不同处理工艺对 Cu-Ni-Co-Si 合金组织 与性能的影响

彭丽军^{1,2},马吉苗¹,刘兴宇³,刘峰¹,黄国杰²,洪松柏¹,解浩峰²,刘冬梅²

(1. 宁波兴业盛泰集团有限公司, 浙江 宁波 315336)

(2. 北京有色金属研究总院 有色金属材料制备加工国家重点实验室, 北京 100088)

(3. 北京有色金属研究总院 生物冶金国家重点实验室, 北京 100088)

摘 要:通过物理性能测试和扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HRTEM)等分 析技术,系统研究不同处理工艺对 Cu-Ni-Co-Si 合金微观组织与性能的影响。结果表明,合金经热轧在线淬火时效处理后, 合金中存在大量的正交结构的大颗粒(Ni,Co)₂Si 相和少量、细小的(Ni,Co)₂Si 相,是导致合金综合性能无法满足后续使用的主 要原因;经固溶时效和固溶冷变形时效处理后,合金的硬度与时效时间的关系曲线均呈单峰型,而合金的导电率与时效时间 的关系曲线均呈先快速增加后缓慢增大最后趋于稳定的趋势;综合性能优良的 Cu-Ni-Co-Si 合金合理的加工热处理制度为热 轧试样经 1000 ℃固溶处理 1 h+60%冷变形+500 ℃时效 2 h。合金经固溶时效和固溶冷变形时效处理后,基体中出现大量圆 盘状的正交结构的(Ni,Co)₂Si 相,与基体的取向关系为(221)_p//(200)_{Cu},(102)_p//(001)_{Cu}。

关键词: Cu-Ni-Co-Si 合金; 固溶时效; 微观组织; 维氏硬度; 导电率

中图法分类号: TG146.1⁺1 文献标识码: A 文章编号: 1002-185X(2019)06-1969-06

铜镍硅系合金是一种典型的固溶时效强化型合 金^[1,2]。经固溶时效处理,能析出弥散分布的纳米级析出 相^[3-5],使合金具有高强度、高弹性、较高导电性和优良 抗应力松弛等综合性能。可以用于制作连接器、电器接 插件、引线框架等元器件,广泛应用于航空航天、电子 信息、汽车等诸多领域。是世界各国为满足电子电力、 冶金、航空航天、原子能等高科技领域对高性能铜合金 需求而竞相研究与开发的重点^[6-9]。

目前各国对 Cu-Ni-Si 系合金的时效析出行为及合 金元素对组织和性能影响规律进行了较为系统的研 究^[10-21],并取得了一定研究成果。其中代表合金 C70250 (Cu-Ni-Si-Mg)在中国已实现产业化生产。2000年,美国 奥林公司在 C70250 合金的基础上用 Co 代 Ni,开发出 了 C70350 (Cu-Ni-Co-Si)合金。该合金相对于 Cu-Ni-Si 合金,具有更高的强度和导电性能等综合性能,能满足 更高端弹性元件的使用要求。但此类材料在中国还未实 现产业化生产。本实验主要对工业化生产过程中 Cu-Ni-Co-Si 合金试样进行固溶时效和固溶冷变形时效处理, 系统研究不同工艺制度对合金微观组织和性能的影响规 律,确定出合理的加工热处理制度,为合金的产业化生 产提供理论依据和生产参考。

1 实 验

实验材料为热轧在线淬火后的 Cu-Ni-Co-Si 合金, 其化学成分如表 1 所示。为明确不同处理工艺对 Cu-Ni-Co-Si 合金组织和性能的影响规律,对热轧在线淬 火态合金进行不同的时效及形变热处理工艺,具体如表 2 所示。

分别采用 HXD-1000 数显维氏硬度计和 7501 型涡 流导电仪对不同状态的合金试样进行硬度和导电率测 试。将合金通过金相制样机和金相镶嵌机制成金相试 样,经不同规格砂纸逐级打磨并进行抛光处理后,用 一定比例 FeCl₃与 HCl 的水溶液对试样进行腐蚀,在 JEOL JSM-7001F 型场发射扫描电镜下观察试样的组织 形貌。时效及形变热处理后的微观组织在 JEM 2100 LaB6 型透射电镜下观察。试样制备过程:试样预先在

表 1 Cu-Ni-Co-Si 合金的化学成分							
Table 1	Chemical composit	ion of Cu-Ni-Co-	Si alloy (ω/%)				
Ni	Со	Si	Cu				
1.4	1.13	0.53	Bal.				

收稿日期: 2018-06-23

基金项目:国家重点基础研究发展计划(2016YFB0301300);国家自然科学基金(51601017,51401026)

作者简介:彭丽军,男,1986年生,博士,高级工程师,北京有色金属研究总院有色金属材料制备加工国家重点实验室,电话:010-60662668, E-mail: penglj@grinm.com

表 2 不同处理工艺制度						
Table 2 Different treatment schedules						
Sample No.	Process system					
А	Hot rolling on-line quenching and aging at 450 and 500 $$ °C $$ for various time					
SA500	Hot rolling on-line quenching, cold rolling by 85%, solutioned treatment at 1000 $^\circ\!\mathrm{C}$ for 1 h and aging at 500 $^\circ\!\mathrm{C}$					
	for various time					
SCA500	Hot rolling on-line quenching, cold rolling by 85%, solutioned treatment at 1000 °C for 1 h, cold rolling by 60%					
	and aging at 500 $^\circ C$ for various time					

砂纸上进行机械减薄至 50±5 µm 时进行铳样,随后将样 品放置在双喷仪上进行减薄、穿孔。双喷液采用体积比 为 1:4 的硝酸和甲醇混合液,工作温度为-40~-50 ℃。

2 结果与分析

2.1 材料性能分析

图 1a 为热轧在线淬火后不同时效处理制度下 Cu-Ni-Co-Si 合金的硬度曲线。从图 1a 中可以看出,热轧 在线淬火态合金经时效处理后,其硬度与时效时间的 关系曲线呈单峰型,且随着时效温度的增加,合金到 达峰时效的时间变短,峰值变大。如时效温度为 450 ℃时,合金的硬度随着时效时间的延长逐渐增大,时 效至 16 h 时,合金的硬度达到峰值(1909 MPa),相对 于未时效态,其维氏硬度增加了约 950 MPa,增幅不大; 当时效温度增加至 500 ℃时,合金到达峰时效的时间 仅需要 2 h,对应峰值的维氏硬度也增大(1924 MPa)。

图 1b 为不同时效处理制度下热轧在线淬火后 Cu-Ni-Co-Si 合金的导电率曲线。从图 1b 中可以看出, 热轧在线淬火态合金经时效处理后,其导电率与时效 时间的关系曲线呈先快速上升后缓慢增大最后趋于稳 定的趋势,且时效温度越高,合金的导电率越大。如 时效温度为 450 ℃,时效时间为 24 h 时,合金的导电 率为 45% IACS,相对于未时效态,合金的导电率增 加了约 21% IACS;而当时效温度增加至 500 ℃,时 效时间为 24 h 时,合金的导电率为 48% IACS,相对 于未时效态,合金的导电率增加了约 24% IACS,增 加幅度要高于 450 ℃。

由以上热轧在线淬火态合金力学/电学性能被时 效制度影响的关系曲线可知,对热轧板带材进行在线淬 火后,合金的综合性能无法满足弹性元件对弹性材料的 使用要求,需要对其进行后续的塑性变形和热处理。

图 2a 为固溶+时效处理与固溶+冷变形+时效处理 下 Cu-Ni-Co-Si 合金的硬度曲线。由图中可知,合金 经固溶+时效处理和固溶+冷变形+时效处理两种工艺 处理后,合金的硬度与时效时间的关系曲线均呈单峰 型。当固溶态合金在时效温度为 500 ℃,时效时间为 2 h 时,合金到达峰值,此时维氏硬度为 2450 MPa;

- 图 1 热轧在线淬火后不同时效处理制度下 Cu-Ni-Co-Si 合金 的硬度和导电率曲线
- Fig.1 Hardness (a) and electrical conductivity (b) curves of Cu-Ni-Co-Si alloy after on-line quenching under different aging treatment

而当固溶态合金在冷变形+时效处理后,合金达到峰时 效的时间缩短至 0.5 h,此时维氏硬度为 2780 MPa, 相对于固溶时效态合金,维氏硬度增加了 330 MPa。 当时效时间为 2 h 时,合金的维氏硬度降低至 2600 MPa,仍比固溶时效后峰时效态维氏硬度高。这就说 明固溶态合金进行冷变形后再进行时效处理,能缩短 合金到达硬度-时效时间关系曲线峰值的时间,同时还 可以提高合金峰值的硬度。

图 2b 为固溶+时效处理与固溶+冷变形+时效处理 下 Cu-Ni-Co-Si 合金的导电率曲线。由图可知,合金 经固溶+时效处理和固溶+冷变形+时效处理后,合金 的导电率与时效时间的关系曲线均呈先快速增大后缓 慢增加最后趋于稳定的趋势。对比两种工艺的导电率-

图 2 固溶+时效及固溶+冷变形+时效处理下 Cu-Ni-Co-Si 合金 的硬度和导电率曲线

Fig.2 Hardness (a) and electrical conductivity (b) curves of Cu-Ni-Co-Si alloy under solution+aging treatment and solution+cold-rolled+aging treatment

时效时间关系可知,时效时间为 2~4 h 时,两种工艺 处理后的导电率均约为 45% IACS,导电率基本相同。

当时效时间超过4h后,形变+时效处理后的导电率要 明显高于固溶+时效态。这就说明固溶态合金进行冷变 形后再进行时效处理,能促进析出相的析出,有利于 导电率的提高。

综合对比本文中 Cu-Ni-Co-Si 合金维氏硬度和导电 率性能与DOWA公司C70350合金性能(维氏硬度≥2600 MPa,导电率≥45% IACS)指标可知,综合性能优良的 Cu-Ni-Co-Si 合金合理加工热处理制度为热轧态合金经 1000 ℃固溶处理1h+60%冷变形+500 ℃时效2h。

2.2 微观组织分析

图 3 为 Cu-Ni-Co-Si 合金热轧在线淬火及 500 ℃ 时效 2 h 的微观组织和选区电子衍射花样。从图 3a 和 3b 中可明显看出,热轧在线淬火后合金存在大量尺寸 为 0.3~1 µm 的大颗粒相,通过对大颗粒相进行能谱分 析(如表 3 所示),发现这些颗粒相主要含有 Ni、Co 和 Si 元素,其含量相对于基体而言,明显偏高。说明这 些相应该是 Ni、Co、Si 元素偏聚相。通过对这些大颗 粒相进行选区电子衍射分析,如图 3c 所示,可确定出 这些颗粒相为正交结构的(Ni, Co)₂Si 相。另外,对热 轧在线淬火+时效处理态合金进行微观组织分析,如图 3d 所示,基体中出现少量尺寸为 5~10 nm 的圆盘状和 棒状析出相。从选区电子衍射花样(图 3e)可知,其衍 射斑点强度较弱,这可能是由于析出相体积分数较小 导致。对衍射斑点标定,确定此圆盘状析出相为正交 结构的(Ni, Co)₂Si 相。出现以上微观组织结构的原因

图 3 Cu-Ni-Co-Si 合金热轧在线淬火及 500 ℃时效 2 h 后的微观组织及选区电子衍射花样

Fig.3 Microstructures and selected area electron diffraction pattern of Cu-Ni-Co-Si alloy after on-line quenching (a~c) and aging at 500 °C for 2 h (d, e): (a) SEM image, (b) TEM bright-field image of large precipitate, (c) selected area electron diffraction pattern of large precipitate, (d) TEM bright-field image along the [001]_{Cu}, and (e) selected area electron diffraction pattern of Fig.3d

表 3 图 3a 中初生相和基体的能谱结果 Table 3 EDX results of coarse precipitates and matrix in Fig 3a (at%)

1 ig.3a (at 70)				
Point	Co	Ni	Si	Cu
A (coarse precipitate)	27.51	12.97	13.99	Bal.
B (matrix)	0.91	1.39	0.52	Bal.

是因为合金从热轧坯到终轧经历十几个道次加工,终 轧温度大概在 700 ℃左右,在此温度下进行水冷,很 难将 Ni、Co、Si 等合金元素完全固溶至基体,但由于 合金过饱和度不高,在后续的析出过程中难以析出大 量提高合金强度的细小、弥散分布的强化相,这也是 热轧在线淬火时效态合金硬度不高的主要原因。

图 4 为 Cu-Ni-Co-Si 合金经 1000 ℃固溶 1 h, 500 ℃时效 2 h 后的微观组织及选区电子衍射花样。由图 4a 和 4b 可知,合金经固溶时效处理后,基体中存在大量 10~20 nm 的圆盘状和棒状析出相。其中棒状析出相呈 相互垂直的取向关系,如图 4d 所示,且沿基体的<110> 方向分布。另外,根据雷前等^[3,17]学者研究结果表明, 合金中圆盘状和棒状析出相均属于同一种析出相,其真 实的形貌为圆盘状,如图 4e 所示。从图 4c 电子衍射花 样可知,衍射花样出现比较明显的析出相斑点。对衍射 斑点进行标定,该析出相为正交结构的(Ni, Co)₂Si 相, 该 相 与 基 体 呈 如 下 取 向 关 系 : (221)_p//(200)_{Cu}, (102)_p//(001)_{Cu}。另外,衍射花样中除了基体和析出相 斑点之外,还有沿着<110>_{Cu}方向的衍射条纹出现。衍 射条纹的出现往往是由于析出相在某一晶向上发生聚 集而产生的,这与 QBe2.0 合金时效过程中析出相的选 区电子衍射特征一致^[22]。这就说明在此状态下合金析 出大量的正交结构的(Ni、Co)₂Si 相。

图 5 为 Cu-Ni-Co-Si 合金经 1000 ℃固溶 1 h+60% 冷变形+500 ℃时效 2 h 后的微观组织及选区电子衍射 花样。由图 5a 可见,基体中存在大量的位错,且在位 错附近析出大量弥散分布、尺寸为 5~10 nm 的圆盘状 和棒状析出相。该析出相能有效地阻碍位错的运动, 提高合金的硬度和强度。通过衍射花样(图 5b)可以看 出,析出相衍射信息与图 4c 相同,即圆盘状析出相为 正交结构的(Ni、Co)₂Si 析出相,与基体呈如下取向关 系: (221)_p//(200)_{Cu}, (102)_p//(001)_{Cu}。

3 讨 论

从图 1 和图 2 结果可知,热轧在线淬火+时效处 理、固溶+时效处理和固溶+冷变形+时效处理后合金 的硬度与时效时间的关系曲线呈单峰型,且时效温度 越高和在时效前施加塑性变形后时效,均能加快时效 析出速度,缩短到达峰时效的时间。这主要是因为在 时效初期,合金元素 Ni、Co、Si 主要以贫/富溶质区 的形式存在,即发生了调幅分解^[23],通过贫/富溶质区 的弹性应力场阻碍位错的运动,提高合金的硬度。随 着时效时间的延长,溶质原子贫/富区逐渐转变成细小 的(Ni, Co)₂Si 析出相存在,如图 3d、4a 和 4b 所示,

图 4 Cu-Ni-Co-Si 合金固溶+时效处理(1000 ℃/1 h+500 ℃/2 h)的微观组织及选区电子衍射花样

Fig.4 Microstructures and selected area electron diffraction pattern of Cu-Ni-Co-Si alloy after solutioned at 1000 °C for 1 h+aged at 500 °C for 2 h: (a) TEM bright-field image along the [011]_{Cu}, (b) TEM bright-field image along the [001]_{Cu}, (c) selected area electron diffraction pattern of Fig.4b, and (d, e) HRTEM images along the [001]_{Cu}

- 图 5 Cu-Ni-Co-Si 合金固溶+冷变形+时效处理(1000 ℃/1 h+ 60%冷轧+500 ℃/2 h)的微观组织及选区电子衍射花样
- Fig.5 Microstructure (a) and selected area electron diffraction pattern (b) of Cu-Ni-Co-Si alloy after solutioned at 1000 °C for 1 h+60% cold-rolled+aged at 500 °C for 1 h

由于析出相尺寸较小,与基体呈一定共格关系,使合 金的硬度得到很大的提升。当时效时间延长至2h时, 析出相长大到一定尺寸,合金的硬度达到峰值。随着 时效过程的进行, 析出相将继续长大, 逐渐与基体失 去共格关系,合金的硬度逐渐减小,即合金发生过时 效现象。时效温度的增加,有利于原子的扩散和析出 相的析出与长大,将缩短合金到达峰时效的时间。如 热轧在线淬火后, 合金在 450 ℃时效 16 h 达到峰时 效,而在 500 ℃时效时,合金达到峰时效时间只需要 2h。在时效前进行冷塑性变形,能增加合金内部的位 错、晶界、界面等缺陷^[24],如图 5a 所示,显著提高合 金内部的缺陷密度,有利于析出相的形核和析出,缩 短合金到达峰时效的时间。同时析出相能与位错、界 面等缺陷发生交互作用,提高合金的硬度。如固溶时 效态合金,达到峰时效的时间为2h,维氏硬度为2450 MPa, 而施加冷变形后, 合金峰时效的时间缩减至 0.5 h, 维氏硬度增加至 2780 MPa。

热轧在线淬火+时效处理、固溶时效处理和固溶处 理+冷变形+时效处理后合金的导电率与时效时间的 关系曲线均呈先快速增加后缓慢增大最后趋于稳定的 趋势,且时效温度越高和在时效前施加塑性变形,均 能提高合金的导电性能。这主要是因为在时效初期, 过饱和固溶体发生脱溶,大量的 Ni、Co、Si 合金元素 从基体中脱溶出来,大大降低溶质原子对电子的散射 作用, 使得合金的导电率得到快速提升。但由于合金 时效早期会发生调幅分解反应,形成溶质原子贫/富 区,将会形成应力场,影响合金导电率的升高。随着 时效时间的延长,溶质原子贫/富区将逐渐转化成 (Ni, Co)₂Si 析出相,降低晶格畸变。与此同时,溶质 原子也不断从基体中脱溶,进一步降低对电子散射的 作用,加快合金导电率的升高。随着时效过程的继续 进行,铜合金过饱和度逐渐降低,导致第二相析出动 力不足, 使得合金的导电率上升幅度减小, 基本保持 一个稳定值。提高时效温度,能加快合金元素脱溶速 度,基体的晶格畸变恢复速度也较快,对电子的散射 影响就越小,合金的导电率上升速度就越快。如 500 ℃时效时,合金的导电率上升幅度要大于450 ℃。在 时效前施加冷变形,能显著提高合金内部的缺陷密度, 增加析出相形核密度和析出速度,但位错、晶界、界 面等缺陷本身对合金电子散射有一定影响,因此,在 时效初期,合金的导电率相对于固溶时效态合金相差 不大,如时效时间为4h时的导电率。但随着时效时 间的延长,合金原子不断从基体中脱溶和析出相逐渐 析出,此时合金的导电率得到大幅度提升。随着时效 过程的继续进行, 经冷变形后时效合金导电率相对于 未变形合金,具有很大的增幅,如时效时间为24h时, 变形后时效的导电率相对于固溶时效增长 10% IACS。

4 结 论

1) Cu-Ni-Co-Si 合金热轧在线淬火+时效处理后, 合金中存在大量的正交结构(Ni, Co)₂Si 大颗粒相和少 量的(Ni, Co)₂Si 细小析出相,是合金综合性能无法满 足后续使用的最为主要的原因。

2) Cu-Ni-Co-Si 合金经固溶+时效处理和固溶+冷 变形+时效处理后,合金的硬度与时效时间的关系曲线 均呈单峰型;而合金导电率与时效时间的关系曲线均 呈先快速增加后缓慢增加最后趋于稳定的趋势。

3) 综合性能优良的 Cu-Ni-Co-Si 合金合理的加工
 热处理制度为热轧试样经 1000 ℃固溶处理 1 h+60%
 冷变形+500 ℃时效 2 h。

 4) Cu-Ni-Co-Si 合金经固溶+时效处理和固溶+冷 变形+时效处理后,合金的析出强化相为正交结构的(Ni, Co)₂Si 相,与基体呈如下取向关系:(221)_p//(200)_{Cu}, (102)_p//(001)_{Cu}。

参考文献 References

 Cheng J Y, Yu F X, Shen B et al. Journal of Alloys and Compounds[J], 2014, 614: 189

- [2] Lei Q, Li Z , Zhu A Y et al. Materials Characterization[J], 2011, 62(9): 904
- [3] Jia Y L, Wang M P, Chen C et al. Journal of Alloys and Compounds[J], 2013, 557: 147
- [4] Monzen R, Watanable C. *Materials Science and Engineering A* [J], 2008, 483-484: 117
- [5] Chenna Krishna S, Srinath J, Jha K et al. Journal of Materials Engineering and Performance[J], 2013, 22(7): 2115
- [6] Lei Q, Li Z, Dai C et al. Materials Science and Engineering A[J], 2013, 572: 65
- [7] Larbi E H, Azzeddine H, Baudin T et al. Journals of Alloys and Compounds[J], 2015, 638: 88
- [8] Semboshi S, Sato S, Iwase A et al. Materials Characterization[J], 2016, 115: 39
- [9] Wang W, Kang H J, Chen Z N et al. Materials Science and Engineering A[J], 2016, 673: 378
- [10] Hu T, Chen J H, Liu J Z et al. Acta Materialia[J], 2013, 61(4):1210
- [11] Eungyeong L, Seungzeon H, Kwangjun E et al. Metals and Materials International[J], 2011, 17: 569
- [12] Suzuki S, Shibutani N, Mimura K et al. Journal of Alloys and Compounds[J], 2006, 417(1-2): 116
- [13] Seungwon L, Hirotaka M, Xavier S et al. Materials Characterization[J], 2014, 90: 62
- [14] Azzeddine H, Mehdi B, Hennet L et al. Materials Science and

Engineering A[J], 2014, 587: 288

- [15] Abdel Y K, Faycal H L, Megumi K et al. Materials Science and Engineering A[J], 2013, 576: 149
- [16] Atapek S H, Pantelakis S G, Polat S et al. Theoretical and Applied Fracture Mechanics[J], 2016, 83: 60
- [17] Lei Qian(雷 前). *Thesis for Doctorate*(博士论文)[D]. Changsha: Central South University, 2014
- [18] Chenna Krishna S, Srinath J, Jha Abhay K et al. Journal of Materials Engineering and Performance[J], 2013, 22(7): 2115
- [19] Rzawski Z, Stobrawa J. Materials Science and Technology[J], 1993, 9(2): 142
- [20] Wang Li(汪黎), Sun Yangshan(孙扬善), Fu Xiaoqin(付小琴) et al. Journal of Southeast University, Natural Science (东南 大学学报,自然科学)[J], 2005, 35(5): 729
- [21] Lei Jingguo(雷静果), Huang Jinglin(黄景林), Liu Ping(刘平) et al. Journal of Wuhan University of Technology(武汉理 工大学学报)[J], 2005, 20(1): 21
- [22] Bonfield W, Edwards B C. Journal of Materials Science[J], 1974, 9: 398
- [23] Xiao Xiangpeng(肖翔鹏). Thesis for Doctorate(博士论文)
 [D]. Beijing: General Research Institute of Nonferrous Metals, 2013: 62
- [24] Li Sanhua(黎三华), Shen Leinuo(申镭诺), Li Zhou(李 周) et al. Materials Science and Engineering of Powder Metallurgy(粉末冶金材料科学与工程)[J], 2015, 20(1): 118

Influence of Different Treatment Processes on Microstructure and Properties of Cu-Ni-Co-Si Alloy

Peng Lijun^{1,2}, Ma Jimiao¹, Liu Xingyu³, Liu Feng¹, Huang Guojie², Hong Songbai¹, Xie Haofeng², Liu Dongmei² (1. Ningbo Xingye Shengtai Group Co., Ltd, Ningbo 315336, China)

(2. State Key Laboratory of Nonferrous Metals and Process, General Research Institute for Nonferrous Metals, Beijing 100088, China)(3. State Key Laboratory of Biological Metallurgy, General Research Institute for Nonferrous Metals, Beijing 100088, China)

Abstract: The influences of different treatment processes on microstructure and properties of Cu-Ni-Co-Si alloy were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high resolution electron microscopy (HRTEM). The results show that a large number of large-particle $(Ni,Co)_2Si$ phases with orthorhombic structure and a few fine $(Ni,Co)_2Si$ phases are found in the Cu-Ni-Co-Si alloy after the alloy is quenched on-line and aged, which results in low strength of the alloy. The relation curves between Vickers hardness and aging time exhibit a single peak, while the electrical conductivities firstly increase rapidly, then slowly rise, and finally trend to be stable as the aging time prolongs, when the Cu-Ni-Co-Si alloy is treated by solution+aging treatment and solution+cold deformation+aging treatment separately. The optimal thermomechanical treatment process is solution-treatment at 1000 °C for 1 h+cold rolling by 60%+aging at 500 °C for 2 h. Meanwhile, a lot of disc-shaped $(Ni,Co)_2Si$ precipitates with orthorhombic structure are found in the above condition. The orientation relationship of precipitates with Cu matrix is $(\overline{221})_p //(200)_{Cu}$, $(102)_p //(001)_{Cu}$.

Key words: Cu-Ni-Co-Si alloy; solution and aging treatment; microstructure; Vickers hardness; electrical conductivity

Corresponding author: Peng Lijun, Ph. D., Senior Engineer, State Key Laboratory of Nonferrous Metals and Process, General Research Institute for Nonferrous Metals, Beijing 100088, P. R. China, Tel: 0086-10-60662668, E-mail: penglj@grinm.com