重燃叶片定向凝固宏/微观数值模拟及实验研究

闫学伟¹,王润楠¹,唐 宁²,郭 雄^{3,4},马德新^{3,4},许庆彦¹,柳百成¹

(1. 清华大学 先进成形制造教育部重点实验室, 北京 100084)

(2. 江苏永瀚特种合金技术有限公司, 江苏 无锡 214161)

(3. 东方汽轮机有限公司,四川 德阳 618000)

(4. 长寿命高温材料国家重点实验室, 四川 德阳 618000)

摘 要:通过模拟和实验的方法对比研究了重燃叶片定向凝固过程宏观温度场及微观组织的变化规律。建立了非均匀 网格的求解模型,提高了计算效率。基于温度场的模拟结果分析了糊状区的演化规律。采用线性插值算法结合元胞自 动机有限差分(cellular automaton finite difference, CAFD)模型模拟了叶片的微观组织,并和实验进行了对比,模拟和实验结 果吻合良好。讨论了几种常见晶粒缺陷产生的原因,提出了预防措施。采用电子背散射衍射(electron backscattered diffraction, EBSD)技术进一步探讨了晶粒的竞争生长行为。建立了枝晶臂间距的计算模型,模拟了叶片的枝晶臂间距分布,并进行实 验观察,分析了枝晶臂间距的变化规律。从宏、微观的角度解释了叶片的凝固特征,为实际生产提供帮助。

关键词: 重燃叶片; 定向凝固; 数学模型; 数值模拟

中图法分类号: TG132.3 ⁺ 3	文献标识码: A	文章编号: 1002-185X(2018)06-1878-06
--------------------------------	----------	---------------------------------

重型燃气轮机作为一种高效率的热-功转换设备 在能源的发展中具有重要的战略地位^[1]。其中,热端 叶片是燃气轮机的核心部件,起着将燃气的热能转化 为机械能的关键作用^[2]。叶片长期服役在高温高压、 高腐蚀性的环境中,要求其应具有优良的综合性能^[3]。 为了获得性能合格的叶片,工业上常用高温合金材料 并采用定向凝固技术制备定向或单晶叶片^[4],定向或 单晶叶片由于消除横向晶界或完全消除了晶界,晶体 沿特定的方向生长,提高了初熔温度及固溶处理温度, 因而具有良好的耐高温、抗疲劳以及抗蠕变性能^[5]。

目前,比较成熟的定向凝固技术是高速凝固(high rate solidification, HRS)技术^[6]。但是采用 HRS 技术制 备重燃叶片过程中,会产生杂晶、雀斑等缺陷,而且 仅靠实验的方法进行研究不仅浪费了大量的物力财力 而且研发周期较长。运用数值模拟技术辅助实验研究, 可以大大提高效率并节约成本^[7]。本工作在前期工作 的基础上,建立了三维非均匀有限差分网格的求解模 型,解决了复杂叶片不同部位尺寸相差较大的计算效 率问题。模拟了重燃叶片的温度场,基于温度分布分 析了叶片凝固过程糊状区的演化规律。采用宏/微观网 格双向动态耦合,建立了微观组织计算模型,模拟了 全叶片的晶粒组织,并采用 EBSD 技术分析了晶粒取向。基于模拟和实验结果,分析了影响定向柱状晶叶 片晶粒平行度的因素。建立了重燃叶片枝晶臂间距计 算模型,研究了叶片不同部位枝晶臂间距的变化规律, 并和实验进行了对比。

1 重燃叶片定向凝固宏/微观数学模型

1.1 非均匀网格求解温度场模型

大尺寸重燃叶片结构复杂,往往具有空心薄壁结构,而榫头部位又较为厚大,采用均匀网格求解大大影响计算效率。本工作根据能量守恒原理,建立了非均匀网格求解模型,其不同单元相邻节点的关系如图1所示。

对于一个单元 *E*,其尺寸为 Δx , Δy , Δz , *X* 正方向 相邻单元为 E_{xp} , *X* 负方向相邻单元为 E_{xm} ,同理有 E_{yp} , E_{ym} , E_{zp} , E_{zm} , 邻接单元温度分别为 T_{xp} , T_{xm} , T_{yp} , T_{ym} , T_{zp} , T_{zm} 。每个相邻单元有 3 个方向上的尺寸,但 由于网格连续性的要求,能够独立变化的相邻单元尺 寸只有 6 个: E_{xp} 的 *X* 方向尺寸 Δx_p , E_{xm} 的 *X* 方向尺 寸 Δx_m ,同理有 Δy_p , Δy_m , Δz_p , Δz_m . 计算单元 *E* 下 一时间步温度值 $T^{\Delta t}$ 的差分格式为:

收稿日期: 2017-06-06

基金项目:国家自然科学基金(51171089,51374137);国家重点基础研究发展计划(2011CB706801);国家科技重大专项(2012ZX04012-011, 2011ZX04014-052, 2009ZX04006-041)

作者简介: 闫学伟, 男, 1984 年生, 博士生, 清华大学材料学院先进成形制造教育部重点实验室, 北京 100084, 电话: 010-62795482, E-mail: yanxuewei2013@gmail.com

图 1 非均匀网格相邻节点示意图

$$\frac{\rho c_{\rm p}}{2\lambda\Delta t} \left(T^{\Delta t} - T\right) = \frac{T_{\rm xp} - T}{\Delta x \left(\Delta x + \Delta x_{\rm p}\right)} + \frac{T_{\rm yp} - T}{\Delta y \left(\Delta y + \Delta y_{\rm p}\right)} + \frac{T_{\rm xp} - T}{\Delta z \left(\Delta z + \Delta z_{\rm p}\right)} + \frac{T_{\rm xm} - T}{\Delta x \left(\Delta x + \Delta x_{\rm m}\right)} + \frac{T_{\rm ym} - T}{\Delta y \left(\Delta y + \Delta y_{\rm m}\right)} + \frac{T_{\rm xm} - T}{\Delta z \left(\Delta z + \Delta z_{\rm m}\right)}$$
(1)

式中, ρ 为密度; c_p 为等压比热容; λ 为导热系数; Δt 为时间步长。

1.2 宏/微观耦合温度插值模型

采用线性插值算法计算铸件微观单元的温度值, 其原理如图 2 所示。前期工作^[8]已建立了微观组织的 形核和生长模型,采用修正的 CA 算法^[9]对微观单元 进行捕获。

在温度插值算法中,根据宏观网格温度及坐标等 信息可以计算微观单元温度值,其计算公式如下:

$$T_{\text{Mic}} = T_{\text{Mac}} + \sum_{i=x,y,z} G_i \cdot L_i \cdot \delta_i$$
(2)

其中, G_i可由式 (3) 计算:

$$G_{i} = \begin{cases} (T_{\text{Mac}} - T_{\text{Mac}\,i-1}) / \Delta i & (0 \leq L_{i} \cdot \delta i < \lambda_{i} / 2) \\ (T_{\text{Mac}\,i+1} - T_{\text{Mac}}) / \Delta i & (\lambda_{i} / 2 \leq L_{i} \cdot \delta i \leq \lambda_{i}) \end{cases}, i = x, y, z \quad (3)$$

式中,设1,m和n分别为微观单元在x,y和z方向上

图 2 插值算法示意图

Fig.2 Simplified schematic diagram of interpolation algorithm

的坐标值, T_{Mac} 为宏观单元(x, y, z)的中心温度值, T_{Mic} 为坐标为(l, m, n)的微观单元温度值, $T_{Mac i \pm 1}$ (i = x, y, z)为宏观单元在 i 方向相邻单元的温度值, λ_i (i = x, y, z)为宏观单元在 x, y和 z 方向的长度, $L_i(i = x, y, z)$ 为微观单元在 x, y和 z 方向的坐标, 且满足 $L_x = l$, $L_y = m$, $L_z = n$ 。 δ_i (i = x, y, z)为微观单元在 x, y和 z 方向的长度, G_i 为单元在 i 方向的温度梯度。

1.3 枝晶臂间距计算模型

结合文献[10,11],考虑了溶质分配,凝固速率和 温度梯度的影响,建立了一次枝晶臂间距 λ_1 和二次枝 晶臂间距 λ_2 的计算模型。

$$\lambda_{1} = 2\pi \left(kD\Gamma \Delta T_{0} \right)^{1/4} \left(1 - \frac{V_{c}}{V} \right)^{3/4} G^{-(1/2)} V^{-(1/4)}$$
(4)

$$\lambda_{2} = \left(166 \frac{\Gamma D \ln(c_{\rm eut}/c_{\rm 0})}{m(1-k)(c_{\rm 0}-c_{\rm eut})} \cdot t_{\rm f}\right)^{1/3}$$
(5)

式中, k 为溶质分配系数, D 为扩散系数, Γ 为 Gibbs-Thompson 系数, ΔT_0 为凝固间隔(液相线与固相 线温度之差), V_c 为临界凝固速率, V为凝固速率, G为温度梯度, m 为液相线斜率, c_{eut} 为共晶点浓度, c_0 为初始浓度, t_f 为局域凝固时间。

2 实验及模拟方法

2.1 实验方法

使用 MAR-M-247 LC 镍基高温合金进行浇注实 验。合金的液相线温度为 1363 ℃,固相线温度为 1253 ℃,模壳平均厚度为 8 mm,浇注温度为 1500 ℃,模 壳预热温度 1500 ℃。浇注后静置 2 min 后,开始以 4 mm/min 的抽拉速率向下抽拉。对叶片不同高度 4 个 位置进行取样分析,如图 3 所示。用 50%HCl+50%H₂O₂ (体积分数)混合溶液腐蚀叶片的晶粒组织;用 EBSD

图 3 叶片三维模型及取样位置 Fig.3 3D model and sample position of blade

技术分析不同横截面的晶粒取向变化;用 15% HCl+5% CuSO4·5H2O +5% HF+75% H2O 混合溶液腐 蚀枝晶组织,用 LEICA DM6000M 金相显微镜观察其 枝晶形貌。

2.2 数值模拟方法

使用实验室自主开发的模拟软件 TecCAST 对叶 片定向凝固过程进行数值模拟。分别采用 3,4 和 5 mm/min 的抽拉速率进行模拟。采用非均匀有限差分 网格,网格最小尺寸 0.7 mm,网格单元数量约 110 万 个。对合金的热物性参数进行实际测量,并用金属性 能专业计算软件 JMatPro 计算校准,如图 4 所示。由 于热焓未能实际测出,模拟中所用的热焓为图 4d 的计 算值。模拟中所用到的其它重要参数如表1所示。对 叶片的温度场,晶粒组织和枝晶臂间距进行宏/微观多 尺度数值模拟,并对抽拉速率为4 mm/min 时的模拟 和实验结果进行对比研究。

结果与讨论 3

3.1 糊状区

图 5,6 和 7 所示为不同抽拉速率下叶片的糊状区 变化。分别选取凝固分数为 15%, 45%, 75%和 95% 时的糊状区形貌进行对比分析。当抽拉速率为 3 mm/min 时,叶片在凝固起始阶段的糊状区较窄,侧 面糊状区略有上凸,如图 5a 所示。这是因为水冷盘的

图 4 MM247 高温合金热物性参数

Fig.4 Thermophysical properties of MM247 superalloy: (a) density, (b) thermal conductivity, (c) specific heat, and (d) enthalpy

Table 1 Key parameters for simulation		
Parameter		
Pouring temperature/°C		
Preheating temperature/°C		
Chill temperature/℃		
Baffle thermal conductivity/ $W \cdot (m \cdot K)^{-1}$		
Shell thermal conductivity/ $W \cdot (m \cdot K)^{-1}$		
Shell specific heat/kJ·(kg·K) ⁻¹		
Shell density/g·cm ⁻³		
Interface heat transfer coefficient (cast-shell)/W·(m ⁻² ·K ⁻¹)		
Interface heat transfer coefficient (cast-chill)/W·(m ⁻² ·K ⁻¹)		
Shell emissivity		
Baffle emissivity		

模拟用到的重要参数 表 1

激冷作用, 使得叶根部位凝固速率较大, 当凝固速率 大于抽拉速率时,叶片侧面糊状区会出现上凸。图 5b 所示为下缘板处的糊状区形貌。此时激冷作用减弱, 凝固速率减慢,因此糊状区较为平直。但是下缘板较 宽,缘板的边缘由于过冷度较大会首先凝固而产生杂 晶缺陷,在缘板中心部位则容易产生缩松缺陷。叶身 部位整体较薄,凝固速率增大,排气边一侧由于靠近 加热器的原因糊状区出现下弯,如图 5c 所示,而糊状 区的下弯容易造成晶粒发散生长,从而产生斜晶或露 头晶缺陷。图 5d 为上缘板处的糊状区形貌, 上缘板处 结构较为复杂,通过叶尖连接浇口,补缩较为充足,

图 5 抽拉速率为 3 mm/min 时叶片的糊状区变化 Fig.5 Change of mushy zone of blade at 3 mm/min withdrawal rate: (a) f_s=15%, (b) f_s=45%, (c) f_s=75%, and (d) f_s=95%

图 6 抽拉速率为 4 mm/min 时叶片的糊状区变化 Fig.6 Change of mushy zone of blade at 4 mm/min withdrawal rate: (a) f_s=15%, (b) f_s=45%, (c) f_s=75%, and (d) f_s=95%

一般不会出现缩松缺陷。

当抽拉速率为 4 mm/min 时叶片凝固过程的糊状 区变化如图 6 所示。在叶片凝固的起始阶段,水冷盘 的散热占据主导地位,使得凝固速率大于抽拉速率, 叶片侧面糊状区上凸。而叶身部位的糊状区较抽拉速 率为 3 mm/min 时上凸倾向减小,宽度也较窄,如图 6c 所示。说明 4 mm/min 更接近叶身部位的凝固速率。 图 7 所示为抽拉速率为 5 mm/min 时叶片凝固过程的 糊状区形貌。在凝固的起始阶段,糊状区较为平直,如 图 7a 所示。这是因为抽拉速率增大,和凝固速率大约 一致,因此糊状区较为平直。而下缘板处由于水冷盘的 激冷作用减弱,凝固速率减小,抽拉速率大于凝固速率, 因此糊状区略有下凹,如图 7b 所示。叶身处的糊状区 相对抽拉速率为3和4mm/min时更为平直,宽度更窄, 如图 7c 所示,这说明叶身部位的凝固速率也大致为 5 mm/min。而上缘板处糊状区仍旧略有上凸,如图 7d 所 示,这说明上缘板处需要进一步提高抽拉速率。

3.2 晶粒组织

图 8 为抽拉速率为 4 mm/min 时叶片晶粒形貌的 模拟结果和实验结果。从图中可见,模拟和实验结果 吻合良好。凝固起始阶段,由于水冷盘的激冷作用在 叶根部位大量形核,而此时这些晶核的[001]取向指向 各个方向。随着抽拉的进行,晶粒开始竞相生长,当晶 粒的[001]取向和热流的反方向一致时,晶粒具有最快 的生长速率,称之为择优取向。随着凝固的进行,具有 择优取向的晶粒不断地粗化长大,非择优取向的晶粒逐 渐被抑制或淘汰。下缘板由于较为宽大,在边缘处产生 较大的过冷度,容易形成新的晶核而产生杂晶缺陷。而 在缘板和叶身的过渡部位,由于截面的突变,造成晶粒 从缘板进入叶身的过程中变得较为狭窄,产生三角晶缺 陷,如图 8a 和 8b 所示。当凝固进行到叶身部位,排气 边一侧受加热器的影响,凝固速率较慢,此时糊状区下 弯,晶粒发散生长,进一步验证了上述研究得出的结论。 发散的晶粒不断生长,一个方向阻断了叶身中部的晶 粒,产生断晶缺陷,如图 8a 所示;另一方向长出叶身, 产生露头晶缺陷,如图 8a 和 8c 所示。

图 9 为不同取样位置横截面 EBSD 晶粒取向。晶 粒取向的变化是由于晶粒竞争生长的结果。凝固开始阶 段,根据随机形核理论,晶粒取向呈随机分布,如图 9a

图 8 抽拉速率为 4 mm/min 时叶片晶粒形貌的模拟和 实验结果

Fig.8 Simulation (a) and experiment (b, c) results of grain structure of blade at 4 mm/min withdrawal rate

Fig.9 EBSD analysis on the grain orientation of different transverse sections: (a) sample 1, (b) sample 2, (c) sample 3, and (d) sample 4

所示。随着凝固高度的增加,晶粒取向偏离[001]方向较 大的晶粒逐渐被淘汰,同时也造成了晶粒密度的减小, 如图 9b 所示。而晶粒取向接近[001]方向的晶粒能够稳定 生长,并且不断粗化,如图 9c 和 9d 所示。EBSD 晶粒 取向结果不仅能够清晰地观察晶粒的形貌和晶界,同时 也能很好地揭示晶粒竞争生长过程中择优取向的趋势。 3.3 枝晶臂间距 图 10 为枝晶臂间距的模拟结果。从图 10a 可见, 在叶片的底端由于激冷作用,凝固速率较快,一次枝 晶臂间距较小,在 100 μm 以下。而榫头部位一次枝晶 臂间距分布较为均匀,平均大小为 260 μm 左右。缘板 处由于截面变宽,一次枝晶臂间距有所增大,约为 300 μm。而凝固进行到叶身部位,一次枝晶臂间距几乎不 再发生变化,约为 325 μm。从图 10b 可见,二次枝晶 臂间距分布较为均匀,随着凝固高度的增加,二次枝 晶臂间距呈增大趋势。

不同取样位置横截面和纵截面的枝晶形貌如图 11 所示。起始阶段枝晶组织非常细密,一次枝晶臂间

Fig.10 Simulation results of dendritic arm spacing: (a) PDAS and (b) SDAS

图 11 不同取样位置横截面和纵截面的枝晶形貌

Fig.11 Dendrite morphologies of different transverse $(a_1 \sim d_1)$ and longitudinal $(a_2 \sim d_2)$ sections of sample 1 (a_1, a_2) , sample 2 (b_1, b_2) , sample 3 (c_1, c_2) , and sample 4 (d_1, d_2)

距较小,由于凝固速率较快,二次枝晶臂间距也较小, 如图 11a 所示。下缘板处的枝晶形貌如图 11b 所示, 可见,随着凝固高度的增加,一次枝晶臂逐渐粗化并 衍生出较多的二次枝晶臂,一次枝晶臂间距也有所增 大。当凝固进行到叶身及上缘板部位时,一次枝晶臂 进一步粗化,具有择优取向晶粒的二次枝晶臂生长较 快,从而阻断或抑制了其它枝晶的生长,使得晶粒个 数逐渐减少,如图 11c 和 11d 所示。从枝晶形貌的演 化过程可以更明确地看出枝晶竞争生长的现象。

4 结 论

 建立的非均匀网格的求解模型,大大提高了计 算效率。通过研究糊状区的演化规律,优化了叶片凝 固过程的工艺参数。

2) 采用线性插值算法,将宏观网格和微观网格进行双向同步耦合,结合 CAFD 模型,模拟了叶片的微观组织,模拟和实验结果吻合良好。

 建立的枝晶臂间距计算模型,模拟了叶片的一次枝晶臂间距和二次枝晶臂间距分布,实现了叶片宏、 微观模拟的耦合。金相实验观察验证了模拟的准确性。

参考文献 References

- [1] Li Jinguo(李金国), Jin Tao(金 涛), Zhao Nairen(赵乃仁) et al.
 Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2002, 31(3): 197
- [2] Ma Dexin(马德新). Acta Metall Sin(金属学报)[J], 2015, 51(10): 1179
- [3] Kear B H, Thompson E R. Science[J], 1980, 208 (23): 847
- [4] Liu Lin(刘林), Zhang Jun(张军), Shen Jun(沈军) et al.
 Mater China(中国材料进展)[J], 2010, 29(7): 1
- [5] Xu Qingyan, Zhang Hang, Liu Baicheng. China Foundry[J], 2014, 11(4): 268
- [6] Bridgman P W. US Patent, 88650[P], 1926
- [7] Rappaz M. Curr Opin Solid State Mater Sci[J], 2016, 20: 37
- [8] Yan Xuewei(闫学伟), Tang Ning(唐 宁), Liu Xiaofu(刘孝福) et al. Acta Metall Sin(金属学报)[J], 2015, 51(10): 1288
- [9] Yu Jing(于 靖), Xu Qingyan(许庆彦), Cui Kai(崔 锴) et al. Acta Metall Sin(金属学报)[J], 2007, 43(7): 731
- [10] Ma Dexin. Metall Mater Trans B[J], 2002, 33B: 223
- [11] Kurz W, Fisher D J. Fundaments of Solidification[M]. Lausanne: Trans Tech Publication, 1986

Macro-micro Numerical Simulation and Experiment of Directional Solidification for Industrial Gas Turbine Blade

Yan Xuewei¹, Wang Runnan¹, Tang Ning², Guo Xiong^{3,4}, Ma Dexin^{3,4}, Xu Qingyan¹, Liu Baicheng¹ (1. Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China) (2. SUVAT Special Alloy Technology Co., LTD, Wuxi 214161, China)

5 VAT Special Alloy Technology Co., ETD, Wuxi 214101, China

(3. Dongfang Turbine Co., LTD, Deyang 618000, China)

(4. Long-Life High Temperature Materials State Key Laboratory, Deyang 618000, China)

Abstract: Directional solidification process of industrial gas turbine blades (IGTs) was studied based on temperature field and the microstructure was investigated by both simulation and experimental methods. A mathematical model of nonuniform meshes was built to compute temperature field, which improves the computation efficiency. The evolvement rule of mushy zone was analyzed based on simulation results of temperature field. Interpolation algorithm and cellular automaton finite difference (CAFD) model were used to predict the microstructure growth of IGTs. Pouring experiments were carried out, and experiment results agree well with simulation results. Combined with electron backscattered diffraction (EBSD), some common defects of castings were analyzed, and the corresponding prevention measures were put forward. Primary dendrite arm space (PDAS) and secondary dendrite arm space (SDAS) were calculated considering the influence of solute diffusion and solidification rate, and dendrite morphology was observed by optical microscopy (OM). The results reveal that PDAS and SDAS change in different transverse sections of IGTs. The solidification characteristics of IGTs were studied through macro and micro perspective in order to provide help for industrial production.

Key words: industrial gas turbine blade; directional solidification; mathematical model; numerical simulation

Corresponding author: Xu Qingyan, Ph. D., Professor, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China, Tel: 0086-10-62795482, E-mail: scjxqy@tsinghua.edu.cn