固溶时效对 TC20 钛合金显微组织和力学性能的影响

钟明君,王克鲁,鲁世强,欧阳德来,崔 霞,李 鑫 (南昌航空大学,江西南昌 330063)

摘 要:对 TC20 钛合金进行不同的固溶时效处理,通过室温拉伸试验和平面应变断裂韧性试验,结合光学显微镜、扫描电镜和显微维氏硬度计等测试方法,分析了不同的固溶时效处理工艺参数对 TC20 钛合金显微组织、力学性能和断口形貌的影响。结果表明:当固溶温度一定时,随着时效温度的升高,合金的强度和硬度提高,塑性和韧性下降。当固溶时效工艺为 950 ℃/0.5 h(水冷,WQ)+500 ℃/4 h(空冷,AC)时,合金可实现良好的强韧性匹配,此时合金的抗拉强度为 1106 MPa,屈服强度为 1019 MPa,断裂韧性高达 87.6 MPa m^{1/2}。未经固溶时效处理的锻态 TC20 钛合金拉伸和紧凑拉伸(CT)试样,其断口呈现典型的韧性断裂形貌特征,而经不同固溶时效处理的试样断口主要以准解理断裂和解理断裂为主。随着时效温度的升高,拉伸试样断口表面逐渐出现二次裂纹和空洞,塑性逐渐降低,CT 试样的韧窝尺寸逐渐变小变浅,断裂韧性逐渐降低。

关键词: TC20 钛合金; 固溶时效; 显微组织; 力学性能; 断裂韧性

中图法分类号: TG146.23 文献标识码: A 文章编号: 1002-185X(2021)06-2149-06

钛及钛合金具有密度小、比强度高、耐腐蚀和生物相容性好等优良性能,是极其重要的轻质结构材料, 广泛用于航空航天、车辆工程和生物医学工程等领域, 具有重要的应用价值和广阔的应用前景^[1-3]。其中, TC20(Ti-6Al-7Nb)钛合金作为第2代 $\alpha+\beta$ 型医用钛合 金,其机械性能与Ti-6Al-4V合金相当,且以无毒的 β 相稳定元素 Nb取代了毒性元素 V,消除了 V 元素对 人体的毒害作用,被广泛用作外科植入物金属材料^[4,5]。

众所周知,大多数钛合金产品在最终使用前都要 进行热处理,利用钛合金在加热和冷却过程发生的相 变获得所期望的组织,从而改善合金的力学性能和工 艺性能^[6]。通过合理控制热处理工艺参数,可实现合 金的最佳强韧性匹配。其中,固溶时效又称强化热处 理,利用相变产生强化效果,是钛合金热处理强化的 主要方式^[7]。断裂韧性 *K*_{IC} 表征材料抵抗裂纹扩展的能 力,是材料的固有特性,只与材料的化学成分、热处 理及加工工艺有关^[8]。目前,国内外针对 TC20 钛合金 的研究主要集中在热变形行为、力学性能和表面改性 等方面^[9-11],而对经固溶时效后 TC20 钛合金的断裂韧 性研究还较少。

本研究以锻态 TC20 钛合金为研究对象,对其进行不同的固溶时效处理。采用光学显微镜、扫描电镜和显微维氏硬度计等手段,结合室温拉伸试验和平面

应变断裂韧性试验,研究不同固溶温度和时效温度对 TC20 钛合金的显微组织、力学性能和断口形貌的影响, 旨在优化固溶时效工艺,为该合金的实际生产制定合 理的热处理工艺提供理论依据。

1 实 验

实验材料为 $Φ100 \text{ mm} \times 255 \text{ mm}$ 的锻态 TC20 钛 合金棒材,其化学成分(质量分数,%)为: 5.9 Al、7.2 Nb、 0.36 Ta、0.18 Fe、0.06 C、0.023 N、0.006 H、0.18 O, 其余为 Ti。该合金的 α+β→β相变温度约为 1010 °C。 TC20 钛合金的原始组织由等轴和板条状的初生 α 相 以及片层状 β转变组织组成,为典型的双态组织,如 图 1 所示,在扫描电镜照片中可以清晰地观察到许多 细小片层。从锻棒坯料上取样,采用机械加工将 TC20 钛合金制备成 $Φ8 \text{ mm} \times 12 \text{ mm}$ 的圆柱状试样,然后在 SX₂-2.5-10A 型箱式电阻炉中对合金试样按表 1 工艺 进行固溶时效处理。将原始及热处理后的合金试样进 行打磨和抛光,采用 HVS-1000 型数显显微维氏硬度 计测试合金硬度,采用试剂 HF:HNO₃:H₂O 体积比为 1:3:9 的 Kroll 试剂进行腐蚀,最后通过 XJP-6A 光学 显微镜观察金相组织。

室温拉伸试验按照 GB/T228.1-2010《金属材料拉伸试验第 1 部分:室温试验方法》在 INSTRON8801

收稿日期: 2020-06-10

基金项目: 国家自然科学基金(51761029, 51864035)

作者简介:钟明君,男,1994 年生,硕士生,南昌航空大学航空制造工程学院,江西 南昌 330063,电话: 0791-83863039, E-mail: zhongmingjun2020@126.com

表 1 TC20 钛合金固溶时效处理工艺参数

 Table 1
 Solution aging treatment process parameters of TC20

	titanium alloy			
Sample No.	Solution temperature/ °C	Cooling method	Aging temperature/ °C	Cooling method
1	-	-	-	-
2	900	WQ	-	-
3	950	WQ	-	-
4	1000	WQ	-	-
5	1050	WQ	-	-
6	950	WQ	500	AC
7	950	WQ	550	AC
8	950	WQ	600	AC

Note: WQ: water quenching; AC: air cooling; solution time: 0.5 h; aging time: 4 h

电液伺服疲劳试验机上执行,拉伸速率为1 mm/min, 试样标距尺寸为 Φ7 mm×35 mm。测定合金的抗拉强 度(σ_b)、屈服强度(σ_s)、伸长率(δ)、断面收缩率(ψ)和弹 性模量(E)。平面应变断裂韧性试验采用标准紧凑拉伸 (CT)试样,试样均取 L-R 向,厚度 B=18 mm,具 体尺寸如图 2 所示。试样缺口采用钼丝进行线切割, CT 试样疲劳裂纹的预制及静加载断裂均在 INSTRON8801 电液伺服疲劳试验机上进行,具体试验 方法和数据处理均按照 GB/T4161-2007《金属材料平 面应变断裂韧度 K_{IC}试验方法》进行。利用 SU1510 型 钨灯丝扫描电子显微镜观察拉伸试样和 CT 试样的断 口形貌特征。

Fig.2 Size diagram of standard compact tensile (CT) sample of TC20 titanium alloy

2 结果与分析

2.1 固溶温度对 TC20 钛合金显微组织和硬度的影响

图 3 为 TC20 钛合金在不同固溶温度下保温 0.5 h 后水冷的显微组织。如图 3a 所示,当固溶温度为 900 ℃ 时,初生 α 相的体积分数减少,次生 α 相析出,合并 并长大。图 3b 为合金经 950 ℃固溶处理后的显微组 织,由于固溶温度较高,接近 β 相转变点,发生了 $\alpha \rightarrow \beta$ 相转变,部分 α 相转变成 β 相,次生 α 相呈短棒状。 当固溶温度为 1000 ℃ (图 3c),此时合金靠近 $\alpha + \beta \rightarrow \beta$ 相变点,淬火后形成针状马氏体 α' 。如图 3d 在 β 单 相区经 1050 ℃固溶处理后,合金组织中初生 α 相完 全消失,交错的针状马氏体 α' 弥散分布在 β 基体上, 呈现各向异性。当钛合金经高温固溶处理后快速冷却 时,由于 $\beta \rightarrow \alpha$ 相转变的过程来不及进行,从而使 β 相转变为成分与母相相同,而晶体结构不同的过饱和 固溶体,即马氏体^[12]。

Fig.3 Microstructures of TC20 titanium alloy at different solution temperatures for 0.5 h: (a) 900 °C, (b) 950 °C, (c) 1000 °C and (d) 1050 °C

图 4 为 TC20 钛合金原始锻态及经 900、950、1000 和 1050 ℃固溶处理后的维氏硬度柱状图。从图中可 以得知,未经固溶处理的原始锻态 TC20 钛合金的硬 度(HV)为2846 MPa,经固溶处理后,合金的硬度显著 提高,并且随着固溶温度的升高,硬度呈上升趋势。 这是因为合金在两相区固溶时,温度越高,初生α相 的体积分数越少,β相的体积分数增加;同时合金中 的元素扩散能力增强, β 相稳定元素 Nb,伴随着初生 α 相中的 Nb 元素向 β 相扩散,富集在 β 相,起到固溶 强化的作用^[13]。然而在 1000 和 1050 ℃固溶后的硬度 明显比在 900 和 950 ℃固溶后的硬度高,分别高达 4512、4570 MPa。这是由于合金自 β 相区淬火时, β 相发生切变型晶格转变,体心立方(bcc)的 β 相转变为 密排六方(hcp)晶格的针状马氏体 α′相, 生成的马氏体 相具有较高的硬度^[14]。TC20 钛合金属于 $\alpha+\beta$ 型钛合 金,其固溶处理温度一般选择在 $\alpha+\beta\rightarrow\beta$ 相变温度以 下 40~100 ℃,防止在 β 相区加热造成晶粒粗大,塑 性降低^[15]。综合考虑上述结果,认为固溶温度选择 950 ℃较为合适。

2.2 时效温度对 TC20 钛合金显微组织和硬度的影响

图 5 为 TC20 钛合金经 950 ℃固溶处理后分别在 500、550 和 600 ℃时效 4 h 后的显微组织。合金经固 溶时效热处理后,亚稳定β相分解为细小的次生α相, 弥散分布在β基体上。当时效温度为 500 ℃时,合金 组织主要由等轴α相及细小的次生α组成,组织相对 均匀致密。当时效温度升高到 550 ℃时,次生α相逐 渐增多且粗化。当时效温度继续升高到 600 ℃时,亚 稳定β相完全分解,弥散析出大量的次生α相发生合 并长大,形成尺寸较大的片层状α相。

Fig.4 Vickers hardness of TC20 titanium alloy at different solution temperatures for 0.5 h

图 5 TC20 钛合金在不同时效温度下的显微组织 Fig.5 Microstructures of TC20 titanium alloy at different aging temperatures for 4 h: (a) 500 ℃, (b) 550 ℃, and (c) 600 ℃

图 6 为 TC20 钛合金在不同时效温度下的维氏硬 度变化。从图中可以看出,随着时效温度的升高,合 金的硬度呈缓慢增加的趋势,这主要是因为时效温度 越高,原子扩散能力增强,有利于促使亚稳定β相分 解出更多的次生α相,从而产生时效硬化作用。故而 时效温度越高,合金的硬度越大。

图 6 TC20 钛合金在不同时效温度下的维氏硬度

2.3 TC20 钛合金拉伸性能和断裂韧性评价

表 2 为 TC20 钛合金的室温拉伸力学性能及断裂 韧性。从表 2 中可以看出,未经固溶时效处理的原始 锻态 TC20 钛合金的塑性较好,其伸长率和断面收缩 率分别高达 15.49%、28.86%,但其强度较低。经固溶 时效处理后,合金试样 6、7、8 的力学性能较锻态试 样 1 有明显的变化。随着时效温度的升高,合金的抗 拉强度变化不大,而屈服强度和弹性模量略有增加。 总体来看,合金的强度有所提高,塑性和韧性有所下 降。综合考虑,时效温度宜选为 500 ℃,此条件下 TC20 钛合金抗拉强度为1106 MPa,屈服强度为1019 MPa, 断裂韧性高达 87.6 MPa m^{1/2},可实现良好的强韧性 匹配。

2.4 拉伸和断裂断口形貌

图 7 为 TC20 钛合金拉伸试样的断口 SEM 照片。 从图 7a 中可以观察到,未经固溶时效处理的锻态试样 1 的断口高低起伏大,表面存在少量韧窝,尺寸大且 深,说明合金的塑性较好,为典型的韧性断裂。如图 7b 所示,试样 6 的断口分布着大量韧窝,尺寸小且均 匀分布,呈韧性断裂特征。试样7的断口表面依然分 布着大量韧窝,但同时出现了二次裂纹和撕裂棱(图 7c),呈现准解理特征。如图 7d 所示,试样 8 的断口 表面存在少量韧窝,伴随着形成的空洞,呈现以河流 状花样和解理台阶为特征的解理断裂。随着时效温度 的升高,拉伸试样断口表面逐渐出现二次裂纹和空洞, 塑性逐渐降低,与室温拉伸试验结果一致。图 8 为 TC20 钛合金 CT 试样的断口 SEM 照片。从图 8a 中可 以看出,未经固溶时效处理的锻态试样1的韧性断裂 断口表面布满韧窝,出现大量二次裂纹及未形成裂纹 的微孔。图 8b 为试样 6 的断口形貌, 韧窝呈等轴状均 匀分布,尺寸小而深,为韧性断裂。如图 8c 所示,试 样 7 的断口表面有大量微孔和撕裂棱,呈现准解理断 裂特征。图 8d 中试样 8 的断口表面以解理面为主,呈 现小韧窝和解理面混合的解理断裂特征。随着时效温 度的升高, 韧窝尺寸逐渐变小变浅, 断裂韧性逐渐降 低,这与平面应变断裂韧性试验测试结果一致。

表 2 TC20 钛合金室温拉伸力学性能和断裂韧性

Table 2 Room temperature tensile mechanical properties and fracture toughness of TC20 titanium alloy

Sample No.	Tensile strength/MPa	Yield strength/MPa	Elongation/%	Section shrinkage/%	Elastic modulus/GPa	Fracture toughness/MPa m ^{1/2}
1	891	813	15.49	28.86	112.49	67.7
6	1106	1019	5.71	9.94	113.11	87.6
7	1080	1023	3.09	3.06	113.42	74.4
8	1078	1028	2.86	5.32	115.28	67.0

图 7 TC20 钛合金拉伸试样的断口 SEM 照片

Fig.7 Fracture SEM images of the TC20 titanium alloy tensile samples: (a) sample 1, (b) sample 6, (c) sample 7, and (d) sample 8

图 8 TC20 钛合金 CT 试样的断口 SEM 照片

Fig.8 Fracture SEM images of the TC20 titanium alloy CT samples: (a) sample 1, (b) sample 6, (c) sample 7, and (d) sample 8

3 结 论

 1)随着固溶温度的升高,合金的硬度呈明显上升 趋势。在两相区固溶时,随着温度的升高,初生α相 的体积分数减少,β相的体积分数增加。自β相区淬 火时,β相发生切变型晶格转变,生成具有较高硬度 的针状马氏体α/相。

2) 经固溶时效处理后, 亚稳定 β 相分解为细小的 次生 α 相, 弥散分布在 β 基体上。当固溶温度(950 ℃) 一定时, 随着时效温度的升高, 合金的强度和硬度提 高, 塑性和韧性下降。经综合考虑分析, 固溶时效工 艺宜选为 950 ℃/0.5 h WQ+500 ℃/4 h AC, 此条件下 TC20 钛合金抗拉强度为 1106 MPa, 屈服强度为 1019 MPa, 断裂韧性高达 87.6 MPa m^{1/2}, 可实现良好的强 韧性匹配。

3) 未经固溶时效处理的锻态 TC20 钛合金拉伸和 CT 试样,其断口呈现典型的韧性断裂形貌特征,而经 不同固溶时效处理的试样断口主要以准解理断裂和解 理断裂为主。随着时效温度的升高,拉伸试样断口表 面逐渐出现二次裂纹和空洞,塑性逐渐降低,CT 试样 的韧窝逐渐变小变浅,断裂韧性逐渐降低。

参考文献 References

- [1] Niinomi M, Nakai M, Hieda J. Acta Biomaterialia[J], 2012, 8(11): 3888
- [2] Yu Zhentao(于振涛), Yu Sen(余 森), Cheng Jun(程 军) et al.
 Acta Metallurgica Sinica(金属学报)[J], 2017, 53(10): 1238

- [3] Ding Can(丁灿), Wang Changliang(汪常亮), Li Feng(李峰) et al. Rare Metal Materials and Engineering(稀有金属材料与 工程)[J], 2020, 49(3): 962
- [4] Liu Yanhui(刘延辉), Yao Zekun(姚泽坤), Ning Yongquan(宁永 权) et al. Journal of Materials Engineering(材料工程)[J], 2014(7):16
- [5] Cui W F, Jin Z, Guo A H et al. Materials Science and Engineering A[J], 2009, 499(1-2): 252
- [6] Zhao Yongqing(赵永庆), Chen Yongnan(陈永楠), Zhang Xuemin(张学敏) et al. Phase Transformation and Heat Treatment of Titanium Alloys(钛合金相变及热处理)[M]. Changsha: Central South University Press, 2012: 125
- [7] Zhu Baohui(朱宝辉), Zeng Weidong(曾卫东), Chen Lin(陈林) et al. The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J], 2018, 28(4): 677
- [8] Guo Ping(郭 萍), Zhao Yongqing(赵永庆), Zeng Weidong(曾卫东) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2018, 47(4): 1221
- [9] Jin Zhe(金 哲), Zhang Wanming(张万明). Chinese Journal of Rare Metals(稀有金属)[J], 2012, 36(2): 218
- Bolzoni L, Ruiz-Navas E M, Gordo E. Journal of the Mechanical Behavior of Biomedical Materials[J], 2017, 67: 110
- [11] Cai Zhenbing(蔡振兵), Zhu Yongkui(朱永奎), Peng Jinfang(彭金 方) et al. Rare Metal Materials and Engineering(稀有金属材 料与工程)[J], 2013, 42(11): 2356
- [12] Deng Anhua(邓安华). Shanghai Nonferrous Metals(上海有

色金属)[J], 1999, 20(4): 193

- [13] Liu Yaohui(刘耀辉), Cui Wenfang(崔文芳), Cheng Jun(程军). Transactions of Materials and Heat Treatment(材料热处理学报)[J], 2018, 39(1): 32
- [14] Xie Wenfang(谢文芳), Guo Leiming(郭雷明), Zhang Miaofei(张淼斐) et al. Special Casting and Nonferrous

Alloys(特种铸造及有色合金)[J], 2020, 40(4): 449

[15] Zhang Zhu(张 翥), Wang Qunjiao(王群骄), Mo Wei(莫 畏). Metallography and Heat Treatment of Titanium(钛的金属学 及热处理)[M]. Beijing: Metallurgical Industry Press, 2009: 214

Effect of Solution Aging on Microstructure and Mechanical Properties of TC20 Titanium Alloy

Zhong Mingjun, Wang Kelu, Lu Shiqiang, Ouyang Delai, Cui Xia, Li Xin (Nanchang Hangkong University, Nanchang 330063, China)

Abstract: TC20 titanium alloy was subjected to different solution aging treatments. The effects of different solution aging treatment parameters on microstructure, mechanical properties and fracture morphology of TC20 titanium alloy were analyzed by tensile test at room temperature and plane strain fracture toughness test, combined with optical microscope, scanning electron microscope and micro Vickers hardness tester. The results show that when the solution temperature is constant, the strength and hardness of the alloy increase, while the plasticity and toughness decrease with the increase of the aging temperature. When the solution aging process is at 950 °C for 0.5 h with water quenching, and then aging at 500 °C for 4 h with air cooling, the alloy can reach a good strength and toughness match. At this time, the tensile strength of the alloy is 1106 MPa, the yield strength is 1019 MPa, and the fracture toughness is as high as 87.6 MPa m^{1/2}. The fractures of the forged TC20 titanium alloy tensile and compact tensile (CT) specimens without solution aging treatment show typical ductile fracture morphology characteristics, while the fractures of the specimens treated with different solution aging treatments are mainly quasi-cleavage fracture and cleavage fracture. As the aging temperature increases, secondary cracks and voids on the fracture surface of the tensile specimen gradually appear, the plasticity gradually decreases.

Key words: TC20 titanium alloy; solution aging; microstructure; mechanical properties; fracture toughness

Corresponding author: Wang Kelu, Ph. D., Professor, School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China, Tel: 0086-791-83863039, E-mail: wangkelu@126.com