mixture of Ti source and
C3N,M* to overcome these drawbacks.

To the best of our knowledge, the preparation of
TiO,/g-C3sN,4 from the Ti source and the nitrogen source has
not been reported. Therefore, TiO,/g-C3sN, was synthesized
by a two-step method of sol-gel and calcination using
Ti(OBu), as the Ti source and melamine as the nitrogen
source to improve photocatalytic activity under visible light
irradiation in the present paper.

1 Experiment

The TiO,/g-C;N, photocatalysts were facilely synthesized
by a two-step method of sol-gel and calcination. The
detailed synthesis procedure was as follows. 30 mL of
Ti(OBu), and 20 g of melamine were combined in 500 mL
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of ethanol to obtain a mixture solution which was
vigorously stirred at room temperature for 30 min.
Deionized water (40 mL) was added into the above mixture
while stirring, and the sol-gel was obtained. The sol-gel was
placed in a drying oven at 80 <C under vacuum for 24 h to
give a light yellow precipitate of precursor of TiO,/g-CsN,.
The precursor was then annealed in a covered muffle
furnace at 520 <C for 2 h with a heating rate of 2 °C/min to
yield the TiO,/g-C3N, photocatalyst. For comparison, pure
TiO, and g-C3;N, were synthesized using a similar
procedure for preparing TiO,/g-CsN, in the absence of
melamine and Ti(OBu),, respectively.

The crystal structures of the samples were characterized

by X-raydiffraction (XRD) measurement (D/MAX-2500PC).

The morphologies of the samples were obtained on a JEOL
2010 high-resolution transmission electron microscopy
(TEM). Ultraviolet-visible diffuse reflectance spectroscopy
(UV-vis DRS) spectra of the photocatalysts were measured
by a UV-vis scanning spectrophotometer (Shimadzu
UV-2700).

The photocatalytic activities of all prepared photocatalyts
were investigated under visible light irradiation from 300 W
Xe lamp (Philips, China) with a 400 nm cutoff filter to
eliminate the UV light. 20 mg of catalyst was added to 20
mL of agueous solution of Methylene blue (MB) dye (20
mg/L). In order to ensure that the photocatalyst was well
dispersed in the MB solution, prior to irradiation, the
suspension was initially treated with ultrasonic stirring for
10 min, followed by magnetically stirring in the dark for 30
min to establish an adsorption-desorption equilibrium. Once
the concentration of MB has stabilized, the sample was
exposed to the Xe light irradiation. At given time intervals,
2~3 mL of sample suspension was withdrawn and
centrifuged at 12 000 r/min for 10 min to remove the
photocatalyst. The clarified solution was analyzed by
UV759 UV-vis spectrometer (Shanghai Precision &
Scientific Instrument Co., Ltd, China) to obtain the
absorbance of MB at the maximum absorption wavelength
of 664 nm. The concentration of MB was calculated by a
calibration curve. The degradation efficiency (D) of MB
could be calculated by D=(1-C,/C,)>100%, where C, and
C, are the equilibrium concentration of MB before and after
visible light irradiation, respectively.

2 Results and Discussion

2.1 XRD analysis

The XRD patterns of TiO,, TiO,/g-C3N, and g-CsN, are
shown in Fig.1. It is obvious that the as-synthesized TiO,
can be indexed to the anatase TiO,, which is in agreement
with standard data (JCPDS file N0.21-1272). It can be seen
that the pure g-C3;N, shows two characteristic diffraction
peaks around 13.32°and 27.29°as a result of graphite,
relating to the characteristic interlayer stacking structure
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Fig.1 XRD patterns of TiO; (a), TiO2/g-CsN. (b), and g-CsN4 (c)

(JCPDS 87-1526)!. In addition, the XRD pattern of
TiO,/g-C3N, reveals its crystalline phase, which is a
mixture of g-CsN,, anatase and rutile crystals. This implies
that anatase TiO, can be partly converted into anatase TiO,
under the annealing condition. The absence of a small
characteristic peak of g-C3;N, at 13.32<is attributed to the
relatively low diffraction intensity of g-CsN,™. The d
value for (002) plane of g-C3;N, and TiO,/g-C3N, is 0.326
nm and 0.325 nm, respectively. The difference of d value
for (002) between g-C3N, and TiO,/g-C3N, is hardly
recognized. Therefore, this suggests that the structural
change of g-C;N, in TiO,/g-CsN, does not occur. The
characteristic diffraction peaks of TiO, and g-C;N, can be
found in the XRD pattern of TiO,/g-CsN,, indicating the
hybridization of TiO, with g-CsN,™.
2.2 TEM analysis

Fig.2 show the morphologies of TiO,, g-CsN, and TiO,/
g-C3N,. The results are in good agreement with the XRD
data. The graphite-like g-CsN, (Fig.2b) has thin amorphous
sheets with an irregular shape, which is consistent with the
typical morphology of g-Cs;N,. The amorphous layer is
attributed to the carbon nitride polymeric layered structure
as supported by the XRD pattern (Fig.1c). TiO, (Fig.2a)
shows a certain degree of particle agglomeration with an
irregular shape and the size is in the range of 20~40 nm.
The TEM images of TiO,/g-CsN, (Fig.2c) show that
spherical TiO, particles are evenly dispersed on thin g-Cs;N,
layers.
2.3 UV-vis diffuse reflectance spectra

Fig.3 shows the UV-vis DRS of TiO,, g¢g-C3N, and
TiO,/g-CsN,. From the figure, it is obvious that TiO, mostly
absorbs UV light with a little visible light. g-Cs;N, absorbs
light with wavelength up to 394 nm, where its absorption in
UV is lower than that of TiO,. The absorption edges of
TiO,/g-C3N, shift remarkably to the visible light region
from 390 to 550 nm as compared to TiO, and g-C;N,,
indicating that the photo response of the TiO,/g-CsN,
extends to the visible light region due to the combination of
TiO, and g-C;N,. Therefore, TiO,/g-C3N, can absorb large
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amounts of visible light, and it may be a suitable visible
irradiation photocatalyst.
2.4 Photocatalytic activity

The photocatalytic activities of all prepared photocata-
lysts under visible light irradiation by the degradation of
MB in aqueous solution are shown in Fig.4. In addition to
experiments with the photocatalyst and irradiation, the
blank experiment under visible-light irradiation without the
photocatalyst was also investigated. The blank experiment
shows that the self-degradation of MB is slow and the
degradation efficiency is less than 10.04% after visible light
irradiation for 60 min, which demonstrates the photo-
catalytic activity of the photocatalyst in the process of MB
decomposition. While the degradation efficiency for TiO,,
g-CsN,4 and TiO,/g-C3N, is approximately 81.81%, 45.21%
and 94.46%, respectively. The TiO,/g-C3N, is exposed to
visible light irradiation and shows much higher catalytic
capability towards degrading dye MB compared with TiO,

Fig.2 TEM images of TiO; (a), g-CsN4 (b), and TiO/g-CsN, (c)
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Fig.3 UV-vis DRS spectra of TiO2, g-C3N4 and TiO»/g-CsN4

and g¢-C;N, indicating that TiO,/g-CsN, possesses
remarkable photocatalytic activity under visible light.
2.5 Proposed photocatalytic mechanism

Although g-Cs;N, has lower band gap than TiO,/g-CsN,
and TiO,, its photocatalytic activities are far inferior to
those of TiO,/g-C3N, and TiO, due to the low intensity of
the absorption spectra of g-C3;N, (Fig.3). The TiO,/g-C5N,
has a high photocatalytic activity and its photocatalytic
efficiency is higher than those of the pure TiO, or g-CsN,
alone although its band-gap energy is between the pure
TiO, and g-C3;N4 Therefore, the effects of intensity,
wavelength and the combination are important.

On the basis of the above results, the superior
photocatalytic activity of TiO,/g-CsN, under visible light
can be firstly explained in terms of its wide spectrum
responsive range and strong visible light adsorption
capability. This means there are more photons absorbed by
the catalysts in the visible region and more photo-generated
electrons participating in the MB degradation process.

Referring to previous literature™® the enhanced photo-
catalytic activity of TiO,/g-CsN, may be mainly attributed
to its synergistic effect between TiO, and g-Cs;N,4, which
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