(Gr_p+SiC_p)/AZ91 镁基复合材料的力学及耐磨性能

白 岩,邓坤坤,康金文

(太原理工大学 先进镁基材料山西省重点实验室, 山西 太原 030024)

摘 要:采用半固态搅拌技术制备出了 5 μm 10%Gr_p/AZ91、(5 μm 5%Gr_p+5 μm 5%SiC_p)/AZ91 和 (5 μm 5%Gr_p+10 μm 5% SiC_p)/AZ91 (体积分数) 镁基复合材料,并对其在 300 ℃、0.05 mm/s 的条件下进行了热挤压,研究了 SiC_p对挤压态复 合材料显微组织、力学性能和耐磨性能的影响规律。结果表明,与 Gr_p/AZ91 相比, SiC_p 的引入导致基体晶粒尺寸增大 和石墨颗粒碎化;随着 SiC_p尺寸增加,晶粒尺寸增大,石墨碎化现象更为显著。SiC_p的加入提高了 Gr_p/AZ91 复合材料 的硬度、抗拉强度和延伸率,随着 SiC_p尺寸增加,这种提升更为显著。SiC_p的引入降低了 Gr_p/AZ91 复合材料的磨损率, 但提高了摩擦系数,随着 SiC_p尺寸增加,磨损率进一步下降,摩擦系数进一步上升,磨损机制由剥层磨损转变为磨粒 磨损。

关键词:复合材料;混杂增强;热挤压;力学性能;耐磨性
中图法分类号:TB331
文献标识码:A
文章编号:1002-185X(2019)07-2251-07

镁合金是目前在工业上应用的质量最轻的结构材 料,且具有可回收再利用性好、易于车削加工等优点、 以及良好的铸造性能, 被誉为"21世纪绿色结构材 料"[1]。然而镁合金作为结构材料时,由于强度硬度 低、耐磨性能不理想,限制了其在实际中的应用。有 研究指出^[2], SiC_n 在基体中可以起到很好的硬质承载 支点的作用,提高基体材料的强度、硬度和耐磨性, 但会加剧配偶件的磨损。又有研究表明^[3,4],石墨具有 较小的层间范德华力,易于在摩擦表面形成覆盖面积 大的润滑层,通过向合金中加入石墨,可以改善摩擦 副润滑条件,但同时会损伤到材料的硬度和塑性。另 有大量研究证明^[5,6],热挤压可以改善颗粒在基体中的 分布,提高材料的综合力学性能,故通过向镁合金中 混合加入这2种增强相颗粒,并对其进行热挤压,有 望制备出一种兼具轻质耐磨的新型复合材料,拓宽镁 合金的应用范围。

目前,对于颗粒增强金属基复合材料的力学性能和耐磨性能的研究主要集中在单一增强相。如 Lim^[7]研究了干摩擦条件下载荷和滑动速度对 SiC_p增强镁基复合材料耐磨性能和磨损机制的影响。Huang^[8]等研究了微米 SiC_p体积分数和尺寸对镁基复合材料的磨损率、硬度和摩擦系数的影响。或者是以铝合金或铜合金为基体,如冷金风等^[9]研究了石墨颗粒大小对 Gr_p和 SiC_p混杂增强 Al 基复合材料摩擦系数和磨损率的影响。谢盛辉^[10]等研究了热处理工艺对于 Gr_p/6061Al

的石墨润滑膜形成的影响。关于挤压态的 SiC_p和 Gr_p 混杂增强镁基复合材料的力学性能和耐磨性能的研究 还较少。

为此,本研究采用半固态搅拌技术,制备出了 5 μm 10%Gr_p/AZ91、(5 μm 5%Gr_p+5 μm 5%SiC_p)/AZ91 和 (5 μm 5%Gr_p+10 μm 5%SiC_p)/AZ91(体积分数,下同) 复合材料,然后对其进行了热挤压,研究了 SiC_p对挤 压态混杂增强镁基复合材料显微组织、力学性能及耐 磨性能的影响,并探讨了磨损机制的变化。

1 实 验

以 AZ91 镁合金为基体合金,其成分组成如表 1 所 示。Gr_p平均粒径为 5 μ m,SiC_p平均粒径分别为 5 和 10 μ m。制备方法采用半固态搅拌铸造,具体流程为,首 先将 SiC_p和 Gr_p分别预热到 500 和 450 °C,待镁合金 完全熔化之后,将电阻炉温度调至 615 °C,使合金液 随炉冷却,随着温度逐渐降低到半固态温度区间内,液 态合金转变为固液共存状态,此时通入 SF₆和 CO₂混合 保护气体(体积比为 40:1),然后加入搅拌桨开始搅拌, 待熔体表面形成足够大小涡流后,加入增强相颗粒,高 速搅拌 30 min。随后,将炉温升到 750 °C,低速搅拌 20 min 后,将合金液浇注至 400 °C的模具中,使其在 450 MPa 的压力下凝固成型。最终制备出 5 μ m 10% Gr_p/AZ91、(5 μ m 5%Gr_p+5 μ m 5%SiC_p)/AZ91 和 (5 μ m 5%Gr_p+10 μ m 5%SiC_p)/AZ91 复合材料。

收稿日期: 2018-07-15

作者简介: 白 岩, 男, 1992年生, 硕士生, 太原理工大学材料科学与工程学院, 山西 太原 030024, E-mail: 15036111897@163.com

将制备出的复合材料铸锭用线切割加工成 30 mm×30 mm×60 mm的块体,对其在 400 ℃进行1次 多向锻造,锻造后进行均匀化处理(415 ℃/24 h)。随 后对锻造态复合材料进行热挤压,采用的挤压工艺为: 挤压温度 300 ℃,挤压速度 0.05 mm/s,挤压比 16:1。 3 种挤压态复合材料分别标记为: Gr_p/AZ91, 5 μm SiC_p/AZ91, 10 μm SiC_p/AZ91。

采用 4XC 型光学显微镜(OM)和 MIRA 3XMU70 型扫描电子显微镜(SEM)及其附带的 EDS 对复合材 料显微组织、拉伸断口和摩擦磨损表面进行观察。观 察显微组织前,试样经粗磨和抛光处理,并采用苦味 酸(10g苦味酸、5mL乙酸、80mL乙醇、5mL蒸 馏水)对试样进行腐蚀。

采用 Instron 5569 试验机,以 0.5 mm/min 的恒定 速度对复合材料进行拉伸试验,拉伸方向平行挤压方 向,试样标距 15 mm,横截面为 6 mm×2 mm,每种材 料测试 3 个试样,拉伸性能取其平均值。

采用 HVS-1000A 显微维氏硬度测试仪对复合材 料进行硬度测试。实验载荷 100 g (F=0.98 N),保荷 15 s。每个试样最少测试 9 个点,去掉最大值和最小 值,再求平均得到其显微硬度值。

摩擦磨损试验在 ML-10 型销盘式磨擦磨损试验 机上进行。试样尺寸为 Ø 8 mm×20 mm。试验在室温 下进行,载荷为 500 g,砂纸型号分别为 400 #、800 #、 1000 #、1500 #。试验前和试验后均将试样用乙醇清洗, 然后用 JA2003 型电子天平(精密度 10⁻⁴ g)进行称重。

摩擦系数实验采用 MFT-R400 型往复摩擦磨损试验机,摩擦副选择直径为 5 mm 的 GCr15 球,法向载荷选择 3 N,往复频率 2 Hz,摩擦单程 5 mm,温度为室温。

2 结果与讨论

2.1 (Gr_p+SiC_p)/AZ91 复合材料的显微组织

图 1 为挤压态(Gr_p+SiC_p)/AZ91 复合材料的 SEM 组织。可见,Gr_p和 SiC_p在 AZ91 基体中分布较为均 匀,且沿挤压方向发生定向排布。相比于 SiC_p,Gr_p 硬度较低,在热挤压过程中易于随基体变形,成形后 形成平行于挤压方向的石墨流线,如图 1a 方框所示。 将 5 µm SiC_p加入 Gr_p/AZ91 后,SiC_p对基体变形的阻 碍作用较强,导致热挤压完成后平行于挤压方向的 Gr_p 流线减弱,如图 1c 所示。当 SiC_p尺寸由 5 µm 增加至 10 µm 时,对基体塑性变形的阻碍作用进一步增强, 故对 Gr_p流线的弱化作用更为明显,如图 1e 所示。

图 1b 为 $Gr_p/AZ91$ 复合材料在挤压后的 SEM 照 片。可见,部分 Gr_p 发生了明显的破碎和细化。 $Wu^{[11]}$ 等研究了 50 μm 石墨增强镁基复合材料热挤压后的显 微组织和力学性能,研究发现石墨颗粒长径比随挤压温 度升高单调增加。而在本实验中并没有出现 Grp 长径比 明显增加的现象。这是由于(1) 挤压温度较低,不利于 石墨片层的相对滑动;(2) Grp 尺寸较小,易于在挤压过 程中随基体塑性流动;(3) Grp 界面处包裹的第二相在挤 压过程中促使其破碎成更为细小的 Grp。

图 2a、2b 分别为 Gr_p/AZ91 挤压后的高倍 SEM 照 片及 EDS 元素面扫描。可见,含有 Al 元素的第二相(图 中深蓝色)附着在 Gr_p(图中红色)上,由于变形不匹 配,Gr_p产生裂纹,在后续挤压过程中破碎成尺寸为 0.5~1 µm 的细小 Gr_p。

图 1d 和 1f 分别为 5 μ m SiC_p/AZ91 复合材料和 10 μ m SiC_p/AZ91 复合材料在挤压后的 SEM 照片。可以 发现同样出现了 Gr_p 破碎的现象,为了定量分析 Gr_p 的破碎情况,使用 Image pro-plus 对 SEM 照片中的 Gr_p 大小进行统计,统计结果如表 2 所示。可见 Gr_p/AZ91 中 Gr_p平均大小仅为 1.7 μ m。加入 5 μ m SiC_p,

表 1 AZ91 镁合金成分

	Table 1	Composition of AZ91 andy (0/70)				
Mg	Al	Zn	Ca	Mn	Si	

Composition of $\mathbf{A701}$ allow ($\omega/\theta/$)

图 1 挤压态(Grp+SiCp)/AZ91 复合材料的 SEM 照片 Fig.1 SEM images of as-extruded (Grp+SiCp)/AZ91: (a, b) Grp/AZ91; (c, d) 5 µm SiCp/AZ91; (e, f) 10 µm SiCp/AZ91

Gr_p细化到 1.5 μm,而当 SiC_p尺寸增加到 10 μm,Gr_p 进一步细化到 1.2 μm,统计结果同 SEM 组织观察一 致。出现这种现象的原因是,SiC_p的引入导致挤压过 程中 Gr_p与基体的变形不匹配程度加剧,而在 SiC_p附 近的 Gr_p更易于出现微裂纹,如图 2e 箭头所示,使 Gr_p破碎现象更为明显,且随颗粒尺度增大,颗粒与基 体的变形不匹配程度增大,导致 Gr_p更为细小。

综合 3 种复合材料的 EDS 元素面扫描图 2b、2d、 2f 可见,Al 元素富集在石墨颗粒与基体的界面上,而 SiC_p附近则较少。为确定挤压态(Gr_p+SiC_p)/AZ91 复合材 料中第二相种类,对其做了 XRD 分析,结果如图 3 所 示。可见,3 种复合材料中均含有 Al₄C₃和 Mg₁₇Al₁₂相。

如上所述,挤压前对上述材料进行了均匀化处理 (415 ℃/24 h)。Mg₁₇Al₁₂相为非稳定相,经(415 ℃ /24 h)均匀化处理后能够完全进入 Mg 基体中。故图 3 中的 Mg₁₇Al₁₂相应为挤压过程中析出的。Sun 等^[12]对 5 µm 10% SiC_p/AZ91 进行慢速挤压,研究亦证实,热 挤压过程中,在 AZ91 基体中析出了大量 Mg₁₇Al₁₂相。

表 2 (Gr_p+SiC_p)/AZ91 复合材料的石墨颗粒大小 Table 2 Graphite size of (Gr_n+SiC_p)/AZ91 composites (um)

	(p = p).	· · · · · · · · · · · · · · · · · · ·
Gr _p /AZ91	$5 \ \mu m \ SiC_p/AZ91$	$10 \ \mu m \ SiC_p/AZ91$
1.7±5.1	1.5±3.7	1.2±4.8

图 3 (Gr_p+SiC_p)/AZ91 复合材料的 XRD 图谱 Fig.3 XRD patterns of (Gr_p+SiC_p)/AZ91 composites

王振卿^[13]研究发现, AI 粉和 C 粉在 520 ℃以上 能够迅速发生反应生成 Al₄C₃相。卢德宏^[14]对石墨颗 粒增强铝基复合材料在 630 ℃进行保温时,发现了 Al₄C₃的生成。本研究采用的 AZ91 合金中含有~9%质 量分数的 Al,在材料制备过程中可与石墨反应生成 Al₄C₃相。Al₄C₃相为热稳定相(熔点~2200 ℃)^[15],经 均匀化处理后仍会存在于镁基材料中,故图 3 中的 Al₄C₃相应是在复合材料搅拌铸造时生成的。

图 4 为挤压态(Gr_p+SiC_p)/AZ91 复合材料的光学显 微组织,通过 Image pro-plus 对 OM 照片进行统计得到 3种复合材料的平均晶粒尺寸,如表 3 所示,与 Gr_p/AZ91 相比,加入 5 μm SiC_p后晶粒长大,加入 10 μm SiC_p后 晶粒尺寸进一步增大。这是因为晶粒尺寸受再结晶形核 率和长大速度两方面因素影响。研究表明^[16,17],Gr_p和 SiC_p 的少量加入均会细化晶粒,随着颗粒体积分数提高,晶 粒发生长大。如前所述,SiC_p的加入导致复合材料的变 形更为困难,热挤压过程中产生热量增多,使得 DRX 形 核率大于长大速度,热变形完成后(Gr_p+SiC_p)/AZ91 再结 晶晶粒较大。随 SiC_p尺寸增大,颗粒与基体的变形不匹 配程度增大,热挤压过程中产生热量更多,热变形完成 后镁基体的再结晶晶粒进一步长大。

2.2 (Gr_p+SiC_p)/AZ91 复合材料的力学性能

表4为挤压态(Gr_p+SiC_p)/AZ91复合材料的力学性能。可见,在加入SiC_p后复合材料的屈服强度有所降低,这是由于(1)Gr_p/AZ91中Gr_p含量更高,而石墨同基体的热膨胀系数差异相比SiC_p与基体的更大,挤压后冷却过程中产生的位错数量更多。(2)Gr_p/AZ91晶粒尺寸更小,而晶粒尺寸和屈服强度的关系可用Hall-Petch公式^[18]表示为:

 $\sigma_y = \sigma_0 + k d^{1/2}$ (1) 式中, σ_y 为材料屈服强度, σ_0 和 k 为常数, d 为材料

图 4 挤压态(Gr_p+SiC_p)/AZ91 复合材料的光学显微组织 Fig.4 Optical microstructures of as-extruded (Gr_p+SiC_p)/AZ91: (a, b) Gr_p/AZ91, (c, d) 5 μm SiC_p/AZ91, and (e, f) 10 μm SiC_p/AZ91

表 3 (Grp+SiCp)/AZ91 复合材料的晶粒尺寸 Table 3 Grain size of (Grp+SiCp)/AZ91 composites (µm)

	× F F/	1 (1)	
Gr _p /AZ91	5 µm SiC _p /AZ91	10 µm SiC _p /AZ91	
1.7±3.5	1.8±4.3	2.5 ± 5.8	

平均晶粒尺寸,晶粒尺寸越小,对屈服强度的贡献越 大,故综合两方面原因,Gr_p/AZ91屈服强度最高。

由表 4 可见,在加入 SiC_p后,复合材料的抗拉强 度和延伸率得到提升,且随着 SiC_p尺寸增加这种提升 更为明显。这是因为抗拉强度和延伸率受石墨体积分数 影响较大,而石墨同基体界面结合较弱^[19],且石墨本 身为片层状结构,在拉伸中极易发生界面脱粘而产生微 裂纹,如图 5a 所示,将会导致材料过早断裂,故加入 5 μm SiC_p后,石墨含量下降,弱界面减少;加入 SiC_p 后产生了载荷传递作用,使抗拉强度和塑性得到了提 升。10 μm SiC_p对 Gr_p的破碎作用更为明显,裂纹不易 沿石墨流线扩展,如图 5b 所示,相比于 Gr_p/AZ91,其 拉伸断口韧窝数量更多,故其延伸率最好。

从表 4 中可见, 加入了 SiC_p 后材料硬度也有了明显提升, 产生此现象的原因是 SiC_p 属于硬质点, 其引入将会提高复合材料的平均显微硬度, 大量研究亦证 实 SiC_p的引入将会提高材料的硬度^[20,21]。

表 4 (Gr_p+SiC_p)/AZ91 复合材料力学性能

Table 4 Mechanical properties of $(Gr_p+SiC_p)/AZ91$ composites

Materials	YS/MPa	UTS/MPa	Elongation/%	Hardness, HV/MPa
Gr _p /AZ91	284±8	295±3	0.9±0.5	1506±303
5 μm SiC _p /AZ91	271±6	320±8	$1.4{\pm}0.3$	1649 ± 332
10 µm SiC _p /AZ91	275±14	343±13	$2.2{\pm}0.7$	1727±119

图 5 挤压态(Gr_p+SiC_p)/AZ91 复合材料的 SEM 断口 Fig.5 SEM fracture surface of as-extruded (Gr_p+SiC_p)/AZ91: (a) Gr_p/AZ91 and (b) 10 µm SiC_p/AZ91

2.3 (Gr_p+SiC_p)/AZ91 复合材料的耐磨性能

图 6a 为 3 种复合材料随砂纸粒度降低其磨损率的 变化情况。可见,随着砂纸粒度的下降,3 种复合材 料的磨损率均下降,这是由于当砂纸粒度更大时,实 际接触面积更小,更容易在软质地的基体上产生塑性 变形,且不利于石墨润滑层的形成。从图 6a 还可发现, 与 Gr_p/AZ91 相比,5 µm SiC_p/AZ91 和 10 µm SiC_p/AZ91 这 2 种混杂复合材料在砂纸从 400 #下降到 800 #时,其磨损率下降更为明显,这是由于 400 #的 砂纸,砂粒大小平均在 10~14 µm,大于实验所用 SiC_p 尺寸,而 800#砂纸的砂粒平均在 7~10 µm,更接近本 实验所用 SiC_p尺寸,故当砂纸 400#下降到 800 #以下 时,SiC_p不易于被犁削脱落,对基体的支撑作用更加 明显。

在图 6a 中纵向对比 3 种复合材料,加入 5 μm SiC_p 后,磨损量有了明显下降。这是由于,脆性材料的磨 粒磨损主要来自于两个方面:一是微观切削,磨粒像 刀具一样对表面进行剪切、犁皱和切削;二是摩擦表面 在磨料产生的循环接触力下,使表面材料疲劳破坏^[22]。 SiC_p一方面有着很高的硬度和弹性模量,在摩擦中作 为主要的承载单元,避免了基体同摩擦表面直接接触; 另一方面改善了材料的塑性,减小了 Gr_p对于复合材 料强度的损害,提高了复合材料抵抗表面剥落磨损的 能力,从而整体提高了复合材料的耐磨性能。又因为 SiC_p尺寸增加进一步提高了材料的硬度和延伸率,同 时 SiC_p尺寸越大越不容易在摩擦过程中被犁削脱落。 Chung^[23]等的研究也表明,一般在低载荷情况下,大 尺寸 SiC_p的耐磨性优于小尺寸 SiC_p。故加入了 10 μm SiC_p的复合材料耐磨性能更优。

图 6b 为 3 种复合材料摩擦系数随时间的变化曲 线, 混杂 SiC_p 后摩擦系数的升高且波动幅度变大可 以归因于两方面:(1)石墨含量的下降;(2)材料表 面硬质点的增多。一般认为磨粒对配合端面造成的犁 削和粗糙表面的变形对摩擦系数的影响更大。且 Su^[24] 在研究 3 种不同基体的石墨增强复合材料后发现: 脆 硬表面在承受压应力时,将会产生微观裂纹而不是塑 性变形,不利于石墨的挤出效应,不易形成石墨润 滑膜。

图 6 不同砂纸型号复合材料磨损率及复合材料摩擦系数随时 间变化曲线

Fig.6 Wear rate of the composites with different sandpapers (a); friction coefficient vs time for different composites (b)

图 7 是 Gr_p/AZ91、5 µm SiC_p/AZ91 和 10 µm SiC_p/AZ91 复合材料的磨痕表面 SEM 形貌。从图 7a 中可以观察到 Gr_n/AZ91 复合材料磨痕表面犁沟很浅; 从其高倍 SEM 照片(图 7b)中可以看到许多小的黏着 点, 黏着磨损同材料塑性和接触面润滑条件相关, 而 脆性材料的破坏由正应力引起,表面接触中的最大正 应力作用在浅表面,故其黏着节点破坏损伤程度浅; 同时有部分片状磨屑,这是剥层磨损的特征。因此, Gr_p/AZ91 复合材料的磨损机制为剥层磨损和轻微黏 着磨损。图 7c 中 5 µm SiC_p/AZ91 复合材料表面犁削 现象相对 Gr_p/AZ91 比较明显,这是由于磨屑中单独存 在的 SiC_p有可能会形成三体磨粒磨损,从其高倍 SEM 照片(图 7d)中还可以观察到更大的黏着点, 故 5 µm SiC_p/AZ91 复合材料的磨损机制为磨粒磨损和黏着磨 损。图 7e 中 10 μm SiC_p/AZ91 复合材料磨痕表面相对 5μm SiC_p/AZ91 复合材料犁沟更为突出, 其高倍 SEM 照片(图 7f)中也能观察到更大的黏着点,但没有发现 明显的剥层磨损特征。Suh^[25]的剥层理论认为,发生 剥层磨损时,最表层位错密度低、组织致密。而更深 的亚表层位错密度最大,将成为微裂纹萌生之处,裂纹 平行于表面和滑动方向扩展,最终到达表面,使表层片 状剥落。本实验中连续的石墨流线最可能成为亚表层中 微裂纹的发生源,促使材料发生剥层磨损。SiCp引

Fig.7 SEM images of the worn surface of different composites: (a, b) $Gr_p/AZ91$, (c, d) 5 µm $SiC_p/AZ91$, and (e, f) 10 µm $SiC_p/AZ91$

入带来的硬度提高使基体对表面循环应力作用更不敏感,且改善了 Gr_p 分布,使裂纹不易萌生扩展。故其磨损机制为磨粒磨损和黏着磨损。

3 结 论

1) 挤压态(Gr_p+SiC_p)/AZ91 复合材料中存在石墨的破碎现象,随着 SiC_p尺寸增加,这种破碎现象更为显著。

2)在 Gr_p/AZ91 复合材料基础上混杂 SiC_p后,晶 粒长大,随着 SiC_p尺寸增加,晶粒尺寸增大。

3) 在 Gr_p/AZ91 复合材料基础上混杂 SiC_p后,屈服强度略有降低,抗拉强度和延伸率明显上升,随着SiC_p尺寸增加,这种提升更为明显。

4) 在 Gr_p/AZ91 复合材料基础上混杂 SiC_p后,磨 损率下降的同时摩擦系数上升,随着 SiC_p尺寸增加, 磨损率进一步下降,摩擦系数进一步上升,磨损机制 从剥层磨损转变为磨粒磨损。

参考文献 References

- [1] Kojima Y, Kamado S. Materials Science Forum[J], 2005, 488:9
- [2] Lu Dehong(卢德宏), Gu Mingyuan(顾明元), Shi Zhongliang(施忠良) et al. Journal of Materials Engineering (材料工程)[J], 2000(3): 26
- [3] Sharma P, Paliwal K, Garg R K et al. Journal of Asian Ceramic Societies[J], 2017, 5(1): 42
- [4] Yue Yunlong(岳云龙), Su Tong(苏通), Tao Wenhong(陶文宏) et al. Rare Metal Materials and Engineering (稀有金属材料 与工程)[J], 2007, 36(3): 533
- [5] Cheng Nanpu(程南璞), Zeng Sumin(曾苏民), Yu Wenbin(于 文斌) et al. Rare Metal Materials and Engineering (稀有金属 材料与工程)[J], 2007, 36(4): 602
- [6] Yan Feng(严峰), Wu Kun(吴昆), Zhao Min(赵敏) et al.
 Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2003, 32(8): 647
- [7] Lim C Y H, Lim S C, Gupta M. Wear[J], 2003, 255(1-6): 629
- [8] Huang S J, Dai Y Z, Jeng Y R. Advanced Materials Research[J], 2010, 152-153: 11
- [9] Leng Jinfeng(冷金凤), Jiang Longtao(姜龙涛), Wu Gaohui(武 高辉) et al. Rare Metal Materials and Engineering (稀有金属

材料与工程) [J], 2009, 38(11): 1894

- [10] Xie Shenghui(谢盛辉), Zeng Xierong(曾燮榕), Xiong Xinbo(熊信柏) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2006, 35(9): 1479
- [11] Wu Y W, Wu K, Deng K K et al. Journal of Alloys and Compounds[J], 2010, 506(2): 688
- [12] Sun Xuefei, Wang Cuiju, Deng Kunkun et al. Journal of Alloys and Compounds[J], 2018, 732: 328
- [13] Wang Zhenqing(王振卿), Liu Xiangfa(刘相法), Bian Xiufang(边秀房) et al. Foundry(铸造)[J], 2003, 52(7): 480
- [14] Lu Dehong(卢德宏), Gu Mingyuan(顾明元). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2000, 29(1): 35
- [15] Lu L, Dahle A K, StJohn D H. Scripta Materialia[J], 2005, 53: 517
- [16] Wu Y W, Wu K, Nie K B et al. Materials Science and Engineering A[J], 2010, 527(29-30): 7873
- [17] Deng K K, Wu K, Wu Y W et al. Journal of Alloys and Compounds[J], 2010, 504(2): 542
- [18] Hu Gengxiang(胡廣祥), Cai Xun(蔡 珣), Rong Yonghua(戎 咏华). Fundamentals of Materials Science(材料科学基础)
 [M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 167
- [19] Zhang J, Perez R J, Lavernia E J. Acta Metallurgica et Materialia[J], 1994, 42(2): 395
- [20] Chi Yulin(郗雨林), Chai Donglang(柴东朗), Zhang Wenxing(张文兴) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2005, 34(7): 1131
- [21] Liu Shiying(刘世英), Li Wenzhen(李文珍), Jia Xiuying(贾秀 颖) et al. Rare Metal Materials and Engineering (稀有金属 材料与工程)[J], 2010, 39(1): 134
- [22] Gahr K H Z, Bundschuh W, Zimmerlin B. Wear[J], 1993, 162-164(93): 269
- [23] Chung S, Hwang B H. Tribology International[J], 1994, 27(5): 307
- [24] Su Yunfeng, Zhang Yongsheng, Song Junjie. Wear[J], 2017, 372-373: 130
- [25] Kim D E, Suh N P. Wear[J], 1991, 149(1-2): 199

Mechanical Properties and Wear Resistance of (Gr_p+SiC_p)/AZ91 Magnesium Matrix Composites after Hot Extrusion

Bai Yan, Deng Kunkun, Kang Jinwen

(Shanxi Key Laboratory of Advanced Magnesium-based Materials, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract: Stir casting was employed to fabricate three kinds of magnesium matrix composites, 5 μ m 10% Gr_p/AZ91, (5 μ m 5% Gr_p+5 μ m 5% SiC_p)/AZ91 and (5 μ m 5% Gr_p+10 μ m 5% SiC_p)/AZ91. Subsequently the composites were subjected to hot extrusion at 300 °C with a ram speed of 0.05 mm/s. And the effects of SiC_p on microstructures, mechanical properties and wear resistance were studied. The results show that the grain size of composites increases and the fragmentation of graphite of the three composites becomes more remarkable along with the SiC_p addition and its increasing size. Extruded 5 μ m 10% Gr_p/AZ91 composite possesses poor hardness, tensile strength and plasticity, but they are all improved after adding 5 μ m SiC_p, which are further enhanced by increasing the SiC_p size from 5 μ m to 10 μ m. And the wear rate of 5 μ m 10% Gr_p/AZ91 composite is decreased along with the adding and elevating size of SiC_p. On the contrary, the friction coefficient is significantly increased by enlarging the SiC_p size. The dominant wear mechanism of 5 μ m 10% Grp/AZ91 composite is delamination wear and it totally turns into abrasive wear in 10 μ m SiC_p hybrid reinforced composites by increasing the size of SiC_p. **Key words:** composites; hybrid reinforcement; hot extrusion; mechanical properties; wear resistance

Corresponding author: Deng Kunkun, Ph. D., Professor, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China, E-mail: dengkunkun@tyut.edu.cn