铜模喷铸 Cu-Zr 合金非平衡凝固组织演变行为

何文^{1,2},杨伟¹,余欢¹

(1. 南昌航空大学 轻合金加工科学与技术国防重点学科实验室,江西 南昌 330063)(2. 江西省金属材料微结构调控重点实验室,江西 南昌 330063)

摘 要:采用真空感应熔炼与铜模喷铸相结合,制备出不同成分的 Cu_{100-x}Zr_x(x=5, 30, 50)合金。利用光学显微镜、扫描 电镜、能谱分析及 X 射线衍射技术,对比研究了快冷合金的晶粒形貌、元素分布、相组成及类型等组织演化规律。结 合差热分析技术研究了合金实时凝固过程。结果表明,随 Zr 含量增加,非平衡凝固 Cu-Zr 合金中初生相体积分数不断 提高,分别呈现非小平面→小平面→非小平面的转变。由于铜模激冷效应,Cu₇₀Zr₃₀ 合金中 Cu₅₁Zr₁₄+L→Cu₈Zr₃ 包晶转 变与 Cu₅₀Zr₅₀ 合金中 CuZr→Cu₁₀Zr₇+ CuZr₂ 共析转变均受到抑制。热分析曲线中未出现包晶相变峰和共析相变峰,合理 解释了 Cu-Zr 合金非平衡组织的形成。

关键词: Cu-Zr 合金; 非平衡凝固; 相结构; 包晶转变; 共析转变

中图法分类号: TG292 文献标识码: A 文章编号: 1002-185X(2018)09-2693-06

铜合金具有良好的导电、导热、耐磨及无磁性等特 征而倍受青睐,广泛应用于航空航天及电气等领域^[1]。 Cu-Zr 合金作为目前所发现非晶形成能力最强的二元 合金系,凝固过程中析出单质或金属间化合物,在提 高材料强度的同时不显著降低其电导率^[2-4]。邓等^[5]对 粉末冶金 Cu-Zr 合金的硬度和导电率进行研究。葛等^[6] 发现 Cu₆₅Zr₃₅ 合金非晶形成能力最强。Zhou 等^[7]根据第 一性原理计算出 Cu-Zr 系中各化合物的稳定性。

非平衡凝固作为材料科学和凝聚态物理共同关注 的研究热点,在改善传统结构材料、开发高性能新材 料方面发挥了重要作用^[8-10]。采用急冷或深过冷方式, 通过改变形核或生长来影响相竞争关系,可制备出亚 稳新材料。陈克萍等^[11]采用真空落管法,研究了微重 力条件下 Cu-Zr 合金的快速共晶与枝晶生长。 Janovszky 等^[12]通过添加 Ag 元素研究了液相分离过 程。Gegner等^[13]利用静电悬浮结合高能同步辐射技术 研究了 Cu₅₀Zr₅₀ 合金的相选择。目前人们围绕非晶形 成^[14]、非晶结构弛豫^[15]以及非晶晶化^[16]等开展了深入 研究。然而 Cu-Zr 体系具有复杂相变过程特征,不同 成分的合金不仅会形成差异明显的初生相,还相应存 在共晶、包晶及共析等多类型的相变。如何理解非平 衡条件下上述相变过程的转变行为,准确把握 Cu-Zr 快冷合金的组织形成规律,对于提高工程应用价值具 有积极的意义。

本实验综合采用真空感应熔炼、铜模喷铸及热分析技术,系统研究 Cu₉₅Zr₅、Cu₇₀Zr₃₀和 Cu₅₀Zr₅₀3个典型合金的非平衡凝固行为。通过对比分析不同成分合金中初生相种类、相结构组成及晶体形貌等组织特征量的演化行为,揭示冷却速率对合金相变过程的影响规律,从而为该类材料的组织调控与性能开发提供理论参考。

1 实 验

选用纯度高于 99.9% (质量分数)的纯 Cu 和纯 Zr 为原材料,在高真空电弧熔炼炉中制备出 Cu₉₅Zr₅、 Cu₇₀Zr₃₀和 Cu₅₀Zr₅₀母合金。首先将称量好的合金原料 置于水冷铜坩埚内,采用机械泵+分子泵二级联抽系统 实现 6.67×10⁴ Pa 的极限真空。为避免合金熔炼过程中 氧化挥发,向熔炼炉内返充 99.999%的高纯 Ar 气至 0.03 MPa。为确保合金成分均匀,熔炼过程中坩埚下方 进行电磁搅拌,并且每个合金试样翻转反复熔炼 3 次。

铜模喷铸实验在高真空感应熔炼炉内进行。首先 将电弧熔炼合金锭破碎成小块,并称取质量约 35 g 装 入底部开有 Φ0.5 mm 小孔的石英玻璃管内。调节上下 活动支架使玻璃管底孔与下方铜模中心对齐,其中铜 模外径尺寸 Φ80 mm,内径 Φ8 mm,底部开有 Φ1 mm

收稿日期: 2017-09-05

基金项目:国家自然科学基金(51461032);江西省教育厅资助项目(GJJ14504);江西省金属材料微结构调控重点实验室开放基金(JW201523005)

作者简介: 何 文, 男, 1982 年生, 博士生, 南昌航空大学轻合金加工科学与技术国防重点学科实验室, 江西 南昌 330063, 电话: 0791-83953305, E-mail: wshw82@163.com

通气孔。为防止熔炼过程中氧化,感应炉内预抽真空 至 6.67×10⁻⁴ Pa,并返充 99.999%的高纯 Ar 气至 0.03 MPa。启动高频电源并逐步加大功率,确保合金 完全熔化后在坩埚上方通入 0.02 MPa 的 Ar 气,金属 液被垂直喷射入铜模中,从而制备出快冷合金试样。

合金凝固过程利用同步热分析仪(德国 NETZSCH STA449F3)研究。首先从合金锭中线切割加工出直径 4 mm、厚度 5 mm 的圆片,然后经丙酮超声清洗去除 表面油污。热分析实验在动态高纯氩气下进行,其中 样品质量约 120 mg,升降温速率 20 K/min。为消除坩 埚壁厚引起的热滞现象,仪器所测温度与高纯 In、Sn、Zn、Al、Ag 金属熔点进行校正,确保温度精度为±1 K。

为确保结果可对比性,选取具有最佳冷却效果的 喷铸试棒底部进行组织分析。经切割、超声清洗、打 磨及抛光等金相制备步骤后,采用 40%氢氟酸+60%乙 醇溶液进行腐蚀。在 VHX-600E 三维超景深显微镜上 进行光学显微组织分析。采用 D8-X 射线衍射仪进行 相结构分析。利用 Quanta 200 扫描电镜进行高倍微观 组织观察,并利用 INCA 250 X-Max 50 型能谱仪对微 区成分进行测定。

2 结果与讨论

2.1 Cu_{100-x}Zr_x (x=5, 30, 50) 快冷合金相结构

由 Cu-Zr 二元合金相图可知, Cu₉₅Zr₅、Cu₇₀Zr₃₀ 和 Cu₅₀Zr₅₀ 合金除凝固开始阶段不同初生相从熔体中 率先形成外, 平衡状态下 3 种合金的后续相变过程分 别对应共晶、包晶及共析转变,其中 Cu₉₅Zr₅为亚共晶 合金,其凝固组织由初生 Cu 相与共晶 Cu+Cu₉Zr₂相组 成。Cu₇₀Zr₃₀ 合金相组成为 Cu₈Zr₃ 包晶相和凝固未期 形成的 Cu₈Zr₃+Cu₁₀Zr₇共晶相。Cu₅₀Zr₅₀ 属于共析成分 合金,其平衡组织为 Cu₁₀Zr₇+CuZr₂相。然而快冷条件 下,合金熔体与铜模直接接触,由于受铜模尺寸、试 棒直径、充填速度及熔炼温度等因素的影响,实际冷 却速率约为 10⁰~10³ K/s^[10],属于非平衡相变过程,从 而影响合金最终组织的形成。

图 1 为铜模喷铸快冷合金的 XRD 结果。经对各 衍射峰标定后可知, Cu₉₅Zr₅ 合金的非平衡凝固组织由 Cu 和 Cu₅Zr 所组成,其中 Cu 的衍射峰较明显,说明 占主要组成,而 Cu₅Zr 相与相图中 Cu₉Zr₂成分比较接 近,并且对应的衍射峰非常微弱,说明含量较少。这 一结果与图 1 分析基本吻合,说明非平衡条件下该合 金的共晶反应依然存在。Cu₇₀Zr₃₀ 合金主要相组成为 Cu₅₁Zr₁₄、Cu₈Zr₃和 Cu₁₀Zr₇,其中作为主相的 Cu₅₁Zr₁₄ 衍射峰最强。由相图可知,凝固过程中 Cu₅₁Zr₁₄ 作为 初生相率先形成,然后在 975 ℃发生包晶转变,形成 Cu₈Zr₃相后而消失。然而快冷条件下该包晶转变被抑制,导致初生相Cu₅₁Zr₁₄大量存在。与此类似,Cu₅₀Zr₅₀ 共析合金的非平衡凝固组织基本为单相CuZr,几乎不 存在共析转变产物。

2.2 Cu100-xZrx(x=5, 30, 50)快冷合金光学显微组织

冷却速率不仅改变合金相结构组成,还会通过对 凝固阶段形核和生长的影响而引起微观组织形貌发生 变化。图 2 为非平衡凝固 Cu₉₅Zr₅、Cu₇₀Zr₃₀ 和 Cu₅₀Zr₅₀ 合金的光学显微组织。随 Zr 含量增加, 3 种合金初生 相体积分数不断提高,其中 Cu95Zr5 合金中初生相为束 状枝晶形貌,这是由于该相作为非小平面晶体,属于 连续生长模式,形核一旦发生将沿热流方向择优生长, 最终呈现为定向枝晶。由于快冷条件下凝固时间较短, 枝晶熟化现象并不明显,平均二次枝晶间距仅7µm, 相体积分数为42%,同时枝晶间存在较多共晶组织(图 2a)。相比可知, Cu₇₀Zr₃₀ 合金的初生相为多边形等轴 晶形貌,这是由于该相为小平面晶体,主要生长方式 为台阶生长,其生长速率较缓慢,有利于更多形核质 点的形成,导致等轴晶组织的存在,并且该相体积分 数为 66%(图 2b)。Cu₅₀Zr₅₀ 合金非平衡凝固组织几乎 全为单相 CuZr 粒状晶,说明共析转变同样被完全抑 制(图 2c)。综合以上分析,初生相的形态取决于非平 衡条件下的形核和生长过程,而后续共晶、包晶及共 析相变过程主要受冷速影响而有所不同。

2.3 Cu_{100-x}Zr_x (x=5, 30, 50) 快冷合金 SEM 组织及 能谱分析

为研究 Cu-Zr 合金高倍显微组织形貌,图 3 给出 铜模喷铸 Cu₉₅Zr₅ 合金的扫描电镜及能谱分析结果。由 图可知,枝晶相的成分全部为 Cu (点 A),因此可推 断为初生 Cu 相。枝晶间存在细小层片状组织,相应 的 Zr 元素含量为 3.09 at% (点 B),属于未被抑制的共

图 1 铜模喷铸 Cu₉₅Zr₅、Cu₇₀Zr₃₀和 Cu₅₀Zr₅₀合金 XRD 图谱

Fig.1 XRD patterns of spray cast Cu₉₅Zr₅, Cu₇₀Zr₃₀ and Cu₅₀Zr₅₀ alloys

图 2 不同成分的铜模喷铸 Cu-Zr 合金光学显微组织

Fig.2 Optical microstructures of spray cast Cu-Zr alloys with different composition: (a) $Cu_{95}Zr_{5}$, (b) $Cu_{70}Zr_{30}$, and (c) $Cu_{50}Zr_{50}$

图 3 铜模喷铸 Cu₉₅Zr₅ 合金 SEM 组织及 EDS 能谱测试结果 Fig.3 SEM images (a, b) and EDS analysis (c, d) of spray cast Cu₉₅Zr₅ alloy

晶组织,这与图 1 中 XRD 结果相吻合。局部放大后可计算出该共晶层片间距为 60 nm (图 3b)。

图 4 为铜模喷铸 Cu₇₀Zr₃₀ 合金扫描电镜组织及能谱 结果。随合金中 Zr 元素成分增加,初生相中 Zr 含量也 随之增加,达到 18.19 at% (点 A),基本接近 Cu₅₁Zr₁₄ 相的成分。由图 4b 放大图可清晰看到该初生相具有小 平面晶生长特征。这是由于固相原子扩散速率较慢,非 平衡条件下包晶相变被抑制,导致初生相的小平面形貌 及体积分数得以保存,未形成包晶转变层。此外,该小 平面相作为金属间化合物相,具有硬脆特征,因此图 4b 中存在明显裂纹。基体组织成分分析表明该区域中 Zr 含量为 24.58 at%(点 B)。由相图可知, Cu₇₀Zr₃₀ 合 金在 885 ℃时会发生共晶反应,形成 Cu₈Zr₃ 和 Cu₁₀Zr₇ 相,因此可推断为凝固末期残余液相所形成的共晶组 织。由于属于两相混合组织以及能谱作用区域的不同, 导致实际测量结果偏低于相图中的平均成分 38.2 at%。 然而与图 3 中层片状共晶组织形貌不同,Cu₇₀Zr₃₀ 合金 中最终形成棒状共晶组织。

图 5 为铜模喷铸 Cu₅₀Zr₅₀合金的扫描电镜组织及 能谱结果。该合金为单相组织,颗粒状基体中 Zr 含量

图 4 铜模喷铸 Cu₇₀Zr₃₀ 合金 SEM 组织及 EDS 能谱测试结果 Fig.4 SEM images (a, b) and EDS analysis (c, d) of spray cast Cu₇₀Zr₃₀ alloy

图 5 铜模喷铸 Cu₅₀Zr₅₀ 合金 SEM 组织及 EDS 能谱测试结果 Fig.5 SEM image and EDS analysis of spray cast Cu₅₀Zr₅₀ alloy

为 50.49 at%,可推断为初生 CuZr 相(点 A)。由于共 析转变属于完全固态相变,相变速率更慢,因此非平 衡条件下共析相变被抑制,未出现相图中的 Cu₁₀Zr₇+ CuZr₂ 共析组织。此外由于凝固过程中元素发生偏析 现象,枝晶间 Zr 元素含量为 26.23 at% (点 B)。

2.4 Cu_{100-x}Zr_x (x=5, 30, 50) 合金热分析过程

为进一步研究 Cu-Zr 合金凝固过程,图 6 给出 Cu₉₅Zr₅、Cu₇₀Zr₃₀和 Cu₅₀Zr₅₀合金降温阶段热分析曲 线,其中对应冷速均为 20 K/min。当 Cu₉₅Zr₅合金熔体 降到 1026 ℃时由于初生 Cu 相形成而出现第 1 个放热

图 6 电弧熔炼 Cu₉₅Zr₅、Cu₇₀Zr₃₀ 和 Cu₅₀Zr₅₀ 合金热分析曲线 Fig.6 DSC curves of Cu₉₅Zr₅, Cu₇₀Zr₃₀, and Cu₅₀Zr₅₀ alloys

峰,该峰值温度1018℃,对应的转变速率最快。当温 度下降到 970 ℃时出现第 2 个峰, 该值与相图中共晶 平台温度 972 ℃非常接近,因此可推断为残余液相发 生共晶反应,并且在956℃时达到最快转变速率。该 合金相变过程与平衡相图基本相符。Cu70Zr30 合金中 初生相析出温度为 1058 ℃,对应峰值温度 1049 ℃。 然而随温度降低,即使 20 K/min 慢冷条件下也未出现 975 ℃对应的包晶转变峰,从而证明了包晶转变缓慢 特征,并可解释非平衡条件下包晶转变的抑制。当温 度降低到 876 ℃时出现第 2 个微弱峰,由于与相图共 晶平台温度 885 ℃接近,因此可判断为发生共晶反应。 Cu50Zr50合金在 928 ℃时析出 CuZr 初生相,对应峰值 温度 913 ℃,与相图较吻合。然而热分析实验是在流 动氩气吹扫下进行,并非完全真空环境,加之 Zr 元素 极易氧化,导致残余液相中富 Cu,变成亚共析合金。 当温度下降到 897 ℃时出现第 2 个反应峰。由于接近 理论共晶温度 890 ℃,因此属于残余液相中共晶反应。 综合上述分析可知,相比于共晶反应,包晶和共析转 变更易得到抑制,这与图1的XRD结果相吻合。

3 结 论

 1) 铜模喷铸 Cu₉₅Zr₅、Cu₇₀Zr₃₀和 Cu₅₀Zr₅₀合金中 初生相体积分数不断增加,分别形成非小平面 Cu 相、 小平面 Cu₅₁Zr₁₄相和非小平面 CuZr 相。

2) 非平衡凝固 Cu₉₅Zr₅ 合金中共晶反应未被抑制, 束状枝晶间存在间距为 60 nm 的层片状规则共晶 组织。 3)包晶转变涉及固态原子扩散,快冷Cu₇₀Zr₃₀合金中初生相小平面特征得以保留,未形成包晶转变层, 并且残余液相形成棒状共晶组织。

4) 共析转变属于完全固态相变,快冷 Cu₅₀Zr₅₀合
 金为单相 CuZr 组织,未形成共析组织。

5) 热分析凝固过程中未出现包晶转变和共析转 变峰,从而合理解释了 Cu-Zr 快冷合金非平衡组织的 形成。

参考文献 References

- [1] Zhai W, Wang W L, Geng D L et al. Acta Mater[J], 2012, 60:
 6518
- [2] Biffi C A, Figini A, Tuissi A. Intermetallics[J], 2014, 46: 4
- [3] Ding Zongye(丁宗业), Jia Shuguo(贾淑果), Guo Wangwang (郭望望) et al. Rare Metal Materials and Engineering(稀有金 属材料与工程)[J], 2014, 43(2): 408
- [4] Yang W, Liu F, Liu H et al. J Alloy Compd[J], 2009, 484: 702
- [5] Deng Jingquan(邓景全), Wu Yucheng(吴玉程), Yu Fuwen(于 福文) et al. Rare Metal Materials and Engineering(稀有金属 材料与工程)[J], 2009, 38(4): 205
- [6] Ge Li(葛丽), Hui Xidong(惠希东), Chen Guoliang(陈国良) et al. Acta Physico-Chimica Sinica(物理化学学报)[J], 2007, 42(6): 895
- [7] Zhou S H, Napolitano R E. Acta Mater[J], 2010, 58: 2186
- [8] Liu F, Yang G C. Int Mater Rev[J], 2006, 51(3): 145
- [9] Yan N, Wang W L, Wei B. J Alloy Compd[J], 2013, 558: 109
- [10] Yang Wei(杨伟), Zhang Yanlong(张燕龙), Yu Huan(余欢) et al. Rare Metal Materials and Engineering(稀有金属材料 与工程)[J], 2014, 43(10): 2402
- [11] Chen Keping(陈克萍), Lv Peng(吕 鹏), Wang Haipeng(王海 鹏). Acta Physica Sinica(物理学报)[J], 2017, 66(6): 068 101
- [12] Janovszky D, Tomolya K, Sycheva A et al. J Alloy Compd [J], 2014, 586: S194
- [13] Gegner J, Shuleshova O, Kobold R et al. J Alloy Compd [J], 2013, 576: 232
- [14] Wang Y X, Yang H, Lim G et al. Scripta Mater[J], 2010, 62:682
- [15] Gao Xuanqiao(高选乔), Bai Haiyang(白海洋), Guo Linjiang (郭林江) et al. Rare Metal Materials and Engineering(稀有 金属材料与工程)[J], 2016, 45(9): 2293
- [16] Abe T, Shimono M, Ode M et al. Acta Mater[J], 2006, 54: 90

Microstructure Evolution of Non-equilibrium Solidified Cu-Zr Alloy by Spray Casting

He Wen^{1,2}, Yang Wei¹, Yu Huan¹

(1. National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology,

Nanchang Hangkong University, Nanchang 330063, China)

(2. Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province, Nanchang 330063, China)

Abstract: Non-equilibrium solidified $Cu_{100-x}Zr_x$ (x=5, 30, 50) alloys with different composition were prepared by spray casting combined with vacuum induction melting. The microstructure evolution including grain morphology, element distribution and phase components of the non-equilibrium solidified alloys was investigated by optical microscope, scanning electron microscope, energy spectrum analysis and X-ray diffraction technique. The solidification process of the alloys was studied by differential scanning calorimetry. The results show that the volume fraction of primary phase increases continuously with the increase of Zr content, which reveals a transition from non-faceted to faceted and finally to non-faceted phase. Affected by the fast cooling effect of copper mould, both the peritectic transformation in $Cu_{70}Zr_{30}$ alloy are suppressed, which are further verified by the thermal analysis curve under slow cooling condition. Consequently, the formation regularity of non-equilibrium microstructure of spray cast Cu-Zr alloy can be well explained.

Key words: Cu-Zr alloy; non-equilibrium solidification; phase structure; peritectic transformation; eutectoid transformation

Corresponding author: Yang Wei, Ph. D., Associate Professor, National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China, Tel: 0086-791-86453167, E-mail: nchkyw@163.com