Ni35 掺杂高碳铬铁粉激光熔覆涂层的组织和性能

李 刚,张井波,温 颖,梁彦会,王斯琦,袁 娟

(辽宁工程技术大学, 辽宁 阜新 123000)

摘 要: Ni35 粉末掺杂不同质量分数(0%、25%、50%、75%、100%)高碳铬铁粉末,在27SiMn 钢表面进行激光熔覆制 备复合涂层。采用 OM、SEM、EDS 及 XRD 等手段,表征熔覆层显微组织及物相结构;利用硬度计、磨粒磨损机及电 化学工作站等仪器,表征熔覆层力学及腐蚀性能。结果表明:未掺杂时,熔覆层物相主要有 γ-Ni、FeNi₃ 及 Cr₂Ni₃,掺 杂量为 50%时,熔覆层物相有 α-Cr 和(Cr, Fe)₇C₃ 生成,同时 Cr₂Ni₃相消失;随着掺杂量增加,熔覆层中部板条状组织 增多且形貌变得粗大;掺杂量为 50%时,熔覆层上部花瓣状组织及中部板条状组织均出现 Cr 元素富集现象,浅灰色组 织为 γ-Ni。随着掺杂量增加,熔覆层显微硬度呈上升趋势,磨损率呈下降趋势;掺杂量为 25%时,稀释率最大,为 20.80%; 掺杂量为 50%时,熔覆层耐蚀性最佳,腐蚀电流密度最小,约为 0.39 µA/cm²。

关键词: 激光熔覆; 高碳铬铁; 微观组织; 耐蚀性

中图法分类号: TG113 文献标识码: A 文章编号: 1002-185X(2018)06-1830-06

27SiMn 钢常被用于制作煤矿开采液压支架立柱 设备^[1],长期处于井下开采恶劣工作环境中,每年都 会有大量液压支架立柱因腐蚀而失效报废^[2]。因此提 高立柱表面硬度、耐磨耐蚀性,延长使用寿命,具有 重要意义^[3]。

高碳铬铁粉末中 Cr 元素含量较高, 熔点高, 对晶体起固溶强化和钝化作用, 可有效提高其耐蚀性^[4-6]; 富余 Cr 又与 C, B 等形成弥散碳化物、硼化物等硬质 相, 提高涂层硬度和耐磨性^[7]。粉末中杂质作为反应 稀释剂控制反应动力学及反应产物含量,有效改善涂 层表面氧化烧损等问题, 而且充分利用有效资源, 大 大地降低成本^[8,9]。因此, 高碳铬铁粉作为涂层粉末的 掺杂组元可以大大提高基体表面硬度、耐磨及耐蚀性。 江艇等^[10]以高碳铬铁和铁基合金粉作为涂层粉末, 利 用真空感应熔覆技术在 45 号钢表面制备出高硬度涂 层。袁凯峰等^[11]选用 CO₂焊在 Q235 钢板表面喷射高 碳铬铁粉, 获得晶粒细化的焊缝, 制备出具有较高耐 磨性的堆焊层。

利用激光熔覆技术制备涂层选用的最典型的粉末 是 Ni 基合金粉末, Ni 基合金具有良好自脱氧性和润 湿性^[12],但 Ni 基合金抗磨损性能有限^[13],向 Ni 基粉 末中添加高碳铬铁粉末能够有效增强涂层耐磨性能。 而高碳铬铁在缓冷过程中产生硬碳化物,易出现裂纹 等缺陷^[14],与 Ni 基粉末混合后,则能降低涂层对裂 纹敏感性,提高涂层耐磨及耐蚀性能;此外,利用具 有极高温度梯度的高能激光束^[15,16],使涂层中出现对 碳化物有胶结作用的共晶体,获得细小的晶粒组织, 降低高碳铬铁的脆性^[17]。

本研究采用激光熔覆在 27SiMn 钢表面制备 Ni35 掺杂高碳铬铁粉末复合涂层,分析不同含量高碳铬铁粉 末涂层的显微组织形貌、物相结构、力学及腐蚀性能。

1 实 验

基体试样为 27SiMn 钢,尺寸 30 mm×40 mm×10 mm。熔覆材料为 Ni35 和高碳铬铁粉末,其中高碳铬铁粉末所占质量分数分别为 0%、25%、50%、75%、100%。所用原材料成分见表 1。

选用 DL-HL-T5000B 无氦横流 CO₂ 激光加工机在 27SiMn 钢基体上进行单道熔覆,预置涂覆厚度为 1.0

表 1 实验原材料及其成分 Table 1 Experimental powder and its composition (*w*/%)

Table 1 Exper	rimental powder and its composition (00/%)
Material	Powder composition
High carbon ferrochrome	$Cr \ge 66.0, Fe \ge 25.0, C \ge 6.88, S \le 0.05,$ $Si \le 1.2, Mn \le 0.2, P \le 0.03$
Ni35	Ni \geq 65.0, Cr \geq 10.0, Fe \leq 8.0, C \leq 0.25, B \leq 3.0, Si \leq 3.5, Mo=1.0

收稿日期: 2017-06-09

基金项目:辽宁省自然科学基金(2014020155);辽宁省科学事业公益研究基金(2014003007)

作者简介: 李 刚, 男, 1969 年生, 博士, 教授, 辽宁工程技术大学材料科学与工程学院, 辽宁 阜新 123000, 电话: 0418-3352431, E-mail: stars2387@vip.sina.com

mm, 功率为 2100 W, 光斑直径 3 mm, 扫描速度 3 mm/s。

在 XRD-6100 型 X 射线衍射仪上进行物相结构分 析及组织表征, Cu 靶为 X 射线源,扫描角度为 20°~100°,扫描速度 2°/min。

在德国蔡司 ULTRA PLUS 场发射扫描电子显微 镜(SEM)下观察熔覆层微观形貌,并采用能谱(EDS) 仪分析熔覆层元素分布情况。

采用 OLYMPUS-OLS4000 激光共聚焦显微镜观 察熔覆层截面显微组织,并用激光共聚焦显微镜所配 备测量软件测试熔覆层高度及基体熔深,并计算稀释 率,稀释率计算公式如下:

$$\eta = \frac{h}{h+H} \tag{1}$$

式中: η 为熔覆层的稀释率 (%); h 为基体的熔深 (mm); H 为熔覆层的高度 (mm)。

在 DUH-211S 型动态超显微硬度计上沿层深方向 测试熔覆层截面显微硬度分布,其中测试间距为 0.1 mm。

在ML-100型磨粒磨损机上测试试样表面耐磨性, 磨损时间 5 min,试验所用砂纸粒度约 40 μm,测试单 位面积失重表征耐磨性。

腐蚀性能测试在 PAR2273 电化学工作站进行,腐 蚀液为 3.5%的 NaCl 溶液,阳极为铂片,参比电极为 饱和甘汞电极。

2 结果与分析

2.1 熔覆层稀释率

表 2 为不同成分涂层的稀释率。由表 2 可以看出, 随着高碳铬铁粉含量增加,熔覆层稀释率先增大后减 小,含量 25%时,熔覆层稀释率最大,为 20.80%。这 主要是因为加入少量高碳铬铁粉末时,Cr 元素含量增 多,固溶度增大,扩散速度增大,使涂层与基体间元 素扩散量增多,提高基体和涂层润湿性,有助于稀释 率增大;当含量继续增大时,杂质含量增加,易出现 夹渣,基体与涂层润湿性降低,稀释率减小。

表 2 不同成分涂层的稀释率 Table 2 Dilution of the cladding layers with different

contents of carbon ferrochrome				
Mass fraction of carbon ferrochrome/ $\%$	<i>H</i> /μm	h/µm	η /%	
0	1092.732	99.525	8.35	
25	933.488	245.176	20.80	
50	902.316	140.231	13.45	
75	1047.378	68.394	6.13	
100	1025.954	48.006	4.47	

2.2 XRD 分析

图1不同含量高碳铬铁激光熔覆层的X射线衍射 图谱。由图1可知,熔覆层中物相主要由 γ-Ni、α-Cr、 FeNi₃、Fe₃Ni₂、Cr₂Ni₃和(Cr, Fe)₇C₃组成。高碳铬铁含 量为 25%时与未加高碳铬铁的熔覆层物相组成没有差 别。而当高碳铬铁含量为 50%时, 熔覆层物相出现 α-Cr、FeNi₃和(Cr, Fe)₇C₃, 且 Cr₂Ni₃和 Fe₃Ni₂消失; 当高碳铬铁含量从 25%增加至 50%时, 熔覆层在 2θ=42.940°处增加了(202)晶面衍射峰,且主峰有偏 移, 2θ从43.719°偏移至44.439°。这是由于 Ni35 粉末 含有少量 Cr 元素,加入少量高碳铬铁粉后, Cr 元素 含量增加的部分仍与 Ni 元素反应生成 Cr₂Ni₃, 另一部 分 Cr 元素依旧固溶到 y-Ni 中,所以含量为 25%时与 未加高碳铬铁的熔覆层物相组成没有差别; 当高碳铬 铁粉含量为 50%时, Cr 元素含量增加, γ-Ni 固溶体达 到饱和状态, Cr 元素开始析出, 说明此时 Cr 元素从 Ni 的晶格中扩散出来形成 α-Cr 固溶体,同时 Cr、Fe 与 C 元素结合生成(Cr, Fe)₇C₃,其硬度均较高,有助 于提高涂层硬度及耐蚀性。

Ni的原子半径为0.112 nm,Cr的原子半径为0.140 nm,Fe的原子半径为0.124 nm,Cr、Fe元素的原子 半径比Ni元素的原子半径大;纯金属Ni的3个衍射 峰位2θ值分别为44.493°、51.846°和76.376°,图 1中γ-Ni对应的衍射峰均较纯金属Ni的3个衍射峰向 左偏移,根据布拉格公式:2*d*sinθ=nλ,2θ角向较低方 向偏移,即θ变小,所以晶面间距d变大。这是由于 有比Ni元素原子半径大的Cr、Fe等元素固溶到γ-Ni 中,而使其发生晶格畸变,且晶面间距d变大,从而 起到固溶强化作用。

式(2)给出了平均晶粒尺寸与晶化时间的关系: $G^n - G_0^n = kt$ (2)

式中, G 是平均晶粒尺寸; G₀是初始晶粒尺寸; k 是

图 1 不同含量高碳铬铁激光熔覆层的 X 射线衍射图谱

Fig.1 XRD patterns of coatings with different contents of high-carbon ferrochrome

速率常数:对于给定的晶粒生长机制,n是一个常数; t是晶化时间。

从式(2)可以看出,对于一个给定的初始晶粒尺 寸 *G*₀,平均晶粒尺寸 *G* 依赖于晶化时间 *t*。晶化时间 越短,相对应的平均晶粒尺寸也就越小。

添加适量的高碳铬铁粉导致组织转变加快,缩短 晶化时间,降低晶粒尺寸;而激光熔覆过程是一个快 速冷凝过程,该过程有利于进一步降低晶化时间和晶 粒尺寸。说明采用激光熔覆技术及添加一定含量的高 碳铬铁粉末起到了细化晶粒作用,可有效提高熔覆层 综合性能。

2.3 显微组织形貌

图 2 是高碳铬铁含量为 50%熔覆层截面组织形 貌。由图 2 可知,熔覆层由表及里依次为 A-B-C-D 区。

熔覆层由表及里4个区域依次为细晶区A区、柱 状晶区B区、结合区C区、基体热影响区D区,表面 无裂纹且涂层与基体结合良好。根据凝固理论,凝固 形成组织形态主要取决于温度梯度(G)和凝固速率(R) 比值。激光熔覆过程中,熔池结晶形核首先是在基体 熔化后的液固界面非自发形核,即从区域C处开始凝 固。区域C处凝固速率R很小,熔池通过基体进行散 热,温度梯度G大,所以G/R值很高,因此区域C易 形成平面晶;区域B,凝固速率R增加,熔覆层的冷 却主要向空间的高温辐射,距离表面较远,冷却速度 较慢,温度梯度G变得平缓,G/R值降低,且垂直于 结合界面方向上一次晶轴长大迅速,所以此处涂层显 微组织为柱状晶;区域A,激光束能量较高,G较高, 主要通过向空间的高温辐射进行冷却,树枝晶沿每个 方向生长速率相近,从而形成细小等轴晶区;D区域 受热温度高且高于奥氏体相变温度,快速冷却后形成 针状淬火马氏体组织。

图 3 为不同成分涂层中部区显微组织形貌。由图 3 可知,高碳铬铁含量为 0%时,熔覆层显微组织形貌 为短棒状有方向性树枝晶组织;含量为 25%时,熔覆 层显微组织有细小板条状组织析出;含量为 50%时, 熔覆层显微组织中板条状组织含量增多且分布均匀; 含量继续增加至 75%时,熔覆层显微组织形貌变得粗 大且尖端出现交叉,交叉处易形成裂纹,这对熔覆层 力学性能不利。适当增加高碳铬铁含量,涂层的显微

图 2 高碳铬铁含量 50%涂层截面宏观形貌

Fig.2 Macromorphology of cross-section of the laser cladding layers with 50% content of carbon ferrochrome

图 3 不同成分涂层中部区显微组织形貌

Fig.3 Microstructures of the cladding layers with different contents of carbon ferrochrome: (a) 0%, (b) 25%, (c) 50%, and (d) 75%

组织形貌变得细小;结合熔覆层稀释率分析可知,当 高碳铬铁含量过高时,基体与涂层润湿性差,稀释率 很小,激光束能量几乎全部被熔覆材料吸收,致使其 组织粗大。

图 4 是高碳铬铁含量为 50%熔覆层微观组织形 貌。由图 4 可知, 熔覆层不同部分显微组织具有不同 形态, 熔覆层上部有花瓣状组织(E 点),中部存在板条 状组织(F 点),下部结合区组织细小致密(G 点)以及上 部浅灰色组织(H 点)。熔覆层上部组织结构均匀致密, 中部有明显粗大析出物产生,且组织致密性较上部组 织差,下部组织结构不均匀,接近结合区处组织细小 致密,这是由于激光加工过程中所形成的熔池下部获 得能量较小,所以结合区处组织更致密,上部获得较 高能量,其散热较中部区快,所以熔覆层中部区组织 最粗大。

分别对 E、F、G、H 这 4 点进行能谱成分分析, 经计算各区域元素相对含量见表 3。由 XRD 和 EDS 分析表明,熔覆层组织中浅灰色组织 H 点为 y-Ni 固溶 体,且 γ-Ni 固溶一定量 Fe、Cr 和 Si; 花瓣状 E 点和 板条状组织 F 点中 Cr 元素含量均较高,均出现富集现 象; 熔覆层下部 G 点 Fe 含量迅速增加,超过 Ni 和 Cr 含量,表明熔覆层下部较中部和上部稀释率大,基 体中部分 Fe 元素进入熔覆层中。

2.4 硬度测试

图 5 是不同成分涂层截面显微硬度分布图。随着 高碳铬铁含量增加,熔覆层显微硬度呈上升趋势,且 由熔覆层向基体内部显微硬度呈梯度分布,分别为熔 覆层区、热影响区和基体区。这是由于随高碳铬铁含 量增加,Cr元素含量增加,熔覆层中碳化物及α-Cr 固溶体增多,其硬度也相应增加;当高碳铬铁含量为 0%和25%时,熔覆层硬度值较低,与热影响区硬度值 接近,含量为75%和100%时,熔覆层硬度值很高, 且含量为100%时,达到最高,但其硬度分布不均匀。 当含量为50%时,熔覆层硬度值较高且分布较均匀, 高于基体热影响区硬度值。结合熔覆层微观组织形貌 图,其原因可能是显微组织均匀细小。

图 4 高碳铬铁含量 50%熔覆层微观组织

Fig.4 Microstructures of the laser cladding layers with 50% content of carbon ferrochrome: (a) upper layer, (b) middle layer, and (c) bottom layer

表 3 图 4 中各点能谱分析结果 Table 3 EDS results of each point in Fig 4 (a)

Tab	le 3 ED	S results	of each p	oint in F	1g.4 (ω/%	6)
Point	Ni	Fe	Cr	Si	С	Mn
Е	6.35	19.19	74.12	0.06	0.27	—
F	6.15	20.97	72.38	0.03	0.47	—
G	17.04	67.83	13.28	1.11	0.27	0.46
Н	58.62	31.55	6.70	2.96	0.17	—

2.5 耐磨性测试

图 6 为不同成分涂层磨损率。由图 6 可知,随着 高碳铬铁含量增加,磨损率逐渐降低。当高碳铬铁含 量为 100%时,磨损率最低,为 0.05 mg/mm²。结合显 微组织形貌图及物相分析,原因是随着高碳铬铁含量 增加,Cr 元素含量增加,在熔覆层中形成碳化物及 *α*-Cr 固溶体增多,其强度和硬度均很高,在磨损过程

Fig.5 Microhardness distribution of the laser cladding layers with different contents of carbon ferrochrome

Content of High Carbon Ferrochrome/%

图 6 不同成分涂层磨损率

中,较硬的碳化物和 α-Cr 固溶体起承载作用,不易被 磨粒犁削,从而减少基体磨损,显著提高熔覆层耐磨 性能。

2.6 耐蚀性测试

图 7 为基体及不同成分涂层的 Tafel 极化曲线。表 4 为基体及不同成分涂层自腐蚀电位和自腐蚀电流密 度。由图 7 和表 4 可知, 熔覆层自腐蚀电位绝对值均 小于基体自腐蚀电位绝对值,表明在发生电化学腐蚀 时,基体首先被腐蚀; 且随高碳铬铁含量增加, 熔覆 层自腐蚀电位绝对值先减小后增大,含量为 50%时,

图 7 不同成分涂层的 Tafel 极化曲线

Fig.7 Tafel polarization curves of coatings

	density of coatings with different composition
Table 4	Self corrosion potential and corrosion current
表 4	不同成分涂层的自腐蚀电位和自腐蚀电流密度

		P
Content of high carbon ferrochrome/%	E(i=0)/mV	$i_{\rm corr}/\mu {\rm A} \cdot {\rm cm}^{-2}$
Substrate	-491.164	117.50
0	-403.223	10.910
25	-163.672	1.8840
50	-128.277	0.3911
75	-174.862	0.5709
100	-323.855	8.2820

熔覆层自腐蚀电位绝对值最小,为-128.277 mV,最不 易被腐蚀。熔覆层自腐蚀电流密度远远小于基体自腐 蚀电流密度,说明熔覆层腐蚀速率低于基体腐蚀速率; 且随高碳铬铁含量增加,熔覆层自腐蚀电流密度先减 小后增大,含量为 50%时,熔覆层自腐蚀电流密度最 小,约为 0.39 μA/cm²。

3 结 论

1) 未掺杂时, 熔覆层主要物相有 γ-Ni、FeNi₃ 及 Cr₂Ni₃等,高碳铬铁含量为 50%时,熔覆层物相有 α-Cr 和(Cr, Fe)₇C₃ 相生成, 且熔覆层上部花瓣状组织及中 部条状组织均出现 Cr 元素富集现象, 浅灰色组织为 γ-Ni。

2)未掺杂时,熔覆层中部显微组织形貌为短棒状 有方向性树枝晶组织,加入高碳铬铁后,出现板条状 组织,随着含量增加,板条状组织含量不断增多且形 貌变粗大,含量为50%时,熔覆层中部组织最均匀且 较细小。

3)随着高碳铬铁含量增加,熔覆层显微硬度呈上 升趋势,磨损率呈下降趋势;含量为25%时,稀释率 最大,为20.80%;含量为50%时,熔覆层耐蚀性最佳, 自腐蚀电流密度最小,约为0.39 μA/cm²。

参考文献 References

- Meng Guozhe, Sun Feilong, Wang Shijie et al. Electrochimica Acta[J], 2010, 55(7): 2238
- [2] Yang Qingdong(杨庆东), Su Lunchang(苏伦昌), Dong Chunchun(董春春) et al. China Surface Engineering(中国表面工 程)[J], 2013, 26(6): 42
- [3] Han Wenjing(韩文静), Zhang Peixun(张培训), Tang Qijian(汤 其建) et al. Journal of China Coal Society(煤炭学报)[J], 2012, 37(2): 340
- [4] Hao Jiujiu, Chen Jin, Han Peide et al. Steel Research International[J], 2014, 85(3): 461
- [5] Li Xiaoguang(李晓光). Dissertation for Master(硕士论文)[D]. Taiyuan: Taiyuan University of Technology, 2014
- [6] Hu Guorong, Wang Jialiang, Peng Zhongdong et al. Transactions of Nonferrous Metals Society of China[J], 2015, 25(3): 966
- [7] Lin Chenghu(林成虎). Dissertation for Master(硕士论文)[D]. Yanji: Yanbian University, 2013
- [8] Li Gang(李 刚), Shen Jinze(沈金泽), Ge Shaocheng(葛少成). Heat Treatment of Metals(金属热处理)[J], 2014, 39(9): 120
- [9] La Peiqing(喇培清), Han Shaobo(韩少博), Lu Xuefeng(卢学峰) et al. Journal of Inorganic Material(无机材料学报)[J],

2014, 29(2): 191

- [10] Jiang Ting(江 艇), Lin Guobiao(林国标). Shanxi Metallurgy (山西冶金)[J], 2015(4): 20
- [11] Yuan Kaifeng(袁凯峰), Yin Ke(尹 柯), Wang Jun(王 军) et al. Transactions of the China Welding Institution(焊接学 报)[J], 2011, 32(8): 25
- [12] Shu Da, Li Zhuguo, Zhang Ke et al. Materials Letters[J], 2017, 195: 178
- [13] Dong Gang, Yan Biao, Deng Qilin et al. Rare Metal Materials and Engineering[J], 2011, 40(6): 973

- [14] Ning Likai, Zheng Zhi, An Fengquan et al. Rare Metals[J], 2016, 35(2): 172
- [15] Shi Qimin, Gu Dongdong, Xia Mujian et al. Optics & Laser Technology[J], 2016, 84: 9
- [16] Zhang Xiaowei(张晓伟), Liu Hongxi(刘洪喜), Jiang Yehua (蒋业华) et al. Rare Metal Materials and Engineering(稀有 金属材料与工程)[J], 2012, 41(1): 178
- [17] Maslyuk V A, Bondar A A, Kuras' V B et al. Powder Metallurgy & Metal Ceramics[J], 2013, 52(5-6): 291

Microstructure and Properties of Coating of Ni35 Powder Doped with High Carbon Ferrochrome Powder by Laser Cladding

Li Gang, Zhang Jingbo, Wen Ying, Liang Yanhui, Wang Siqi, Yuan Juan (Liaoning Technical University, Fuxin 123000, China)

Abstract: The coatings of Ni35 powder doped with different mass fractions (0%, 25%, 50%, 75% and 100%) of high carbon ferrochrome powder were prepared on the surface of 27SiMn steel using a laser cladding technique. The microstructure and the phase of the laser cladding layers were studied by OM, SEM, EDS and XRD. The mechanical and corrosion properties of the laser cladding layers were studied by micro-hardness tester, abrasive wear machine and electrochemical corrosion tester. The results show that the phases of the cladding layers without high carbon ferrochrome are γ -Ni, FeNi₃ and Cr₂Ni₃. When the content of carbon ferrochrome is 50%, α -Cr and (Cr, Fe)₇C₃ is generated while Cr₂Ni₃ disappears. With increasing the content of high carbon ferrochrome, the lath microstructures increase and coarsen constantly. When the content is 50%, Cr element enrichment happens in the petal-looking microstructure of the upper cladding layer and the lath microstructure of the middle cladding layer, and the light gray microstructure is γ -Ni. And with the content increasing, the micro-hardness increases while the wear rate declines. When the content is 25%, the maximum dilution rate is 20.80% and when the content is 50%, the cladding layer has the best corrosion resistance, and the least corrosion current density, which is ~0.39 μ A/cm². **Key words:** laser cladding; high carbon ferrochrome; microstructure; corrosion resistance

Corresponding author: Zhang Jingbo, Candidate for Ph. D., College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, P. R. China, Tel: 0086-418-3352431, E-mail: zhangjingbo 2009@163.com