基体合金对连续 Al₂O_{3f}/Al 复合材料 微观组织及抗拉强度的影响

聂明明¹,徐志锋¹,王振军¹,余 欢¹,蔡长春¹,王德清²

(1. 南昌航空大学 轻合金加工科学与技术国防重点学科实验室,江西 南昌 330063)(2. 湖北三江航天万峰科技发展有限公司,湖北 孝感 432009)

摘 要:选用 Nextel610型 Al₂O₃ 纤维作为增强体,采用真空气压浸渗法制备了纤维体积分数为 40%、基体合金分别为 1A99、ZL210A、ZL301及 7075 合金的单向连续 Al₂O_{3f}/Al 复合材料,并用 NaOH 溶液萃取出 Al₂O₃ 纤维,研究了基体 合金对连续 Al₂O_{3f}/Al 复合材料的致密度、纤维损伤及抗拉强度的影响。结果表明:基体合金对连续 Al₂O_{3f}/Al 复合材料 的致密度和微观组织有明显影响,其中连续 Al₂O_{3f}/ZL301复合材料致密度最高为 99.2%,组织缺陷最少;连续 Al₂O_{3f}/Al 99 复合材料致密度最低,为 96.8%,这种差异是由于不同基体与纤维之间的润湿性不同导致的。不同基体与纤维发生了不同程度的界面反应,最后表现为对纤维的损伤程度不同。连续 Al₂O_{3f}/1A99、Al₂O_{3f}/ZL10A、Al₂O_{3f}/ZL301及 Al₂O_{3f}/7075 4 种复合材料的抗拉强度分别为 465、479、680 和 389 MPa,缺陷、纤维损伤和界面结合强度是影响连续 Al₂O_{3f}/Al 复合材料抗拉强度的主要因素。

关键词:基体合金; Al₂O_{3f}/Al 复合材料; 致密度; 微观组织; 纤维损伤; 抗拉强度
 中图法分类号: TB333; TG146.21
 文献标识码: A
 文章编号: 1002-185X(2018)10-3063-09

连续氧化铝纤维增强铝基复合材料(Al₂O_{3f}/Al)不 但具有较高的比强度、比模量等优异性能,还具有比 连续碳纤维增强铝基复合材料(C_f/Al)更好的抗疲劳及 耐磨损等优点^[1-3]。同时在制备过程中,Al₂O₃纤维相 较于碳纤维还具有热稳定性好、与铝基体发生的界面 反应程度较低等特性^[4,5],因而在航空航天、汽车工业 以及电力传输领域具有广阔的应用前景^[6,7]。

目前,连续纤维增强铝基复合材料常用的制备方 法有热压扩散法、挤压法及真空气压浸渗法等,其中 真空气压浸渗法制备工艺简单、过程平稳、工艺参数 易控、可调,是实现其近净成形的主要方法^[8],也是 最可能实现连续纤维增强铝基复合材料工程化的材料 与成形一体的制备技术。但真空气压浸渗法制备连续 纤维增强铝基复合材料仍然存在诸如难以完全浸渗及 调控界面反应等问题。目前可以有效解决以上问题的常 用手段是对纤维涂覆涂层或改变基体合金成分^[9,10]。纤 维涂层技术可以在一定程度上改善 Al₂O₃ 纤维与铝液 的润湿性,调控其界面反应,但其工艺复杂、成本高, 也易损伤纤维,且经涂层处理后的纤维难以进行三维 编织。相比之下,改变基体合金元素无疑是一种更为 有效可行的方法。

Williams^[11]等制备了 2D-Al₂O_{3f}/Al 复合材料,其 抗拉强度达到了 1400 MPa,并基于多尺度微观力学有 限元框架模拟微观结构对其拉伸变形行为的影响,对 其渐进损伤和失效进行分析,较好地验证了弱界面脱 粘力模型的有效性。康国政^[12]等在实验基础上借助于 弹塑性有限元分析方法,对基体特性的变化对 δ-Al₂O₃/Al 复合材料力学行为的影响进行研究,结果表 明,基体性能的变化显著影响基体与纤维间的应力传 递,从而对复合材料的抗拉强度和断裂机理产生较大 的影响。李婷婷^[13]、白朴存^[14]等分别采用搅拌铸造和 挤压铸造的方法制备了 Al₂O₃/Al 复合材料,并对其微 观组织和界面结构进行了研究。牟俊东[15]等采用挤压 铸造法制备了氧化铝短纤维增强铝基复合材料,并研 究其微观组织和力学性能。目前对 Al₂O₃ 增强铝基复 合材料的研究还主要集中在颗粒和短纤维增强复合材 料上,而对连续纤维增强铝基复合材料的研究较少, 尤其鲜见在铝基体对连续 Al₂O_{3t}/Al 复合材料的影响

收稿日期: 2017-10-16

基金项目:国家自然科学基金(51365043);轻合金加工科学与技术国防重点学科实验室开放基金(GF201401002);江西省自然科学基金(20151BAB206004)

作者简介: 聂明明, 男, 1993 年生, 硕士, 南昌航空大学轻合金加工科学与技术国防重点学科实验室, 江西 南昌 330063, 电话: 0791-86453167, E-mail: nmmjxgz@foxmail.com

方面的研究。为此,本实验选取 Nextel610 型 Al₂O₃ 纤维作为增强体,以 1A99、ZL210A、ZL301 及 7075 铝合金作为基体合金,采用真空气压浸渗法制备了纤 维体积分数为 40%的连续 Al₂O₃/Al 复合材料,研究不 同基体合金对连续 Al₂O₃/Al 复合材料微观组织及抗拉 强度的影响。

1 实 验

实验选用 3M 公司的 Nextel610 型 Al₂O₃ 纤维作为 增强体材料,其性能参数见表 1。选用的基体为 1A99、 L210A、ZL301 及 7075 铝合金,其主要成分见表 2。

采用单向排布方式制备体积分数为40%的Al₂O₃纤 维预制体,采用真空气压浸渗法制备连续 Al₂O₃ //Al 复 合材料。在纯氩气保护气氛中将铝合金熔炼至720 ℃,

表 1 Nextel610 型 Al₂O₃纤维的性能指标 Table 1 Property index of Nextel610 Al₂O₃ fiber

Density/	Monofilament	Tensile	Young's	Elongation/
g·cm ⁻³	diameter/µm	strength/MPa	modulus/GPa	%
3.75	10~12	3.2~3.5	380~400	0.5

纤维预热温度为 530 ℃,浸渗过程使用氮气进行持续 加压,压力为 7 MPa,保压时间为 5 min。所制备的试 样尺寸为 *Ф*8 mm×100 mm。

采用的真空气压浸渗法是根据反重力成型原理来 实现复合材料的近净成型,其原理示意图见图 1。 ZYQ250/400 型真空气压浸渗设备的上下罐温度和压 力等都可通过控制系统全程自动控制。其技术指标为 真空度小于 210 Pa,最高设定温度 1000 ℃,最大充 型压力 10 MPa,最小速度可调节至 100 kPa/s,温度误 差范围可控制在±5 ℃。

为了防止试样在拉伸过程中因应力集中在夹持端 断裂,将制备好的连续 Al₂O_{3f}/Al 复合材料加工成拉伸 试样如图 2a 所示。采用质量分数为 10%的 NaOH 溶 液萃取复合材料中的 Al₂O₃纤维,将纤维制成如图 2b 所示的拉伸试样。基于阿基米德原理采用排水法测试 其密度,其与复合材料理论密度的比值即为致密度。 采用 Instron5568 型电子万能材料试验机对复合材料 进行抗拉性能测试,采用 Instron5543 型精密拉伸仪对 Al₂O₃纤维进行抗拉强度测试。用 BrukerD8 型 X 射线

表 2 基体的化学成分

Table 2Chemical composition of matrix $(\omega/\%)$											
Matrix	Si	Cu	Mn	Mg	Zn	Ti	Other	Al			
1A99	0.003	0.003	-	-	-	-	-	Bal.			
7075	0.4	1.2~2.0	0.3	2.1~2.9	5.1~6.1	0.2	Cr/Fe	Bal.			
ZL210A	0.2	4.5~5.1	0.35~0.8	0.05	0.1	0.15~0.35	Cd/Zr/Fe	Bal.			
ZL301	0.3	0.1	0.15	9.8~11.0	0.15	0.15	-	Bal.			

图 1 真空气压浸渗装置与模具示意图

1- Fiber bundle 2- Reinforcing piece

- 图 2 Al₂O_{3f}/Al 复合材料拉伸试样和纤维拉伸试样示意图
 - Fig.2 Tensile specimen of Al₂O_{3f}/Al composite (a) and schematic of fiber tensile specimen (b)

衍射分析仪(XRD)分析复合材料的相组成,采用 Nova NanoSEM450 型场发射扫描电子显微镜(SEM)结合能谱仪(EDS)对复合材料微观组织、元素分布、纤维形貌及断口形貌进行观察。

2 结果与分析

基体合金对 Al₂O_{3f}/Al 复合材料致密度和微观组 织的影响

图 3 为 4 种不同基体合金的 Al₂O_{3f}/Al 复合材料的 致密度。连续 Al₂O_{3f}/ZL301 复合材料的致密度最高为 99.2%,连续 Al₂O_{3f}/ZL210A 和 Al₂O_{3f}/7075 复合材料 的致密度分别为 98.8%和 98.1%,连续 Al₂O_{3f}/1A99 复 合材料致密度最低,为 96.8%。连续 Al₂O_{3f}/ZL301 复合 材料的致密度最高,表明其浸渗效果最好,组织最致密。

图 4 为 4 种不同基体合金的复合材料的微观组

Fig.3 Relative density of continuous Al₂O_{3f}/Al composites

织。其中连续 Al₂O_{3f}/1A99 复合材料内部存在明显的 浸渗孔隙,其尺寸较大,纤维分布均匀;而连续 Al₂O_{3f}/ ZL210A 复合材料出现了严重的纤维偏聚现象,同时 纤维偏聚处出现了大量的浸渗微孔;连续 Al₂O_{3f}/ ZL301 复合材料中出现了少量纤维偏聚现象的同时也 有少量的浸渗微孔;连续 Al₂O_{3f}/7075 复合材料内部存 在大量的浸渗孔隙,其尺寸较连续 Al₂O_{3f}/1A99 复合 材料孔隙尺寸小,其内部亦存在少量纤维偏聚现象, 纤维偏聚处也产生了少量浸渗微孔。

Al₂O₃ 与纯铝在 700 ℃左右时的润湿角约为 152°,铝液不能自发地对 Al₂O₃ 纤维进行浸渗,必须 施加外界压力克服毛细压差,以促进浸渗过程的发生。 铝液浸渗过程的发生取决于毛细作用产生的压差,其 值由 Yong-Kelvin 方程确定:

$$P_{\rm c} = 2\frac{\gamma_{\rm lv}\cos\theta}{r} \tag{1}$$

式中, *P*_c 为毛细压差 (Pa); *γ*_{Iv} 为液态金属表面张力 (N/mm²); *θ* 为铝液与 Al₂O₃ 纤维的润湿角 (rad); *r* 为毛细半径 (mm)。在液态浸渗过程中,铝液首先浸 入纤维束与束之间的较大间隙,而后再浸入纤维之间 的小孔隙;由于纤维是单向排布的,纤维之间没有约 束,在压力的作用下,铝液最先浸入处的纤维会将周 围的纤维向四周挤压,从而导致尚未浸渗的部位孔隙 变得更小,浸渗更加困难。当孔隙小到浸渗压力无法

图 4 4 种连续 Al₂O_{3f}/Al 复合材料的微观组织 Fig.4 Microstructures of continuous Al₂O_{3f}/Al composites: (a) Al₂O_{3f}/1A99, (b) Al₂O_{3f}/ZL210A, (c) Al₂O_{3f}/ZL301, and (d) Al₂O_{3f}/7075

使铝液顺利浸入这些微小孔隙时,便形成了复合材料 中的浸渗孔隙。

通过向铝液中加入合金元素可以改善铝液与 Al₂O₃纤维的润湿性^[16]。在 700 ℃左右,向纯铝中添 加 9.3%的 Mg 元素可以使润湿角下降至 119°, 向纯铝 中加入 5.6%的 Cu 元素可以使润湿角下降至 145°, 而 向纯铝中加入 7.1%的 Zn 可以使润湿角降低至 148°。 在连续 Al₂O_{3f}/ZL301 复合材料的浸渗过程中,由于 Mg元素使Al₂O₃与铝液的润湿性得到明显的改善,所 以其致密度最高,浸渗效果最好;连续 Al₂O_{3f}/ZL210A 复合材料中的 Cu 元素在一定程度上促进了浸渗过程 的进行; 连续 Al₂O_{3f}/7075 复合材料中的 Zn 元素对润 湿性的改善作用不明显,同时其 Mg 和 Cu 元素的含量 较低,因此该复合材料在浸渗过程中容易产生较多的 浸渗缺陷,导致复合材料致密度不高;而连续 Al₂O_{3f} 1A99复合材料由于纤维与铝液之间润湿性很差,浸渗 过程难以顺利进行,导致该复合材料在浸渗过程中容易 形成较大的浸渗孔隙,因此该复合材料的致密度最低。

图 5 为连续 Al₂O_{3f}/Al 复合材料中不同元素的面分 布。图 5a 为背散射电子连续 Al₂O_{3f}/ZL210A 复合材料 的微观组织。可以看到,在纤维周边存在大量的某种 呈白色的物质。而在图 5b 中相应区域的 EDS 结果显 示这些区域含有大量的 Cu 元素。结合 XRD 测试结果 分析,这应是富集在纤维周边的 Al₂Cu 相,这种现象 是在铝铜合金铸造凝固过程中形成的。ZL210A 的结 晶温度范围较宽,在铝-铜相图中,固溶相α首先结晶, 而大部分的 Cu 存在于液相中。由于基体合金的凝固 是从远离纤维处向纤维附近发展,后析出的 Al₂Cu 相 则会在纤维与基体间的界面附近生成。

图 6a 为连续 Al₂O_{3f}/ZL301 复合材料中 Mg 元素的 分布情况,可以看到 Mg 元素在基体中分布较为均匀。 图 6b 为连续 Al₂O_{3f}/7075 复合材料中 Zn 元素的分布情 况, Zn 的分布是无规律性的。

图 7 为 4 种连续 Al₂O_{3f}/Al 复合材料的 XRD 分析 结果。可以发现 Al₂O₃ 纤维与纯铝及 ZL210A 基体没 有发生界面反应,而连续 Al₂O_{3f}/ZL301 复合材料中 Al₂O₃ 纤维与 ZL301 发生了界面反应生成了 MgAl₂O₄ (镁尖晶石),连续 Al₂O_{3f}/7075 复合材料中 Al₂O₃ 纤 维与 7075 基体发生了复杂的界面反应生成了 Al₂(SiO₄)O (蓝晶石)和 ZnAl₂O₄ (锌尖晶石)。

在连续 Al₂O₃/ZL301 复合材料的制备过程中,基体中含有的 Mg 化学活性很高,会发生如下反应:

图 5 连续 Al₂O_{3f}/ZL210A 复合材料 BSE 像和 Cu 元素面分布 Fig.5 BSE microstructure (a) and corresponding Cu mapping (b) of Al₂O_{3f}/ZL 210A composities

图 6 Al₂O_{3f}/ZL301 中 Mg 元素分布和 Al₂O_{3f}/7075 中 Zn 元素分布 Fig.6 Mapping of Mg in Al₂O_{3f}/ZL301 (a) and Zn in Al₂O_{3f}/7075 (b)

图 7 连续 Al₂O_{3f}/Al 复合材料的 XRD 图谱

Fig.7 XRD patterns of continuous Al_2O_{3f}/Al composites: (a) $Al_2O_{3f}/1A99$, (b) $Al_2O_{3f}/ZL210A$, (c) $Al_2O_{3f}/ZL301$, and (d) $Al_2O_{3f}/7075$

 $3Mg + Al_2O_3 \rightarrow 3MgO + 2Al (1000 \text{ K})$ $\Delta G = -120 \text{ kJ/mol}$ (2) $MgO + Al_2O_3 \rightarrow MgAl_2O_4 (1000 \text{ K})$ $\Delta G = -37 \text{ kJ/mol}$ (3)

上述反应的最终产物为 MgAl₂O₄ (镁尖晶石), 这是一种稳定的化合物, 其熔点高达 2135 ℃, 密度为 3.6 g/cm³。从热力学的角度分析, 在连续 Al₂O_{3f}/ZL301 复合材料的制备过程中会形成 MgAl₂O₄。

在连续 Al₂O_{3f}/7075 复合材料的制备过程中, Al₂O₃ 纤维与 7075 基体发生界面反应生成了 Al₂(SiO₄)O(蓝 晶石),其化学反应方程式如式(4):

 $Al_2O_3+SiO_2→Al_2(SiO_4)O$ (4) 式 (4)的吉布斯自由能函数近似表达式为: Δ $G_T^{\Theta}=-10711+13.991T$ (kJ/mol) (5)

由式 (5) 计算可以得到, 当 *T*>765 K 时, Δ*G*^e_T< 0, 即当温度高于 492 ℃时, 纤维和基体会发生界面

反应生成 Al₂(SiO₄)O。 在连续 Al₂O₃,7075 复合材料的制备过程中,Al₂O₃ 纤维与 7075 基体还发生了如下反应生成了 ZnAl₂O₄ (锌尖晶石):

$$2Zn + O_2 \rightarrow 2ZnO$$

$$ZnO + Al_2O_3 \rightarrow ZnAl_2O_4 \quad (1000 \text{ K})$$

$$\Delta G = -38.56 \text{ kJ/mol} \quad (7)$$

铝熔体中的 Zn 在高温下极易被氧化生成 ZnO(式 6), 再发生式(7)反应。

上述反应的最终产物为 ZnAl₂O₄, ZnAl₂O₄的熔点 为 1950 ℃, 热稳定性好。

2.2 基体合金对连续 Al₂O_{3f}/Al 复合材料抗拉强度的 影响

复合材料的强度除了受增强体和基体的强度的影 响外,很大程度上还取决于其界面结合情况。图 8 为 在浸渗温度 720 ℃、预热温度 530 ℃、浸渗压力 7 MPa

图 8 不同基体合金及其复合材料的抗拉强度

和保压时间 5 min 条件下制备的 4 种基体合金及复合 材料的抗拉强度。1A99、ZL210A、ZL301 及 7075 4 种基体的强度分别为 66、165、126 和 122 MPa,而相 对应的 4 种复合材料的强度依次为 465、479、680 和 389 MPa。基体合金的强度与相应的 4 种复合材料的 强度并没有对应的关系,表明基体合金的强度并不是 连续 Al₂O_{3f}/Al 复合材料抗拉强度的主要影响因素。

图 9 为不同状态下 Al₂O₃ 纤维的表面形貌。其中 图 9a 为预热后的纤维表面形貌。由于溶胶-凝胶法制 备的纤维表面有一层有机胶质层,在真空中受热后还 有残留,造成纤维表面不光滑。图 9b 为预热后的纤维 在 10%的 NaOH 溶液中浸泡后的表面形貌。可以发现, 这 2 种纤维的表面没有明显的差异,这体现出 Al₂O₃ 纤维优异的耐腐蚀性。

图 9c~9f 分别为从连续 Al₂O_{3f}/1A99、Al₂O_{3f}/ ZL210A、Al₂O_{3f}/ZL301、Al₂O_{3f}/7075 复合材料中萃取 出来的 Al₂O₃ 纤维的表面形貌。其中从连续 Al₂O_{3f}/ 1A99 复合材料中萃取的 Al₂O₃ 纤维的表面比较光滑 (图 9c),但还有少量附着物,其颗粒感较预热及腐 蚀后的纤维较弱,这可能是由于高温下的纯铝液对 Al₂O₃纤维浸渗后使得 Al₂O₃纤维表面的颗粒物与铝液 反应或者被冲刷脱落了。从纤维形貌来看,纯铝液对 Al₂O₃ 纤维的浸渗并没有对纤维表面形貌造成明显的 影响,这也从侧面反映出 Al₂O₃ 纤维与纯铝之间的界 面反应程度微弱,与 XRD 测试结果一致。

从连续 Al₂O_{3f}/ZL210A 复合材料中萃取的 Al₂O₃ 纤维的表面也比较光滑(图 9d),但有较多的附着物, 且附着物尺寸较大,结合 XRD 测试结果,这可能是 附着在纤维表面的 Al₂Cu 相。可以发现,除了附着物 以外,基体 ZL210A 对 Al₂O₃纤维的浸渗也没有对纤 维表面产生明显的影响,表明 ZL210A 与 Al₂O₃纤维 之间的界面反应程度也较弱,但 Al₂Cu 相聚集并附着 在纤维表面可能会对连续 Al₂O_{3f}/ZL210A 复合材料的 界面结合强度造成一定影响。

从连续 Al₂O_{3f}/ZL301 复合材料中萃取的 Al₂O₃纤 维的表面不如前 2 种纤维光滑(图 9e),可以发现纤 维表面有些凹凸不平的区域,也发现了少量的附着物, ZL301 对 Al₂O₃纤维的浸渗使得纤维表面产生了明显 的改变。这主要是由于 ZL301 与 Al₂O₃纤维在高温浸 渗过程中发生了界面反应,在腐蚀萃取过程中,大部 分界面反应产物剥落,使纤维表面变得粗糙。

而从连续 Al₂O_{3f}/7075 复合材料中萃取的 Al₂O₃ 纤 维的表面非常粗糙(图 9f),有大量附着物在纤维表 面。很明显,7075 铝合金对 Al₂O₃ 纤维的高温浸渗严 重损伤了纤维,这是由于浸渗过程中,基体与纤维发 生了严重的界面反应。可以预见的是,这样的界面反 应必然会大幅削弱 Al₂O₃ 纤维的承载能力,直接影响 复合材料的性能。

图 9 不同状态下 Al₂O₃ 纤维的表面形貌

Fig.9 Surface morphologies of Al₂O₃ fibers in different states: (a) preheating at 500 °C, (b) corrosion after preheating at 500 °C; Al₂O₃ fibers extracted from Al₂O_{3f}/1A99 (c), Al₂O_{3f}/ZL210A (d), Al₂O_{3f}/ZL301 (e), and Al₂O_{3f}/7075 composites (f)

图 10 为未经处理的 Al₂O₃纤维原丝、使用真空气 压浸渗设备在惰性气氛下经 500 ℃预热的纤维、经预 热并且经浓度为 10%的 NaOH 溶液浸泡过的纤维以及 从 4 种连续 Al₂O₃#Al 复合材料中采用 10%的 NaOH 溶 液萃取出来的 Al₂O₃ 纤维的抗拉强度。其中 Al₂O₃纤维 原丝实测的平均抗拉强度为 2189 MPa, 经预热过及经 NaOH 腐蚀的 Al₂O₃ 纤维抗拉强度仅下降了不到 1%, 分别为 2167 和 2171 MPa,预热处理及 NaOH 腐蚀处理 对 Al₂O₃ 纤维的抗拉强度影响较小,显示了 Al₂O₃纤维 优异的热稳定性和耐腐蚀性。而从 4 种连续 Al₂O₃#Al 复合材料萃取得到的纤维中,抗拉强度最高的是从连续 Al₂O₃#1A99 复合材料中萃取出来的纤维,其强度为 1746 MPa,约为 Al₂O₃纤维原丝的 79.7%;抗拉强度最 低的是从连续 Al₂O_{3f}/7075 复合材料中萃取出来的 Al₂O₃ 纤维,其抗拉强度仅为 980 MPa,仅为 Al₂O₃纤维原丝 的 44.7%;从连续 Al₂O_{3f}/ZL210A 复合材料和连续 Al₂O_{3f}/ZL301 复合材料中萃取出来的 Al₂O₃纤维强度分 别为 1658 和 1584 MPa。可见在连续 Al₂O_{3f}/Al 复合材 料的制备过程中,Al₂O₃纤维受到了不同程度的损伤。

对连续纤维增强复合材料的理论抗拉强度计算一 般按照复合材料的强度混合法则:

$$\sigma = \sigma_{\rm f} V_{\rm f} + \sigma_{\rm AI} (1 - V_{\rm f}) \tag{8}$$

式中, *σ* 是复合材料理论抗拉强度; *σ*_f 为纤维抗拉强 度; *σ*_{A1} 为基体铝合金抗拉强度; *V*_f 为复合材料中纤维 的体积分数。真空气压浸渗法制备的纤维体积分数为 40%的 4 种连续 Al₂O_{3f}/Al 复合材料的理论抗拉强度大 致在 915~975 MPa 之间。其中连续 Al₂O_{3f}/ZL301 复合 材料的实际抗拉强度达到了理论强度的 71.5%。表明 合适的界面结合强度及较低的纤维损伤程度是保证复 合材料强度的重要因素。

图 11 为 4 种连续 Al₂O_{3f}/Al 复合材料的断口形貌。 图 11 a, 11b 中连续 Al₂O_{3f}/1A99 复合材料的断口有较 多的纤维拔出现象,且纤维拔出长度较长,表面及界 面结合强度较低;图 11c,11d 中连续 Al₂O_{3f}/ZL210A 复合材料断口存在一定起伏,且几乎没有纤维拔出; 图 11e,11f 中连续 Al₂O_{3f}/ZL301 复合材料断口参差不 齐,且存在部分纤维拔出的情况,其纤维拔出长度较 连续 Al₂O_{3f}/1A99 复合材料要短;图 11g,11h 中连续 Al₂O_{3f}/7075 复合材料断口平齐,几乎没有纤维拔出。

图 11 连续 Al₂O_{3f}/Al 复合材料的拉伸断口形貌

Fig.11 Tensile fracture morphologies of continuous Al₂O_{3f}/Al composites: (a, b) Al₂O_{3f}/1A99, (c, d) Al₂O_{3f}/ZL210A, (e, f) Al₂O_{3f}/ZL301, and (g, h) Al₂O_{3f}/7075

在连续 Al₂O_{3f}/1A99 复合材料的拉伸过程中, 虽 然其纤维损伤程度较低,但其界面结合较弱,同时由 于其内部存在较多尺寸较大的浸渗缺陷,部分纤维在 低载荷下就会与基体脱粘,纤维拔出较长,界面不能 在有效传递载荷的同时改变裂纹横向传播的方向,造 成复合材料在低载荷下断裂。连续 Al₂O_{3f}/ZL210A 复 合材料内部存在较多的浸渗微孔,Al₂Cu 相聚集在纤 维周边可能加强了复合材料的界面结合强度,使得纤 维在受载过程中不易与界面脱粘,其强度较连续 Al₂O_{3f}/1A99 复合材料稍高。连续 Al₂O_{3f}/ZL301 复合材 料内部缺陷较少,纤维损伤程度较低,且界面反应程 度适中,基体可以有效地发挥传递载荷的作用。当载 荷达到一定程度时发生界面脱粘,吸收裂纹横向传播 的能量甚至直接改变裂纹的传播方向,可以有效发挥 纤维的承载作用,因此其强度最高。连续 Al₂O_{3f}/7075 复合材料因其内部缺陷较多,且纤维损伤严重,界面 结合过强,因此其强度最低。

3 结 论

1) 基体合金对连续 Al₂O_{3f}/Al 复合材料的致密度 有明显的影响,连续 Al₂O_{3f}/ZL301 复合材料的致密度 最高为 99.2%,连续 Al₂O_{3f}/1A99 复合材料的致密度最 低为 96.8%。4 种连续 Al₂O_{3f}/Al 复合材料致密度存在 差异的原因是不同的合金元素对 Al₂O₃ 纤维与铝液之 间润湿性改善的效果不一样。

2) 4 种复合材料萃取得到的纤维的表面形貌和抗 拉强度存在较大差异,这是由于不同基体与 Al₂O₃ 纤 维发生了不同程度的界面反应,最终表现为纤维受到 不同程度的损伤。

3)不同基体对连续 Al₂O_{3f}/Al 复合材料的抗拉强 度有明显的影响,但基体合金本身的强度并不是复合 材料强度的重要影响因素。1A99、ZL210A、ZL301 及 7075 4 种基体的强度分别为 66、165、126 和 122 MPa,而相对应的 4 种复合材料的强度依次为 465、 479、680 和 389 MPa。缺陷、纤维损伤和界面结合强 度是影响连续 Al₂O_{3f}/Al 复合材料强度的主要因素。

参考文献 References

 Song Meihui, Xiu Ziyang, Wu Gaohui et al. Transactions of Nonferrous Metals Society of China[J], 2009, 19(S2): 382

- [2] Wang Tao(王 涛), Zhao Yuxin(赵宇新), Fu Shuhong(付书红) et al. Journal of Aeronautical Materials(航空材料学报)[J], 2013, 33(2): 87
- [3] Xue Liaoyu(薛辽豫), Wang Fuchi(王富耻), Wang Yangwei(王扬卫) et al. Rare Metal Materials and engineering(稀有金属材料与工程)[J], 2014, 43(8): 1908
- [4] Rawal S P. Surf Interface Anal[J], 2001, 31: 692
- [5] Dai Xiaoya, Zhang Wenlong, Gao Ping et al. Metallurgical and Materials Transactions A[J], 2014, 45(3): 1559
- [6] Wu Gaohui(武高辉). Acta Materiae Compositae Sinica(复合 材料学报)[J], 2014, 31(5): 1228
- [7] Ji Xing(吉 幸), Luo Xian(罗 贤), Yang Yanqing(杨延清) et al.
 Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2013, 42(2): 401
- [8] Liao Huanwen(廖焕文), Xu Zhifeng(徐志锋), Yu Huan(余 欢) et al. The Chinese Journal of Nonferrous Metals(中国有色金 属学报)[J], 2014, 24(9): 2064
- [9] Wang Lixue(王丽雪), Cao Liyun(曹丽云), Liu Haiou(刘海鸥).
 Light Alloy Fabrication Technology(轻合金加工技术)[J],
 2005, 33(8): 10
- [10] Xiao Hanning(肖汉宁), Chen Gangjun(陈钢军), Gao Pengzhao(高鹏召) et al. Journal of Hunan University(湖南大学 学报)[J], 2007, 34(8): 41
- [11] McWilliams B, Dibelka J, Yen C F. Materials Science & Engineering A[J], 2014, 618: 142
- [12] Kang Guozheng(康国政), Gao Qing(高庆), Yang Chuan(杨川) et al. Acta Materiae Compositae Sinica(复合材料学报)[J], 2000, 17(2): 25
- [13] Li Tingting(李婷婷), Zhao Ming(赵明), Fang Keming(方克明) et al. Special Casting and Nonferrous Alloys(特种铸造及有色合金)[J], 2013, 33(6): 582
- [14] Bai Pucun(白朴存), Pei Jie(裴杰), Dai Xiongjie(代熊杰) et al. Rare Metal Materials and Engineering(稀有金属材料与 工程)[J], 2009, 38(1): 1
- [15] Mou Jundong(牟俊东), Wei Zuoshan(魏作山), Feng Zengjian(冯增建) et al. Special Casting and Nonferrous Alloys(特 种铸造及有色合金)[J], 2011, 31(7): 650
- [16] Qiu Ning(仇 宁), Zhong Lijun(钟黎君), Li Bo(李 波). Acta Materiae Compositae Sinica(复合材料学报)[J], 1990, 7(1): 24

Effect of Matrix Alloy on Microstructure and Tensile Strength of Continuous Al₂O_{3f}/Al Composite

Nie Mingming¹, Xu Zhifeng¹, Wang Zhenjun¹, Yu Huan¹, Cai Changchun¹, Wang Deqing²

(1. National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China)

(2. Hubei Sanjiang Space Wanfeng Science & technology Development Co., Ltd, Xiaogan 432009, China)

Abstract: The vacuum gas pressure infiltration was performed on the continuous Al_2O_{3f}/Al composite with a fiber volume fraction of 40% and using Nextel610-Al₂O₃ fiber as the reinforcing material. Al₂O₃ fibers were extracted using NaOH solution, and the matrix alloys were 1A99, ZL210A, ZL301 and 7075 alloys. The effects of matrix alloy on the relative density, fiber damage and tensile strength of continuous Al_2O_{3f}/Al composites were studied. The results show that different matrix alloys have an obvious influence on the relative density and microstructure of the composites. The continuous $Al_2O_{3f}/ZL301$ composite has the highest relative density of 99.2% and the least defects. The relative density of the continuous $Al_2O_{3f}/1A99$ composite is the lowest, 96.8%. The main reason for this difference is the wettability between the matrix and the fiber. The degree of interfacial reaction between different matrices and fiber is different. Eventually, the damage degree of the fiber is different. The tensile strength of continuous $Al_2O_{3f}/1A99$, $Al_2O_{3f}/ZL210A$, $Al_2O_{3f}/ZL301$ and $Al_2O_{3f}/7075$ are 465, 479, 680 and 389 MPa, respectively. The defect, interfacial reaction degree and the fiber damage are the main factors to determine the tensile strength of the composite.

Key words: matrix alloy; continuous Al₂O_{3f}/Al composite; relative density; microstructure; fiber damage; tensile strength

Corresponding author: Xu Zhifeng, Professor, National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China, Tel: 0086-791-86453167, E-mail: xu zhf@163.com