压铸态镁/铝异种合金搅拌摩擦焊接接头组织及性能

李佩琪¹,游国强^{1,2},徐轩曦¹,丁煜瀚¹,文恒玉¹,郭 伟¹

(1. 重庆大学,重庆 400044)(2. 国家镁合金材料工程技术研究中心,重庆 400030)

摘 要:对3mm 厚压铸态 AZ91D 镁合金和压铸态 ADC12 铝合金进行了结果表明搅拌摩擦焊,采用金相显微镜、扫描电镜、 X射线衍射、万能试验机等分析了接头的微观组织和力学性能。结果表明:铝合金置于前进侧,前进速度为40mm/min,转 速为900~1300 r/min时,可获得成形良好的焊接接头;接头焊核区域镁铝合金相互混合,发生机械互锁,组织呈现条带状特 征;母材中粗大铸态枝晶明显细化,非镁/铝基体相主要有Si、Mg2Al3、Mg17Al12和 Mg2Si,颗粒状尺寸随转速的增加呈先降 后增趋势:接头平均抗拉强度随转速增加呈现先增大后减小的趋势;断裂均发生在前进侧热机影响区和焊核的交界处。 关键词:搅拌摩擦焊;微观组织;力学性能;压铸镁合金;压铸铝合金

中图法分类号: TB331 文献标识码: A 文章编号: 1002-185X(2019)05-1551-08

镁合金和铝合金压铸件是工程上常用的轻量化构件, 广泛用于汽车、3C 产品和电器制造等领域^[1-3]。为了充分发挥压铸镁合金和铝合金各自材料特性, 在某些工程应用中需要将两者进行焊接连接。由于压铸充型过程中金属液具有高度湍流特征, "卷气"行为不可避免^[4-6], 压铸件中往往存在大量微观气孔; 在熔化焊时, 这些气孔会受热膨胀,导致焊缝产生严重气孔缺陷^[7,8], 恶化接头性能。搅拌摩擦焊(FSW)作为一种固相连接技术,可避免熔化焊导致的气孔缺陷, 能够成为压铸镁和铝合金高质量焊接的理想选择^[9-12]。

目前,关于镁/铝异种合金 FSW 研究主要集中在变 形态镁合金和铝合金方面^[13,14]。关于压铸态镁/铝异种合 金 FSW 的研究尚未见文献报道,仅有少数学者对同种 压铸态镁合金或压铸态铝合金 FSW 进行了相关研究: Kim^[15]等研究了工艺参数对 ADC12 压铸态铝合金 FSW 第二相 Si 组织分布规律的影响,结果表明 Si 颗粒均匀 的分布在焊核区域,并且随着焊接速度的升高,Si 颗粒 有变小的趋势。栾国红^[16]等研究了不同焊接参数下 ZL114 铸造铝合金搅拌摩擦焊接头不同区域的微观组织 特征,接头的力学性能可达母材的 91%。游国强等^[17] 探讨了 AZ91D 压铸镁合金 FSW 焊核微观组织演化规 律,发现焊核顶部冠状区组织为均匀粗大、高度致密的 再结晶晶粒,中心环形区域及焊核底部更加细小。

压铸态镁/铝合金母材组织中除存在大量微观气 孔外,α相显较粗大的枝晶,压铸镁合金中的 Mg₁₇Al₁₂ 相呈近网状分布,压铸铝合金中的 Si 相多为粗大针 状,与变形态镁/铝合金有很大的区别,这必将导致其 在 FSW 过程中的塑性变形行为及获得的接头组织存 在较大差异。而目前,压铸态镁/铝异种合金 FSW 过 程的工艺参数、微观组织的演化规律以及其对接头的 力学性能的影响机制尚未可知。为此,本实验以压铸 态 AZ91D 镁合金和压铸态 ADC12 铝合金异种合金的 FSW 接头为研究对象,探讨工艺参数对其接头微观组 织和力学性能的影响规律,以期填补压铸态镁/铝异种 合金 FSW 的研究空缺。

1 实 验

实验所用的母材为压铸态 AZ91D 镁合金以及压铸态 ADC12 铝合金化学成分如表 1 所示,力学性能如表 2 所示,几何尺寸均为 70 mm × 50 mm × 3 mm。焊前,对母材表面进行喷砂处理以去除母材表面氧化膜及杂质。

采用 FSW-3LM-4012 型搅拌摩擦焊机进行焊接, 采用一般商业用搅拌头,轴肩直径 10 mm,搅拌针呈 单螺纹状,有效长度为 2.7 mm,焊接过程中搅拌头无 偏置。具体实验方法为:(1)将铝合金置于前进侧 (advancing side, AS),焊接速度 40 mm/min,搅拌 头逆时针旋转,转速分别为 700,900,1100,1300 r/min,倾角 2.5°。(2)将镁合金置于前进侧,在同样 的焊接参数下进行焊接。焊接完成后,用线切割切取 拉伸及金相试样,采用光学显微镜(OM)、扫描电镜 (SEM)、X射线衍射(XRD)、维氏硬度仪、万能试 验机等分析接头的组织及力学性能。

收稿日期: 2018-05-10

基金项目: 重庆市基础研究与前沿探索项目(cstc2018jcyjA3203); 留学人员回国创业创新支持计划专项 (201412150129)

作者简介: 李佩琪, 男, 1993 年生, 硕士生, 重庆大学材料科学与工程学院, 重庆 400044, E-mail: 1968352500@qq.com

表 1 AZ91D 压铸镁合金和 ADC12 压铸铝合金母材的化学成 分 (ω/%)

Table 1 Chemical compositions of AZ91D Mg and ADC12 Al

Metals	Mg	Al	Zn	Mn	Si	Fe	Cu
AZ91D	Bal.	8.47	0.72	0.21	0.91	-	-
ADC12	0.25	Bal.	0.54	0.18	11.46	0.88	1.8

表 2 AZ91D 压铸镁合金和 ADC12 压铸铝合金母材的力学

 Table 2
 Mechanical properties of AZ91D Mg and ADC12 Al

$\sigma_{\rm s}/{ m MPa}$	$\sigma_{ m b}/{ m MPa}$	$\delta / \%$
121	151	2.8
178	223	1.2

2 结果与讨论

2.1 接头宏观形貌分析

图 1 为铝合金在前进侧的接头宏观形貌图。由图 可知,各参数下均形成完整焊缝,但随着转速增加, 焊缝表面成形质量呈先增后减的趋势:转速 700 r/min 时焊缝表面有沟槽状缺陷,转速 900 r/min 时焊缝表面 成形良好、无宏观缺陷,转速 1100 和 1300 r/min 时焊 缝表面质量稍有下降,尤其当转速 1300 r/min 时,接 头出现较明显的飞边缺陷。这应该是由于在转速过低 时,热输入不足,焊缝金属塑性流动不足所致;当转 速过高时,过多的金属达到塑性状态,产生飞边缺陷, 金属流失导致局部孔洞缺陷。

- 图 1 铝合金置于前进侧,前进速度 40 mm/min 时接头宏观形 貌图
- Fig. 1 Macrostructures of the joints when Al alloy was placed on advancing side with velocity of 40 mm/min at different rotation speeds: (a) 700 r/min, (b) 900 r/min, (c) 1100 r/min, and (d) 1300 r/min

图 2 为将镁合金置于前进侧,各工艺参数下接头 的宏观形貌图。镁合金置于前进侧时,各个参数下接 头均出现连续沟槽状缺陷,无法获得有效焊合;其原 因是镁属于密排六方晶体结构,与面心立方的铝比较 滑移系较少,塑性较差,将其置于前进侧,金属液由 于流动性太差无法充分混合,各转速下均无法获得有 效焊合,故本研究重点讨论铝合金置于前进侧各参数 下接头的组织及性能。

图 3 为焊缝横截面宏观形貌图。搅拌头转速为 700 r/min 时,接头出现较大的隧道状缺陷,这应该是热输 入量不足所致;搅拌头转速为 900,1100 和 1300 r/min 时,焊缝横截面无明显缺陷,接头的宏观形貌大致呈 "半椭圆状",分为母材(base metal, BM),焊核区 (nugget zone, NZ)、热机影响区(thermal-mechanical affected zone, TMAZ)、热影响区(heat-affected zone, HAZ)和母材(base metal, BM),如图 4 所示,且焊 核区域的大小随转速增加而增加,这应该是热输入增 加使更多金属达到塑性状态所致。

2.2 接头微观组织分析

2.2.1 母材微观组织

图 5 为压铸态 AZ91D 镁合金和 ADC12 铝合金母 材微观组织,内部均存在微观气孔,组织粗大且不均 匀。其中,镁合金母材组织主要由大小不均匀的 α-Mg 固溶体和网状的共晶组织 β-Mg₁₇Al₁₂组成;铝合金母 材组织主要包括树枝状 α-Al 基体和针状 Si 相。

2.2.2 焊缝各区域显微组织

图 6~9 为不同转速下各区域扫描电镜组织图。

- 图 2 镁合金置于前进侧,前进速度 40 mm/min 时接头 宏观形貌
- Fig.2 Macrostructures of the joints when Mg alloy was placed on advancing side with velocity of 40 mm/min at different rotation speeds: (a) 700 r/min, (b) 900 r/min, and (c) 1100 r/min

性能

图 3 焊缝横截面宏观形貌

Fig.3 Cross-section of the FSW joints at different rotation speeds: (a) 700 r/min, (b) 900 r/min, (c) 1100 r/min, and (d) 1300 r/min

图 4 搅拌摩擦焊接头组织分布示意图

图 5 AZ91D 镁合金和 ADC12 铝合金母材微观组织 Fig.5 Microstructures of the base metals of AZ91D Mg alloy (a) and ADC12 Al alloy (b)

焊核区(图 6c~9c)组织得到明显细化,非铝镁基体 相呈颗粒状弥散分布,随着转速增加,颗粒相尺寸有 先降后增趋势;这是由于在转速较低时(图 6c),焊 接热输入不均匀,颗粒相大小不一,局部区域呈较大 的块状,随着转速增加至 900 r/min(图 7c),热输入 达到稳定状态,颗粒相呈弥散状分布,此后,随着转 速的增加,热输入也随之增高,颗粒相的尺寸相应略 微增大(图 8c~9c);此外,压铸态母材中本身的大小 不规则的气孔变为弥散的微型孔,随着转速的增加, 微型孔洞数量和尺寸有增加趋势(图 9c),这可能对接 头的力学性能产生不利的影响。

前进侧(铝合金侧)的热机影响区(图 6b~9b) 与焊核区有明显的组织变化过渡层,沿着搅拌头旋转 方向为纤维带状的组织,在靠近焊核区的一侧,其组 织比较细小,而在靠近热影响区的一侧,组织比较粗 大; 这是因为靠近焊核区材料在高速旋转的搅拌头作 用下发生了充分的塑性流动,其晶粒细化的机制与焊 核区相同,而在搅拌头的外围,变形程度和塑性流动 均较小,两者之间的速度梯度较大,此区受搅拌头的 机械作用减少,而主要受到热循环的作用,故热机影 响区是焊核区和热影响区的过渡地带,但在此区又并 非平滑过渡,成为接头缺陷最易产生的地方。而后退 侧(retreating side, RS)即镁合金侧的热机影响区组 织变化相对均匀(图 6d~9d),并无明显的分层过渡现 象,这是由于后退侧的线速度相对较低(为转速与前 进速度之差),温度场、组织分布相对均匀,无明显过 渡层出现。

前进侧热影响区(图 6a~9a)和后退侧热影响区 (图 6e~9e)组织与母材相比仅发生略微长大;其原 因是搅拌摩擦焊过程能量相对集中,热影响区仅受到 较低温度的热循环作用,相对于焊核部位热输入量较 少,晶粒长大趋势不明显,仅在局部区域表现出比母 材粗大的组织;随着转速的增加,焊核区的热输入增 大,但热影响区的组织并无明显变化。

图 6 转速为 700 r/min 时的焊缝微观组织形貌

Fig.6 Microstructures of the joint at the rotational speed of 700 r/min: (a) HAZ in AS, (b) TMAZ in AS, (c) weld nugget, (d) TMAZ in RS, and (e) HAZ in RS

图 7 转速为 900 r/min 时的焊缝微观组织形貌

Fig.7 Microstructures of the joint at the rotational speed of 900 r/min: (a) HAZ in AS, (b) TMAZ in AS, (c) weld nugget, (d) TMAZ in RS, and (e) HAZ in RS

Fig.8 Microstructures of the joint at the rotational speed of 1100 r/min: (a) HAZ in AS, (b) TMAZ in AS, (c) weld nugget, (d) TMAZ in RS, and (e) HAZ in RS

总之,压铸母材中粗大的铸态枝晶在搅拌摩擦焊 过程中明显细化,熔焊过程中由于气孔导致的无法焊 合的问题得以解决,母材中大量不规则的气孔细小、 弥散分布在接头区域。在前进侧热影响区,明显存在 一个组织突变区以及纤维带状组织,这可能成为裂纹 萌生的区域。压铸态铝镁异种合金焊接接头焊核区域 存在大量第二相颗粒,且随着转速增加,颗粒相尺寸 呈一定的先降后增趋势。

2.3 接头金相组织及界面 EDS 分析

2.3.1 金相显微组织

图 10 为转速为 900 r/min 时接头金相组织照片。 焊核区域铝合金和镁合金发生充分的机械互锁效应, 呈现明显的条带状特征,局部区域也出现漩涡状的"洋 葱环"组织(图 10c),这种组织在同种金属搅拌摩擦

图 9 转速为 1300 r/min 时的焊缝微观组织形貌

Fig.9 Microstructures of the joint at the rotational speed of 1300 r/min: (a) HAZ in AS, (b) TMAZ in AS, (c) weld nugget, (d) TMAZ in RS, and (e) HAZ in RS

图 10 FSW 接头各区域金相显微组织图

Fig.10 Microstructures of the different zones in FSW joint: (a) HAZ in RS, (b) NZ, (c) banded zone in NZ, (d) Mg/Al interface, (e) TMAZ in AS, and (f) HAZ in AS

焊中也较为常见^[18];在前进侧热机影响区部位,弥散 分布的颗粒相与粗大的铸态枝晶有一明显的分界线, 组织具有突变性(图 10e);而在图 10d 接头的界面处, 铝、镁金属结合良好,无明显的孔洞缺陷。搅拌摩擦 焊过程中,接头受到了搅拌头的搅拌和轴肩挤压作用 产生的热量输入,经历了热循环,接头处的微观组织 发生显著变化。

2.3.2 EDS 线扫及面扫分析

如图 11 所示,对转速为 900 r/min 的焊接接头镁铝

界面进行 EDS 分析,观察搅拌区不同元素的分布情况。 EDS 线扫描发现在 Mg/Al 交界处存在一个约 5 μm 的金 属间化合物过渡层,镁元素和铝元素的含量在该过渡层 中连续变化。EDS 面扫结果显示大量 Mg、Al 元素聚集 在过渡层。根据表 3 中 EDS 点扫结果,推测镁铝界面 处有 Mg₂Al₃、Mg₂Si 及 Mg₁₇Al₁₂生成。图 12 为接头横 截面焊核处 XRD 物相分析,结果表明焊核区域确实存 在金属间化合物 Mg₂Al₃, Mg₁₇Al₁₂和 Mg₂Si,在变形态 铝镁异种合金搅拌摩擦焊过程化合物的形成在早期已

图 11 图 10d 中镁铝界面 EDS 线扫描和面扫描

Fig.11 EDS line analysis (a) and map scan (b~d) of the Mg/Al interface in Fig.10d

表 3 图 11 中不同区域的 EDS 点扫描结果

Table 3EDS results of different points at the joint interface in Fig.11 (at%)							
Point	Al	Mg	Si	Possible phases			
1	57.47	39.81	2.71	Mg ₁₇ Al ₁₂ , Mg ₂ Si			
2	53.39	43.97	2.64	Mg ₂ Al ₃ , Mg ₁₇ Al ₁₂ , Mg ₂ Si			
3	81.81	17.64	0.55	Mg, Mg ₂ Al ₃			
4	75.44	10.68	13.21	Al, Mg ₂ Al ₃ , Mg ₂ Si			

有报道^[19];由于生成的化合物含量较少,Mg₂Si的衍射 峰并不明显。在焊接热循环作用下,镁元素和铝元素之 间在界面处发生元素间的相互扩散,形成金属间化合物 聚集的过渡层;随着焊核区域的温度持续上升至共晶温 度,局部区域发生成分液化,凝固过程中发生共晶反应, 也会生成金属间化合物。

总之,对压铸态铝镁异种合金搅拌摩擦焊,由于 压铸工艺本身的特征,母材本身存在粗大的铸态枝晶, 焊接过程中,铝、镁元素在搅拌头作用下相互混合, 在焊核区域反应生成 Mg₂Al₃, Mg₁₇Al₁₂,铝合金中的 Si 元素与 Mg 反应,生成 Mg₂Si;这些新生相组织与 母材中的铸态枝晶被高速旋转的搅拌头击碎,弥散分 布在焊核区域。与变形态材料搅拌摩擦焊最大的区别 在于,新生相与母材本身存在的大量第二相颗粒在搅 拌头作用下弥散分布在焊核区域,焊核区的组织形貌 以及第二相颗粒均匀程度可能对接头性能产生影响。

2.4 接头力学性能及断口分析

图 13 为不同转速下接头的抗拉强度。接头的抗拉 强度随着转速的升高呈现先增加后减小的趋势,搅拌 头转速为 900 r/min 时,接头抗拉强度达到最高值 83 MPa,是 AZ91D 母材(强度为 203 MPa)的 41%。转 速为 700 r/min 时,力学性能较差,这是由于搅拌头转 速过低,导致热输入过低,接头横截面有较大孔洞缺 陷所致;当转速增大至 900 r/min 时,接头的平均抗拉 强度最高,随着转速继续增大,接头的抗拉强度有下 降的趋势;其原因是热输入继续增加,高温停留时间 过长,组织在热循环作用下变得粗大,从接头焊核区

图 12 转速为 900 r/min 接头横截面 XRD 图谱

Fig.12 XRD pattern of the cross-section at the rotational speed of 900 r/min

的微观组织可以看到, 微型孔洞也呈逐渐扩张的趋势, 恶化了接头的力学性能。

图 14a 为转速为 900 r/min 拉伸失效接头,试样均 在前进侧发生断裂,对拉伸断口进行 XRD 物相分析 (图 14b),结果显示接头断口处存在脆性相 Mg₁₇Al₁₂ 和 Mg₂Si。根据接头的各区域组织观察可知,焊核处 颗粒相分布均匀,焊接接头的前进侧(铝侧)存在纤 维带状组织,并且组织发生突变;而且,焊核区组织 致密,而热机影响区的晶粒受过热影响,该界面成为 接头的薄弱区,拉伸时,很容易从热机影响区和焊核 区的交界处断裂。接头断裂并未发生在异种合金结合的 过渡层,说明接头界面处铝、镁元素结合良好,O.Klag 等^[20]的研究指出,当接头界面过渡层厚度较小时,不 会成为接头拉伸的薄弱区域。接头断裂主要是由热机 影响区到焊核的组织突变以及脆性相(Mg₁₇Al₁₂和 Mg₂Si)引起的。

图 15 为拉伸试样断口 SEM 照片。从断口的低倍 形貌图(图 15a)可知,断口平整,垂直于拉伸载荷 方向。拉伸断口的冠状区,中部和根部区域的高倍形 貌如图 15b, 15c 和 15d 所示。可以看出断口的不同区 域均有明显的河流花样、解理台阶等典型的脆性断裂 特征。

图 14 接头断裂位置及断口 XRD 分析 Fig. 14 Fracture location of the joints (a) and XRD pattern of the fracture surface (b)

图 15 接头断口形貌 SEM 照片 Fig. 15 SEM fractography of the FSW joint

3 结 论

1)当镁合金置于前进侧时,各参数下接头出现宏 观沟槽状缺陷,无法获得有效焊合;当铝合金置于前 进侧时,在前进速度 40 mm/min、转速 900~1300 r/min 条件下,可获得成形良好的焊接接头。 2) 接头焊核区域镁铝合金宏观上相互混合,发生 机械互锁,组织呈现条带状特征,组织中原铸态粗大 α-Al 和 α-Mg 相明显细化;存在呈颗粒状弥散分布的 Si、Mg₁₇Al₁₂、Mg₂Al₃和 Mg₂Si 相,且随着转速增加, 颗粒相尺寸呈一定的先降后增趋势;原母材中大尺寸 气孔转变为弥散微型孔,而且随着转速增加,微型孔 洞数量和尺寸有增加趋势。

3)接头前进侧和后退侧的热机影响区铸态组织和 条带状组织共存,热影响区的铸态组织较母材有所长 大,但变化不明显。

4)接头平均抗拉强度随转速增加呈现先增大后减 小的趋势,最高为 83 MPa: 断裂均发生在前进侧(铝 侧)热机影响区和焊核的交界处,组织突变和脆性相 (Mg₁₇Al₁₂和 Mg₂Si)是引起断裂的主要因素,断裂 模式为脆性断裂。

参考文献 References

- [1] Zhang Yilong(张赟龙), Liu Liufa(刘六法), Wei Zhongshan(卫中山) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2006, 35(11): 1813
- [2] Wan Qian(万 谦), Zhao Haidong(赵海东), Zou Chun(邹 纯).
 Acta Metallica Sinica(金属学报)[J], 2013, 49(3): 284
- [3] Karam A, Mahmoud T S, Zakaria H M et al. Arabian Journal for Science and Engineering[J], 2014, 39: 6363
- [4] Rhaghayeghi. Transactions of Nonferrous Metals Society of China [J], 2017, 27(2): 282
- [5] Wang Xiangjie(王向杰), You Guoqiang(游国强), Zhang Juncheng(张均成) et al. Acta Metallica Sinica(金属学报)[J], 2012, 48(12): 1437
- [6] Wang Xiangjie(王向杰), You Guoqiang(游国强), Yang Zhi(杨 智) et al. Rare Metal Materials and Engineering(稀有金属材 料与工程) [J], 2012, 41(12): 2144
- [7] Fritzsche A, Kai H, Teichmann F et al. Journal of Materials Processing Technology[J], 2018, 253: 51
- [8] Shan Jiguo(单际国), Zhang Jing(张 婧), Zheng Shiqing(郑世

卿) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2009, 38(3): 234

- [9] Mohammadi J, Behnamian Y, Mostafaei A et al. Materials Characterization[J], 2015, 101: 189
- [10] Dorbane A. Materials Science & Engineering A[J], 2016, 651: 720
- [11] Sheikh-Ahmad J Y, Ozturk F, Jarrar F et al. International Journal of Advanced Manufacturing Technology[J], 2016, 86(1-4): 1071
- [12] Kwon Y J, Shigematsu I, Saito N. Materials Letters[J], 2008, 62(23): 3827
- [13] Wang Dong(王东), Liu Jie(刘杰), Xiao Boluo(肖伯律) et al. Acta Metallica Sinica(金属学报)[J], 2010, 46(5): 589
- [14] Shi H, Chen K, Liang Z et al. Journal of Materials Science & Technology[J], 2017(4): 359
- [15] Kim Y G, Fujii H, Tszumura T et al. Materials Letters[J], 2006, 60(29): 3830
- [16] Luan Guohong(栾国红), Ma Xiangsheng(马翔生), Ji Yajuan (季亚娟). Proceedings of the Eleventh National Welding Conference(全国焊接会议)[C]. Shanghai: China Mechanical Engineering Society, 2005: 564
- [17] You Guoqiang(游国强), Zhang Juncheng(张均成), Tan Xia (谭 震). Journal of Materials Engineering(材料工程)[J], 2014(2): 29
- [18] Kumar K, Satish V Kailas. Materials Science and Engineering A[J], 2008, 485: 367
- [19] Fu Banglong, Qin Guoliang, Li Fei et al. Journal of Materials Processing Technology[J], 2015, 218: 38
- [20] Klag O, Groebner J, Wagner G et al. International Journal of Materials Research[J], 2014, 105(2): 145

Microstructure and Properties for Friction Stir Welded Joints of High-pressure Die Casting Dissimilar Mg/Al Alloy

Li Peiqi¹, You Guoqiang^{1,2}, Xu Xuanxi¹, Ding Yuhan¹, Wen Hengyu¹, Guo Wei¹ (1. Chongqing University, Chongqing 400044, China)

(2. National Engineering Research Center for Magnesium Alloy Materials, Chongqing 400030, China)

Abstract: The high-pressure die castings of AZ91 Mg and ADC12 Al alloys of 3 mm in thickness were welded by freiton stir welding. OM, SEM/EDS, XRD and universal tensile testing machine were used to analyze the microstructure and tensile property of the joint. Results show that defect-free welded joints are obtained when ADC12 die-casting aluminum alloy is placed in the advancing side with a welding speed of 40 mm/min and the rotational speeds of 900~1300 r/min. Mg and Al alloys are mixed with each other in the nugget zone, and mechanical interlocking occurs. In the parent material, the thick and large casting dendrites are obviously refined, and the non-Mg/Al matrix phases mainly include Si, Mg_2Al_3 , $Mg_{17}Al_{12}$ and Mg_2Si , whose particle size decreases first and then increases with the rotational speed. Fracture occurs at the interface of the thermal affected zone and the nugget zone in the advancing side.

Key words: friction stir welding; microstructure; mechanical properties; high-pressure die casting magnesium alloy; high-pressure die casting aluminum alloy

Corresponding author: You Guoqiang, Ph. D., Associate Professor, School of Materials Science and Engineering, Chongqing University, Chongqing 400044, P. R. China, E-mail: ygq@cqu.edu.cn