中低温用 $Sm_{1-2x}Eu_{x}Ba_{x}B_{6}$ 阴极材料的制备及性能

赵瑞山^{1,2},樊玉川^{1,2},黄美松^{1,2},杨露辉^{1,3},刘华^{1,2},傅臻^{1,2},文康^{1,2}

(1. 湖南稀土金属材料研究院, 湖南 长沙 410126)

(2. 稀土功能材料湖南省重点实验室, 湖南 长沙 410126)

(3. 中南大学, 湖南 长沙 410083)

摘 要:采用硼/碳热还原-热压烧结集成工艺(BCTR & HP)制备了高纯致密的Sm_{1-2x}Eu_xBa_xB₆(x=0.1, 0.2, 0.3)多晶块体,系统研究Eu & Ba 掺杂SmB₆对其结构、力学性能与电学特性的影响。结果表明,BCTR & HP 制备的Sm_{1-2x}Eu_xBa_xB₆ 呈 CsCl型简单立方单相结构,晶格常数随Eu & Ba 掺杂量的增加而增大,贡献于力学性能的提高和电阻率的下降。热 电子发射性能结果表明,Eu & Ba 掺杂能够改善SmB₆阴极材料的发射特性,在测试温度1773 K,外加电压1 kV 条件 下,Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆阴极的发射电流密度达到35.1 mA·cm⁻²,零场电流密度达到21.4 mA·cm⁻²,在1523~1773 K 其平均 有效功函数为3.6 eV,其固有的高电阻率可作为"直热式"阴极简化热子结构,具有很大的应用前景。

关键词:硼/碳热还原-热压烧结;Sm_{1-2x}Eu_xBa_xB₆阴极;结构;性能

中图法分类号: TB34 文献标识码: A 文章编号: 1002-185X(2021)03-1020-06

稀土六硼化物 (REB₆) 由于熔点高、硬度大、热 稳定性好、化学性质稳定、导电率高以及功函低等, 作为结构与功能一体化的关键材料在民用、军工、国 防、高端技术领域具有广泛应用^[1]。例如,空间用电 推进系统中离子推力器的发射体采用长时间稳定发射 电流的空心结构 LaB₆ 阴极材料^[2]。近年来,深空探测、 各类卫星的轨道转移与位置保持,要求离子推力器的 设计使用寿命达到 3 万小时,这对发射体用空心阴极 材料提出挑战^[3]。当前,空心 LaB₆ 阴极在满足所需稳 定电流发射的条件下使用温度≥1500 ℃,受 LaB₆ 阴 极材料致密度和功函的影响,以及高温 La 原子挥发, 极大降低了其使用寿命。因此,发展高可靠性、长使 用寿命的中低温(1000~1500 ℃)用阴极材料成为亟 需途径。

作为 REB₆之一, SmB₆是窄 f 能带和宽导带杂化 形成的小带隙近藤绝缘体,具有丰富的表面电子态和 f 层电子强关联效应,可以作为优良的阴极材料。常 压下 SmB₆呈混合价态~2.7(4f⁶与4f⁵5d 配置比约3:7), 近费米能级处 4f & 4d 电子结构呈大态密度,通过碱/ 稀土元素掺杂 SmB₆可调整其价态和稀释近费米能级 处的电子密度,改善其电子发射特性。例如 Sunmog 等^[4]研究发现 Eu 掺杂 SmB₆可降低其窄 f 能带和宽导 带的杂化强度,促使 SmB₆向金属态转变。周身林等^[5] 研究显示 Ba 掺杂 SmB₆ 可形成有益于 Sm_{1-x}Ba_xB₆ 阴极 材料发射的丝织构。同时,有研究指出 Ba 掺杂 REB₆ 可降低晶体表面势垒,且 Ba²⁺更低的电负性改变 REB₆ 的电子化学势,降低其功函^[6]。目前,SmB₆的研究包括 粉体低温合成工艺^[7]、多晶体的致密化与力学性能^[8]、 电子结构计算和单晶体的热发射性能^[9]、单晶纳米线 的结构与场致发射性能^[10],对于碱/稀土元素掺杂 SmB₆对其结构、力学与电学性能研究鲜有报道。鉴于 此,本研究采用硼/碳热还原-热压烧结集成工艺 (BCTR & HP)制备 Sm_{1-2x}Eu_xBa_xB₆多晶体,研究 Eu & Ba 掺杂 SmB₆对其结构与性能的影响,分析结构与 性能的构效关系,为阴极材料的制备及应用研究提供 指导。

1 实 验

以 Sm₂O₃ (99.9%)、Eu₂O₃ (99.9%)、BaCO₃ (99.5%)、 B₄C (99.9%)和 B 粉(99.99%)为原料,采用碳化硼/碳热 还 原 法 制 备 Sm_{1-2x}Eu_xBa_xB₆ 粉 末, 0.1≤x≤0.3, Sm_{1-2x}Eu_xBa_xB₆ 合成路线如下:

 $(1-2x)Sm_2O_3+xEu_2O_3+2xBaCO_3+3B_4C+B=$

 $2Sm_{1-2x}Eu_{x}Ba_{x}B_{6}+(x+4)CO\uparrow+BO\uparrow+(x-1)CO_{2}\uparrow$

按化学计量比计算并称重各原料,其中 Sm₂O₃、 Eu₂O₃、BaCO₃均乘以 1.1 的过量系数, *x* 取 0.1、0.2

收稿日期: 2020-03-10

基金项目:湖南省科技创新计划项目(2017TP1031)

作者简介: 赵瑞山, 男, 1992 年生, 硕士, 湖南稀土金属材料研究院, 湖南 长沙 410126, E-mail: liuhua3561@163.com

和 0.3,研磨混勾后放置于石墨坩埚内。实验时抽真空至 真空度低于 1×10⁻² Pa 时开始加热,升温速率 10 ℃/min, 加热至 1800 ℃保温 1 h,经破碎、提纯、真空干燥、 研 磨 筛 分 得 到 Sm_{1-2x}Eu_xBa_xB₆ 高 纯 粉 末 (纯 度 ≥99.8%,粒度 D_{50} 约为 20 µm)。

将制备的 Sm_{1-2x}Eu_xBa_xB₆ 粉末装入石墨模具,置 于真空热压烧结炉中,在 Ar 气保护下进行热压烧结。 烧结工艺参数:升温速率 10~40 ℃/min,烧结温度 1900~2000 ℃,压制压力 0~3.5 MPa,烧结过程中温 度-压力随时间的变化曲线如图 1 所示,待温度降至 1000 ℃随炉冷却至室温。

采用日本理学 DMAX-2500 型 X 射线衍射仪分析 Sm_{1-2x}Eu_xBa_xB₆多晶体的相结构,并利用 Fullprof Suit 软件对 Sm_{1-2x}Eu_xBa_xB₆晶体结构进行 Rietveld 精修。 采用 JCM-6000 Plus 型扫描电镜(SEM)观察样品的 表面和断口形貌特征,并利用其附带的能谱仪(EDS) 分析其成分。利用拉曼光谱仪(LabRAM ARAMIS, HORIBA)分析样品的拉曼光谱,激发波长为 532 nm。 采用 Archimedes 法测样品密度,用 HVS-50Z 型数显 维氏硬度计测定样品的显微硬度,用 WDW-200 型电 子万能材料试验机测试样品的抗弯强度,用 H7756 型 四探针电阻率测试仪测试样品电阻率。多晶体阴极的 热发射性能测试采用 QX-350 型电子发射材料测试系 统(成都齐星真空镀膜技术有限公司),阳极采用直流 电压,测试样品阴极发射面积为 1×1 mm²,测试温度 范围为 1250~1500 ℃,测试真空度<4×10⁻⁵ Pa。

2 结果与讨论

2.1 多晶体的结构及形貌特征

图 2 给出了 Sm_{1-2x}Eu_xBa_xB₆(x=0.1, 0.2, 0.3)多晶体的 XRD 图谱。从图可看出,所制备的 Sm_{1-2x}Eu_xBa_xB₆

图 1 烧结过程中温度-压力随时间的变化曲线

Fig.1 Temperature and pressure as a function of time in sintering process

多晶体均为单相结构,无杂峰出现,各衍射峰尖锐且峰强很高表明结晶良好。与 SmB₆相似, Sm_{1-2x}Eu_xBa_xB₆也呈 CsCl型简单立方结构,属于 Pm-3m(221)空间群,这表明Eu、Ba原子无序替 代了Sm原子形成单相固溶体。随着样品中Eu和Ba 含量的增加,各衍射峰向小角度偏移,说明材料的晶 格常数和晶胞体积逐渐增大,这源于Eu原子半径 (0.204 nm)和Ba原子半径(0.278 nm)大于Sm原 子半径(0.180 nm)。基于最小二乘法拟合得到 Sm_{1-2x}Eu_xBa_xB₆晶格常数为0.4148~0.4194 nm,介于 SmB₆(0.4131 nm)^[11]和BaB₆(0.4239 nm)^[6]之间,符合 Vegard 定律^[12]。

以 Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆为例,采用 Rietveld 法对其晶体结构进行拟合精修,将初始模型输入 Fullprof 精修 程序,空间群为 Pm-3m, Z=1,晶胞参数初值设置为 a=0.3194 nm,运用 Pseudo-Voigt 模型进行峰形拟合, Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆化合物的全谱拟合结果如图 3 所示, 原子参数列于表 1。精修后 Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆结构的晶 胞参数为 a=0.3189 nm,最终修正因子 R_p、 R_{wp}、 R_{exp} 分别为 8.4%、10.7%、7.71%。从图 3 可以看出,拟合 谱线与实验谱线峰形吻合良好,基本不存在残余衍射 峰,说明其结构合理。见图 4 中 Sm_{1-2x}Eu_xBa_xB₆晶体 结构插图,表 1 中 1(a)位被 1 个 Sm (/Eu/Ba)随机占 位,6(f)位被 6 个 B 所占位,表明 Eu、Ba 原子较好地 掺杂于 SmB₆中形成 Sm_{1-2x}Eu_xBa_xB₆ 固溶体,与 SmB₆ 结构相一致。

Sm_{1-2x}Eu_xBa_xB₆(x=0.1, 0.2, 0.3)的室温拉曼光谱较 为相似,图4为Sm_{0.6}Eu_{0.2}Ba_{0.2}B₆的室温拉曼光谱,波 数测量范围为180~2000 cm⁻¹。由图可知,695、1120、 1260 cm⁻¹处的3个主要谱峰分别对应T_{2g}、E_g和A_{1g} 拉曼振动模,与相关文献的研究结果相符合^[6,7,13]。这

图 2 Sm_{1-2x}Eu_xBa_xB₆ (x=0.1, 0.2, 0.3)多晶体的 XRD 图谱 Fig.2 XRD patterns of Sm_{1-2x}Eu_xBa_xB₆ (x=0.1, 0.2, 0.3) polycrystal

图 3 $Sm_{0.4}Eu_{0.3}Ba_{0.3}B_6$ 的 Rietveld 精修 XRD 图谱 Fig.3 Rietveld refinement XRD patterns of $Sm_{0.4}Eu_{0.3}Ba_{0.3}B_6$

表 1 Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆的原子位及 Rietveld 精修结果 Table 1 Atomic sites and coordinates of Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆

calculated from the Rietveld refinement							
Atoms	Wyck.	Х	Y	Ζ	Occ.	Beq.	
Sm/Eu/Ba	1(a)	0	0	0	1	1	
В	6(f)	0.21	0.5	0.5	1	1	

些拉曼特征峰确认了 $Sm_{1-2x}Eu_xBa_xB_6(x=0.1, 0.2, 0.3)$ 为 单相六硼化物简单立方晶体结构。同时,在 200 cm⁻¹ 附近出现小峰,1400 cm⁻¹ 附近无拉曼峰,这说明晶体 中金属元素存在+3 和+2 2 种价态,分别对应 Sm^{3+} 和 Sm^{2+} 、 Eu^{2+} 、 Ba^{2+} 。

进一步对 Sm_{1-2x}Eu_xBa_xB₆(x=0.1, 0.2, 0.3)多晶体进 行表面形貌与 EDS 分析,从图 5 中发现表面存在少量 的气孔,呈均匀分布,各元素含量见表 2。由表 2 知 Sm_{1-2x}Eu_xBa_xB₆多晶体各元素含量相对比例误差较小, 符合名义成分,其纯度在 99.2%以上。

以 Sm_{0.8}Eu_{0.1}Ba_{0.1}B₆为例,图 5b EDS 分析结果显示样品除 Sm、Eu、Ba、B 本征元素外含有少量 O 元素,图 5c 显示 Sm、Eu、Ba、B 各元素分布均匀,基本不存在元素聚集现象。

不同掺杂比例下 Sm_{1-2x}Eu_xBa_xB₆ 的颜色均为典型 的蓝色,图 6a 为热压烧结制备 Sm_{0.8}Eu_{0.1}Ba_{0.1}B₆多晶 块体的实物照片。从图 6b 多晶块体的断口表面发现一 些均匀分散气孔,气孔尺寸约在 3 μm 以下,烧结体 结构致密,同时从断裂表面发现一些解理台阶,断口 的断裂形式主要为穿晶断裂。

2.2 多晶体的力学与电学性能

热压烧结制备的 Sm_{1-2x}Eu_xBa_xB₆(x=0.1, 0.2, 0.3)多 晶体的力学与电学性能如表 3 所示。Sm_{1-2x}Eu_xBa_xB₆ (x=0.1, 0.2, 0.3)多晶体的致密度均在 96%以上,且随

着 Eu & Ba 掺杂量的增加, Sm_{1-2x}Eu_xBa_xB₆(x=0.1, 0.2, 0.3)多晶体的显微硬度和抗弯强度均逐渐增大, 在 x 为 0.3 时达到最大值,分别为(19.3±1.2) GPa 和(243±16) MPa, 显著高于 Duygu 等^[14]采用 PLS 制备的 SmB₆纳 米块体 (10.1 GPa)。除原料和制备工艺条件, 一般来 讲, Eu & Ba 原子掺杂替代 SmB₆中 Sm 原子后引起晶 格畸变,当载荷施压在材料表面时,晶体中位错运动 至结构缺陷或临近 Eu、Ba 原子时受到的阻力增大, 且在一定范围内晶格畸变程度愈大,结构缺陷愈多, 对位错的行进阻力愈大,引起材料强度提高。同时, 根据 SmB₆^[9]和 BaB₆^[15]能带计算结果可知在导带 2~10 eV 能量区域内 Sm 的 4d 轨道和 B 的 2p 轨道杂化相对 较弱, 而 Ba 的 3d 轨道和 B 的 2p 轨道杂化作用很强, 表 明 Ba 与 B 形成 较强的 共价 键, 这导致 Sm_{1-2x}Eu_xBa_xB₆(x=0.1, 0.2, 0.3)硬度增大。

热阴极材料通常需要热子进行升温,若材料本身 具有较大的电阻率可以采用自身加热,作为"直热式" 阴极应用大有裨益。从表3中可以看出,Sm_{1-2x}Eu_xBa_xB₆ (x=0.1, 0.2, 0.3)多晶体在室温(25 °C)时的电阻率随 Eu & Ba 掺杂量的增加呈下降趋势,均低于 SmB₆的电 阻率(388 $\mu\Omega$ ·cm)^[16],表明 Eu & Ba 掺杂 SmB₆提高了 其电导率。研究显示,稀土六硼化物的电阻率随着测 试温度的升高近似呈线性增加,表现出典型的金属导 电特性。相比于其它多元稀土硼化物的室温电阻率 (La_{0.6}Sm_{0.4}B₆ 约 98.7 $\mu\Omega$ ·cm^[17],Gd_{0.1}Ce_{0.9}B₆ 约 35 $\mu\Omega$ ·cm^[18]),Sm_{1-2x}Eu_xBa_xB₆ 具有更高的电阻率,有望 作为"直热式"阴极广泛应用。

2.3 多晶体的热电子发射性能分析

有研究表明,稀土六硼化物阴极的功函数与其晶格常数有关,晶格常数越大,功函数越小^[19]。对 Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆试样在1523~1773 K下进行了直流发 射特性测试,结果显示随着阳极电压的增大其发射电

图 5 Sm_{0.8}Eu_{0.1}Ba_{0.1}B₆的 SEM 照片、EDS 能谱及 EDS 元素面分布 Fig.5 SEM image (a), EDS spectrum (b) and EDS mapping (c) of Sm_{0.8}Eu_{0.1}Ba_{0.1}B₆

表 2 Sm_{1-2x}Eu_xBa_xB₆(x=0.1, 0.2, 0.3)多晶体的化学成分

 Table 2
 Chemical composition of Sm_{1-2x}Eu_xBa_xB₆ (x=0.1, 0.2,

0.3) polycrystal (at%)

x	Sm	Eu	Ba	В	0
0.3	5.82	4.37	4.21	84.80	0.80
0.2	8.43	2.72	2.24	86.86	0.85
0.1	13.27	1.73	1.61	83.63	0.86

图 6 Sm_{0.8}Eu_{0.1}Ba_{0.1}B₆多晶体的实物照片与断口 SEM 形貌

Fig.6 Photograph (a) and SEM morphology of the fractured surface (b) of Sm_{0.8}Eu_{0.1}Ba_{0.1}B₆ polycrystal

表 3 Sm_{1-2x}Eu_xBa_xB₆(x=0.1, 0.2, 0.3)多晶体的性能 Table 3 Properties of $Sm_{1-2x}Eu_xBa_xB_6$ (x=0.1,0.2,0.3) polycrystal Relative Vickers Flexural Electrical х density/% hardness/GPa strength/MPa resistivity/ $\mu\Omega$ ·cm 0.3 97.1 19.3±1.2 243±16 196 ± 4 0.2 96.2 $18.1{\pm}0.8$ 230±12 258±8 0.1 96.4 17.3±0.6 221±7 270±6

流密度近似呈线性增加,在电压 1 kV、测试温度 1773 K 时发射电流密度为 35.1 mA·cm⁻²。根据伏安特性 (*J-U*)曲线,图 7 标示了采用肖特基直线外延法计算 得到的 Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆ 试样的零场发射电流密度为 21.4 mA·cm⁻²。

阴极材料的功函数和发射常数由理查生方程给出[20]:

图 7 Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆ 阴极的肖特基曲线 (lg j-U^{0.5})

Fig.7 Schottky plots ($\lg j - U^{0.5}$ curves) of the Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆ cathode

式中, *j* 为电子发射电流密度, *A* 为理查生发射常数, *k* 为 Boltzman 常数(8.62×10^{-5} eV·K⁻¹), *T* 为阴极表 面绝对温度, ϕ 为理查生功函数。公式两边取对数得:

$$\lg \frac{j}{T^{2}} = \lg A - 5040 \frac{\Phi}{T}$$
(2)

图 8 是由图 7 计算得到的零场发射电流密度 j_0 代入公式(2)得到 Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆的 lg(j_0/T^2) $-T^1$ 曲线(理查生直线),由理查生直线的斜率 S=-5040 ϕ 求出该样品的理查生功函数 ϕ_R =3.63 eV。同时,由 lgA可求出样品的理查生发射常数 A_R =151.3 A·(cm·K)⁻²。

基于热电子发射理论,有效功函数 *Φ*_e由理查生道 舒曼公式表示为:

$$\Phi_{\rm e} = kT \ln(\frac{120.4T^2}{j_0})$$
(3)

由公式(3)获得不同温度下 Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆的 有效功函数 Øe 见表 4。可以看出,随着测试温度的升 高, Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆ 阴极的 Φ_e基本稳定, 在 1523~1773 K 其平均有效功函数为 3.6 eV, 低于 Aono^[21]与 Futamoto^[22]SmB₆ 阴极的测量值 4.2 eV。不像 LaB₆ 表面 是全充满1×1有序态的La层,SmB₆表面处于部分填 充态,且随着近表面距离的增加,Sm³⁺和 Sm²⁺的浓度 分别呈指数式增大和减小,所以 SmB₆ 表面低的 Sm³⁺ 的浓度增加了电子逸出功(功函)。正如二价的稀土六 硼化物均是半导体^[23,24], Eu & Ba 元素掺杂 SmB₆后, 一方面调整 SmB₆中 B-B 内外键距影响了 SmB₆的电子 特性,促使其向金属性转变。另一方面, Eu & Ba 元素 掺杂增大了 SmB₆的晶格常数和载流子(电子和空穴) 的浓度,提高了电子的迁移速率,即 $Sm_{1-2x}Eu_xBa_xB_6$ 的 电导率获得提高,这促进了 $Sm_{1-2x}Eu_xBa_xB_6$ 的电子发射。 Zhang 等^[9]通过密度泛函理论(DFT)计算得到 SmB₆ 近费米能级能带波动分散,占据了较宽的能量区域,表 明其相对拥挤的能带具有较小的载流子有效质量,降低 了 SmB₆的功函。所以,作为中低温用的热电子源,需

图 8 Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆ 阴极的理查生直线

Fig.8 Richardson plots of the Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆ cathode

要进一步研究 Sm_{1-2x}Eu_xBa_xB₆(x=0.1, 0.2, 0.3)高掺杂体 系下近费米能级位置、电子有效质量及 4f 轨道电子态 分布和其电导率、功函的相互关系,以更好地满足 Sm_{1-2x}Eu_xBa_xB₆ 阴极在实际应用中的要求。

表 4 不同测试温度下 Sm0.4Eu0.3Ba0.3B6 阴极的有效功函数

 Table 4
 Effective work function of the Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆

 cathode at different temperatures

Temperature/K	$j_0/\mathrm{mA}\cdot\mathrm{cm}^{-2}$	$\Phi_{ m e}/{ m eV}$
1523	0.34	3.6
1573	0.87	3.6
1623	1.78	3.62
1673	4.57	3.6
1723	11.5	3.58
1773	21.4	3.6

3 结 论

 采用硼/碳热还原-热压烧结集成工艺制备出 高纯致密的 Sm_{1-2x}Eu_xBa_xB₆(x=0.1, 0.2, 0.3)多晶体, XRD 和拉曼分析确认了 Sm_{1-2x}Eu_xBa_xB₆(x=0.1, 0.2, 0.3) 呈 CsCl 型简单立方单相结构。

2)随 Eu & Ba 掺杂量的增加, Sm_{1-2x}Eu_xBa_xB₆ (x=0.1, 0.2, 0.3)的晶格常数逐渐增大,多晶体的硬度和 抗弯强度获得提高,电阻率逐渐降低,这对发射性能 的改善大有裨益。

3) 在测试温 1773 K, 外加电压 1 kV 条件下, Sm_{0.4}Eu_{0.3}Ba_{0.3}B₆ 阴极的发射电流密度达到 35.1 mA·cm⁻², 零场电流密度达到 21.4 mA·cm⁻²,在 1523~1773 K 其平均有效功函数为 3.6 eV, Sm_{1-2x}Eu_xBa_xB₆(x=0.1, 0.2, 0.3)阴极固有的高电阻率可 作为"直热式"阴极广泛应用。

参考文献 References

- [1] Zhang Xiaoqin(张小琴), Hao Zhanzhong(郝占忠), Zhang Hailing (张海玲). Chinese Rare Earths(稀土)[J], 2013, 34(2): 74
- [2] Jia Yanhui(贾艳辉), Zhang Tianping(张天平). Chinese Journal of Vacuum Science and Technology(真空科学与技术 学报)[J], 2016, 36(6): 690
- [3] Yu Daren(于达仁), Qiao Lei(乔 磊), Jiang Wenjia(蒋文嘉) et al. Journal of Propulsion Technology(推进技术)[J], 2020, 41(1):1
- [4] Sunmog Y, Kimyung S, Namjung H et al. Physical Review B: Condensed Matter[J], 2012, 85(11): 115

- [5] Zhou Shenlin(周身林), Zhang Jiuxing(张久兴), Liu Danmin (刘丹敏) et al. Rare Metal Materials and Engineering(稀有金 属材料与工程)[J], 2011, 40(6): 109
- [6] Zhou S L, Zhang J X, Bao L H et al. Journal of Alloys and Compounds[J], 2014, 611: 130
- [7] Selvan R K, Genish I, Perelshtein I et al. Journal of Physical Chemistry C[J], 2008, 112(6): 1795
- [8] Feng L, Fahrenholtz W G, Hilmas G E et al. Journal of the American Ceramic Society[J], 2018
- [9] Liu H, Zhang X, Xiao Y et al. Vacuum[J], 2017,145: 295
- [10] Han Wei(韩 伟). *Thesis for Doctorate*(博士论文)[D]. Guangzhou: South China University of Technology, 2017
- [11] Aprea A, Maspero A, Masciocchi N et al. Solid State Sciences[J], 2013, 21: 32
- [12] Musin R N, Wang X Q. Physical Review B[J], 2005, 71(15): 155 318
- [13] Ogita N, Nagai S, Okamoto N et al. Physical Review B[J], 2003, 68(22): 224305-1
- [14] Duygu A, Özge B, M. Lütfi Ö et al. Journal of the European Ceramic Society[J], 2015, 35(15): 4121

- [15] Tao Ruyu(陶如玉). *Thesis for Master*(硕士论文)[D]. Baotou: Inner Mongolia Normal University, 2018
- [16] Zhou Shenlin(周身林). Thesis for Doctorate(博士论文)[D].
 Beijing: Beijing University of Technology, 2011
- [17] Zhou S, Zhang J, Liu D et al. Physica Status Solidi(A) Applications and Materials[J], 2014, 211(3): 555
- [18] Liang Chaolong(梁超龙), Zhang Xin(张 忻). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2016, 45(12): 235
- [19] Storms E K, Mueller B A. Journal of Applied Physics[J], 1981, 52(4): 2966
- [20] Young R D. Physical Review[J], 1959, 113(1): 110
- [21] Aono M, Nishitani R, Oshima C et al. Surface Science[J], 1979, 86: 631
- [22] Futamoto M, Nakazawa M, Kawabe U. Surface Science[J], 1980, 100(3): 470
- [23] Maiti K, Medicherla V R R, Patil S et al. Physical Review letters[J], 2007, 99(26): 266 401
- [24] Maiti K. EPL (Europhysics Letters)[J], 2008, 82: 67 006

Preparation and Properties of Sm_{1-2x}Eu_xBa_xB₆ Cathode Materials for Low and Medium Temperature Use

Zhao Ruishan^{1,2}, Fan Yuchuan^{1,2}, Huang Meisong^{1,2}, Yang Luhui^{1,3}, Liu Hua^{1,2}, Fu Zhen^{1,2}, Wen Kang^{1,2}

(1. Hunan Research Institute for Rare Earth Metal Materials, Changsha 410126, China)

(2. Hunan Key Laboratory for Rare Earth Functional Materials, Changsha 410126, China)

(3. Central South University, Changsha 410083, China)

Abstract: High-purity and dense $Sm_{1-2x}Eu_xBa_xB_6$ (*x*=0.1, 0.2, 0.3) polycrystals were prepared by a boron/carbonthermal reduction-hot pressing sintering (BCTR & HP) integrated process. The effect of Eu & Ba co-doping in the SmB₆ matrix on the structure, mechanical and electrical properties of $Sm_{1-2x}Eu_xBa_xB_6$ bulks was investigated. The results show that the $Sm_{1-2x}Eu_xBa_xB_6$ polycrystals produced by BCTR & HP integrated process provide a simple cubic (CsCl type) single-phase structure. As the doping amount of Eu & Ba increases, the lattice constant increases, which contributes to the enhancement of mechanical properties and the decrease of resistivity. The thermionic emission performance results show that the Eu & Ba doping can improve the emission characteristics of SmB₆ cathodes, and the emission current density and zero-field current density of $Sm_{0.4}Eu_{0.3}Ba_{0.3}B_6$ cathodes are 35.1 and 21.4 mA·cm⁻² under the applied voltage of 1 kV at 1773 K, respectively. Meanwhile, the average effective work function is 3.6 eV at 1523~1773 K, and it can be used as a "direct heating" cathode benefited by its inherent high resistivity, which simplifies the heater structure and has great application prospects.

Key words: boron/carbonthermal reduction-hot pressing sintering; Sm_{1-2x}Eu_xBa_xB₆ cathode; structure; property

Corresponding author: Liu Hua, Ph. D., Senior Engineer, Hunan Research Institute for Rare Earth Metal Materials, Changsha 410126, P. R. China, E-mail: liuhua3561@163.com