AlZnMgCuMn 高熵合金的微观组织、力学和耐腐蚀 性能及其机理

郭文晖,祁明凡,徐玉召,李静媛

(北京科技大学 材料科学与工程学院 材料基因工程高精尖创新中心,北京 100083)

摘 要: 为探究轻质高熵合金 AlZnMgCuMn 的微观组织、力学性能、耐腐蚀性能及合适的热处理工艺,本研究采用 XRD、SEM、EDS 分析了合金的微观组织,通过电子万能试验机和维氏硬度计测试其力学性能,利用动电位极化测试、 阻抗谱、CLSM 和 AFM 对耐腐蚀性能及其机理进行分析。结果表明,AlZnMgCuMn 高熵合金由 Al-Mn 准晶体相和 hcp 相组成,前者表现为枝晶形貌,后者则分布于枝晶间。热处理对两相形貌、分布和体积分数的影响较小。铸态 AlZnMgCuMn 的抗压强度、压缩率和显微维氏硬度 (HV_{0.5})分别为 415 MPa、4.4%、4519.7 MPa,自腐蚀电位和电流 分别为-726.344 mV 和 1.882 μA/cm²。电化学腐蚀之后合金表面产生明显的腐蚀坑,其深度约为 11.8 μm,枝晶 Al-Mn 相具有较低的电位作为阳极而优先被腐蚀,随着腐蚀的加剧,腐蚀微区彼此连接并发展成为大面积的腐蚀坑。 关键词: 轻质高熵合金; 微观组织; 力学性能; 腐蚀机理

中图法分类号: TG139 文献标识码: A 文章编号: 1002-185X(2022)07-2570-08

金属材料的发展是熵增加的过程,与传统合金不同,高熵合金(HEA)是一种多主元合金。基于成分, Yeh等^[1]将其定义为"由5个或更多的等原子分数比或 近等原子分数比的主要元素组成"。基于熵值,假设合 金符合"在液相和高温固溶状态下,其中足够高的热能 导致不同元素在空间内随机排列^[2]",用最大可能达到 的熵值定义了低、中和高熵合金。研究发现,高熵合金 具备卓越的力学和物理化学性能,如高强度和硬度^[3,4]、 抗氧化^[5,6]和耐腐蚀^[7,8]等,具有广阔的应用前景。

添加高熔点元素(如Nb、Ta、Mo、W、V等)所构 成的难熔高熵合金在高温下具有远高于高温合金的强 度^[9],而轻质高熵合金则具有极高的比强度^[10]。近年 来,诸多学者设计研发了一系列轻质高熵合金($\rho < 6$ g/cm³),主要集中在Al、Mg、Si、Ca、Li、Be、Ti、 Sc、V等低密度元素,例如(AlZnCuMn)₅₀Mg₅₀^[11]和 AlZnMgCuLi^[12],前者密度降低到2.2 g/cm³,后者预期 将有超过钛合金的力学性能,但是成本和密度都低于 钛合金。Yang等^[13]测试了AlZnMgSnLi的力学性能, 其抗压缩断裂强度和塑性分别为615 MPa和1.2%。然 而,Al、Mg、Li等低熔点元素的添加将使体系的高温 力学性能和抗氧化性成为瓶颈。此外,低密度元素(如 Si)的电负性往往较高,与多数金属元素的二元混合 焓较负,原子间相互作用强,在铸态组织中易于出现 金属间化合物从而可能构成极其复杂的多相组织,导 致力学性能的恶化^[14]。就耐腐蚀性能而言,戴义等^[15] 研究了Ni含量对AlZnMgCuMnSnNi_x电化学性能的影 响,发现当x=0增加到x=1,合金的自腐蚀电位从 -1.429 V 上升到-1.029 V,自腐蚀电流密度由 2.41×10^{-4} A/cm² 降低到 1.13×10^{-5} A/cm²,但未能揭 示其腐蚀机理。

虽然轻质高熵合金体系日渐繁多,然而对于合适的热处理、变形工艺或者变形机制、耐蚀性能的研究还比较少。因此,本研究选择AlZnMgCuMn轻质高熵合金,通过真空感应熔炼制备了大尺寸铸锭,并选择不同的热处理工艺对其显微组织、力学性能、耐腐蚀性能及其机理进行深入研究,旨在为后续轻质高熵合金的发展提供参考。

1 实 验

本实验采用纯度 99.2%~99.99% 的纯 Mg 块材以及 Al-50Mn 和 Cu-40Zn 中间合金,根据成分设计进行精 确称重,然后充分均匀混合,通过真空感应熔炼炉制 备了 AlZnMgCuMn 高熵合金,化学成分如表 1 所示。 合金锭被切割成小块,在 SX-G18133 箱式电阻炉中进

基金项目: 国家自然科学基金(52027805, U1806220)

收稿日期: 2021-07-05

作者简介:郭文晖,男,1997年生,硕士生,北京科技大学材料科学与工程学院,材料基因工程高精尖创新中心,北京 100083, E-mail: g20198363@xs.ustb.edu.cn

	衣 · AlzinvigCuluin 同州百亚时化于风力							
		Table 1	Chemical composition	on of the AlZnM	gCuMn HEA			
Ма	ass fraction, ω /%			ŀ	Atom fraction/%	1		
Al-50Mn	Cu-40Zn	Mg	Al	Zn	Mg	Cu	Mn	
40	50	10	32.3	13.3	17.9	20.6	15.9	

行 400、500、600 ℃的热处理,保温 2 h 后空冷,分 别记为 400-2h, 500-2h, 600-2h。

在 40 kV 和 100 mA 条件下,使用 TTRIII多功能 X 射线衍射仪(XRD)通过 Cu Kα 射线进行物相分析, 扫描范围从 10 到 90°,扫描速度为 4 %min。分别使用 Leica DM2500M 光学显微镜(OM)和 ZEISS Gemini SEM 500 场发射扫描电子显微镜(SEM)分析显微组 织,通过 X 射线能谱仪(EDS)进行成分分析。

使用 HV-1000Z 显微维氏硬度计测量试样硬度, 载荷为 500 g,保荷时间为 15 s。通过 WDW-100E 电 子万能试验机进行室温压缩实验,试样尺寸为 Φ3 mm×5 mm 圆柱,应变速率为 3×10⁻³ mm/s,每个状态 下的试样进行 3 次试验以确保可重复性。

采用 VersaSTAT 3F 电化学工作站测试耐蚀性。 工作站采用三电极体系,工作电极接试样,参比电极 为饱和甘汞电极,辅助电极为铂片,腐蚀液为 3.5%(质 量分数) NaCl 溶液。首先,测试开路电位来达到相对 稳定的电势,时间为 1800 s。然后,进行电化学阻抗 谱测试(EIS),交流电流频率从 10⁵ Hz 到 10⁻² Hz。最 后,进行极化曲线测试,初始电位是-0.3 V,终止电 位是 0.6 V,扫描速度为 0.5 mV/s。用 LEXTOLS4000 激光共聚焦扫描显微镜(CLSM)进行腐蚀表面和腐 蚀坑的 3D 形貌观察。用 MFP-3D Infinity 原子力显微 镜(AFM)进行电势分析。

2 结果与分析

2.1 微观组织分析

图1为铸态 AlZnMgCuMn 高熵合金的 XRD 图谱。 从中可以看出,合金由双相组织组成,分别是 Al-Mn 准晶体相和 hcp 相,前者的衍射峰相对强度大于后者。

准晶体(准周期性晶体)相是由 Shechtman^[16]在 1982年通过 Al-Mn 合金的快速淬火而发现,它是一种 介于晶态和非晶态之间的新的原子聚集状态的固态结 构并始终是二十面体结构,具有高硬度、优秀的耐蚀 性和耐热性^[17]。Li等^[18]通过差示扫描量热法(DSC) 测试了 Mg_x(MnAlZnCu)_{100-x}体系的相稳定性,结果表 明 Al-Mn 准晶体相具有良好的热稳定性。Ma 等^[19]报 道了一种在 Al₂₀Si₂₀Mn₂₀Fe₂₀Ga₂₀甩带样品中发现的含 有 5 个主要合金元素的近等原子比高熵十次准晶,并

图 1 铸态 AlZnMgCuMn 高熵合金的 XRD 图谱 Fig.1 XRD pattern of the as-cast AlZnMgCuMn HEA

对其晶体结构进行了详细表征。研究表明该合金和十次准晶的构型熵均满足高熵合金基于熵的判据,表明 该十次准晶是高熵准晶,其设计策略为高熵准晶的制 备提供了新的思路。

图2为铸态和热处理态 AlZnMgCuMn 高熵合金的 OM 像。通过图2可以看出,在400~600 ℃的温度区 间进行2h的固溶处理,两相组织的形貌和分布和铸 态相比并未发生明显变化,这也在一定程度上表明 AlZnMgCuMn 体系中的 Al-Mn 准晶体相具有热稳定 性。图3为铸态 AlZnMgCuMn 高熵合金的 SEM 像, 可以更为清晰地观察到枝晶形貌。此外,Li等^[20]通过 感应熔炼制备 AlZnMgCuMn 并分别在空气、水和盐水 中进行铜模铸造,最终结果表明 Al-Mn 准晶体相始终 是稳定的。

由于 AlZnMgCuMn 近似具有等原子比,在液相或高温固溶状态下,有足够高的热能导致不同元素在空间内随机排列,其最大可能达到的混合熵接近五元高熵合金体系,因此易于形成简单的固溶体而非复杂的金属间相。AlZnMgCuMn 体系在液相状态下保持了原子的高度混乱,在随后的较为缓慢的冷却速度下形成了准晶体 Al-Mn 相,其余组成原子固溶在 Mg 和 Zn 的晶格结构中从而形成 hcp 相。

图 4 为铸态 AlZnMgCuMn 高熵合金的 EDS 元素 面分布。可以看出,黑色枝晶为 Al-Mn 相,它是熔体

图 2 不同状态下的 AlZnMgCuMn 高熵合金的 OM 像

Fig.2 OM images of the AlZnMgCuMn HEA under different conditions: (a, a1) as-cast, (b, b1) 400-2h, (c, c1) 500-2h, and (d, d1) 600-2h

图 3 铸态 AlZnMgCuMn 高熵合金的 SEM 像 Fig.3 SEM images of the as-cast AlZnMgCuMn HEA

图 4 铸态 AlZnMgCuMn 高熵合金的 EDS 元素面分布 Fig.4 SEM image and EDS element mappings of the as-cast AlZnMgCuMn HEA

在凝固早期 Al、Mn 元素的优先富集而形成,这是由于 Al 和 Mn 的二元混合焓(Δ*H*=-19 kJ/mol,见表 2)最负。 从另一方面讲,负的混合焓可以理解为组元原子间总体 上具有吸引作用^[21],从而使得液态金属更稳定。此外, 本实验制备的 AlZnMgCuMn 高熵合金体系的热力学参 数见表 3,可以看出合金的理论密度为 5.16 g/cm³,通过 排水法测量的合金实际密度为 5.27 g/cm³,属轻质高熵 合金的范畴。铸态 AlZnMgCuMn 双相组织的 EDS 点成 分分析如图 5 所示,结果表明: Al-Mn 中两者元素的原 子数之比约为 3:2,极少含有 Zn、Mg、Cu 元素; hcp 相 中 Al、Zn、Mg、Cu 的原子数大致相近,而极少含有 Mn 元素,这类似于 AlZnMgCu 的四元高熵合金体系。

表 2 各组成元素的混合熵、物理和化学性质

Element Densit	Density/	Valence electron concentration, VEC	Atom radius/ nm	Electronecotivity	Enthalpy/kJ mol ⁻¹				
	g cm ⁻³			Electronegativity	Al	Zn	Mg	Cu	Mn
Al	2.7	3	1.43	1.61	-	1	-2	-1	-19
Zn	7.14	12	1.39	1.65	1	-	-4	1	-6
Mg	1.738	2	1.6	1.31	-2	-4	-	-3	10
Cu	8.96	11	1.28	1.9	-1	1	-3	-	4
Mn	7.44	7	1.32	1.55	-19	-6	10	4	-

 Table 2
 Mixing enthalpy, physical and chemical properties of constituent elements

Table 3	Various	thermodynami	c parameters	for AlZnMgCuMn HEA
---------	---------	--------------	--------------	--------------------

Alloy	$ ho/{ m g~cm^{-3}}$	δ /%	VEC	Ω	$\Delta H_{ m mix}/ m kJ~mol^{-1}$	$\Delta S_{\rm mix}/{ m J}~{ m mol}^{-1}~{ m K}^{-1}$	$T_{\rm m}/{\rm °C}$
AlZnMgCuMn	5.16	7.59	6.3	1.72	-4.01	1.56R	806

Note: ρ -theoretical density; δ -atomic size mismatch; VEC-valence electron concentration; Ω -entropy enthalpy ratio; ΔH_{mix} -mixing enthalpy; ΔS_{mix} -mixing entropy; R=8.314 J mol⁻¹ K⁻¹ (gas constant); T_{m} -theoretical melting temperature of the alloy

Fig.5 EDS point composition analysis of the as-cast AlZnMgCuMn double-phase: (a) Al-Mn phase and (b) hcp phase

2.2 力学性能表征

图 6a 为 AlZnMgCuMn 高熵合金的压缩应力-应变 曲线。与铸态相比,随着热处理温度的升高,合金压 缩断裂强度小幅度提高的同时伴随着断裂应变的小幅 度降低,这是由于热处理之后 AlZnMgCuMn 体系的显 微组织并未发生明显变化。根据测试结果,铸态 AlZnMgCuMn 高熵合金具有较高的抗压强度 (415 MPa),但塑性较差 (4.4%)。由于高熵合金每种主元元 素的含量都很高,构成固溶体晶格点阵上的元素不再 固定,高度固溶产生的晶格畸变效应非常强烈^[22],产 生的固溶强化效果赋予了高熵合金较高的强度。然而, 低塑性的原因可能是合金中存在 hcp 相,晶体结构中 存在的滑移系较少导致的。

图 6b 给出了 AlZnMgCuMn 高熵合金的显微维氏 硬度 (HV_{0.5})。可以看出,铸态轻质 AlZnMgCuMn 高 熵合金具有较高的硬度 (4519.7 MPa),这可能与高熵 合金的固溶强化和 Al-Mn 准晶相有关。随着热处理温 度的升高,合金的硬度先增加后小幅度下降,这和压 缩断裂强度的变化趋势一致,表明 400~600 ℃的固溶 处理使铸态 AlZnMgCuMn 高熵合金的强度和硬度升 高、塑性下降。500-2h 状态下的 AlZnMgCuMn 高熵 合金具有最高的硬度 (4989.2 MPa)。表 4 列出了一些 相关体系的主要性能指标,除了少数铝基高熵合金有 较高的压缩塑性外,其余轻质高熵合金则多表现为硬 脆性,因此如何提升轻质高熵合金的力学性能以及实 现强韧化结合将是未来的研究方向。

2.3 耐腐蚀性能和腐蚀机理分析

图 7a 为 AlZnMgCuMn 高熵合金在 3.5% (质量分数) NaCl 溶液中的动电位极化曲线。通过 Tafel 线性外推,获得自腐蚀电位 (*E*_{corr})和自腐蚀电流 (*I*_{corr})。可以看出,铸态合金的自腐蚀电位和电流分别为-726.344 mV和 1.882 μA/cm²。由于 Al-Mn 准晶体相在热处理后的形貌、分布和体积分数没有明显变化,400-2h、500-2h 和 600-2h 的耐蚀性相较于铸态合金仅有小幅度的降低。能奎斯特图是半圆形的,它代表电荷转移的机制,圆弧的半径越大,频率越低,周期越长,代表电化学反应速度越慢,合金的耐蚀性越好;此外,在波特模值图中,结束频率所对应的模值大小

也在一定程度上反映耐蚀性。根据图 7b 和图 7c,也可以看出铸态合金具有最佳耐蚀性。图 7b 中的插图显示了根据阻抗谱 (EIS)数据拟合的等效电路图,相关元件的参数列于表 5,其中 Y 为电容器的电容量, n 反映了色散效应,也即衡量固体电极双电层电容器的频响特性与纯电容器的不一致性。铸态合金的 n₁和 n₂值相对接近于 1,推测其更接近理想电容体系。

图 8 为铸态 AlZnMgCuMn 高熵合金在动电位极化 测试之后的激光共聚焦显微镜图像,其中图 8a 和图 8c 分别为腐蚀表面二维和三维形貌,凹陷处代表腐蚀 坑,凸起部分为腐蚀产物的堆积。根据图 8b 及其线扫 描图 8d 可以看出,合金表面产生明显的腐蚀坑,其深 度约为 11.8 μm。由于高熵合金独特的迟滞扩散效应能 够有效阻止氯离子的侵入和增强微区耐蚀能力^[32],并 且 Al的添加有助于提高高熵合金的耐蚀性能。Qiu等^[33] 研究了 Al_xCoCrFeNiTi 的耐蚀性能,结果表明,随

图 6 AlZnMgCuMn 高熵合金的压缩应力-应变曲线和显微维氏硬度

Fig.6 Compression stress-strain curves (a) and microhardness (b) of the AlZnMgCuMn HEA

表 4	相关体系的主要性能指标

Table 4 Ma	ain performan	ice of relevar	it systems
------------	---------------	----------------	------------

System	Density/g cm ⁻³	Hardness, HV/×9.8 MPa	Compression strength/MPa	Fracture strain/%
$Al_{0.41}Cu_{0.18}Fe_{0.2}Cr_{0.21}{}^{[23]}$	5.35	89	325	4.5
$Al_{0.26}Cu_{0.11}Zn_{0.11}Si_{0.25}Fe_{0.13}Cr_{0.14}{}^{[23]}$	4.55	183	660	2.8
AlMgCuMnFe ^[24]	4.95	469	1792	6.4
AlZnCuFeSi ^[25]	4.98	690	770	11.4
AlZnMgSnLi ^[13]	4.23	-	615	1.2
$Al_{80}Zn_5Mg_5Cu_5Li_5^{[13]}$	3.08	-	879	17
$Al_{80}Zn_5Mg_5Sn_5Li_5^{[13]}$	3.05	-	836	16
$Al_{20}Mg_{10}Li_{20}Sc_{20}Ti_{30}{}^{[26]}$	2.67	537	-	-
$Al_{60}Mg_5Cu_{10}Mn_5Fe_{10}Cr_5Ni_5^{[27]}$	4.6	849	-	-
$Al_{20}Be_{20}Fe_{20}Si_{20}Ti_{35}{}^{[28]}$	3.91	911	-	-
AlZnCuNiCo ^[29]	7.32	599	-	-
$Al_{70}Zn_5Mg_{10}Cu_5Si_{10}{}^{[30]}$	-	99	573	4.9
$Al_{85.1}Zn_2Mg_{10}Cu_2Si_{0.9}{}^{[31]}$	-	-	779	20.91
$Al_{80}Zn_{14}Mg_2Cu_2Li_2^{[14]}$	-	-	1045	22

图 7 不同状态的 AlZnMgCuMn 高熵合金在 3.5% NaCl 溶液中的耐腐蚀性能

Fig.7 Corrosion resistance of AlZnMgCuMn HEA under different conditions in 3.5% NaCl solution: (a) potentiodynamic polarization curves, (b) Nyquist plots and equivalent circuit for fitting the EIS experimental data, and (c) Bode modulus plots

	Tabl	e 5 Equivalen	t circuit paramete	ers for EIS of Al	lZnMgCuMn l	HEA	
	D /O	R /O	$R_{\rm ct}/\times 10^3\Omega$	CPE1		CPE_2	
Condition	$K_{\rm S}/\Omega^2$	$K_{\rm f}/\Omega^2$		$Y_1 / \times 10^{-5} \text{ F}$	n_1	$Y_2 / \times 10^{-4} \mathrm{F}$	n_2
As-cast	23.89	343.1	2.866	1.89	0.7455	3.64	0.7997
400-2 h	19.34	151.5	5.676	7.83	0.6724	1.15	0.8541
500-2 h	17.49	105.7	3.250	4.91	0.6071	2.73	0.7962
600-2 h	14.70	375.0	2.775	2.56	0.7476	2.36	0.6980

表 5 AlZnMgCuMn 高熵合金阻抗谱拟合的等效电路参数 able 5 Equivalent circuit parameters for EIS of AlZnMgCuMn HEA

图 8 动电位极化测试后铸态 AlZnMgCuMn 高熵合金的激光共聚焦显微镜图像

Fig.8 CLSM images of the as-cast AlZnMgCuMn HEA after potentiodynamic polarization test: (a) the surface of corrosion, (b, c) 3D morphologies, and (d) line scanning of zone A marked in Fig.8b

图 9 铸态 AlZnMgCuMn 高熵合金的电势分布 Fig.9 Distribution of potential for the as-cast AlZnMgCuMn HEA

着 Al 含量增加, 合金的耐蚀性增强, 表面氧化物以致 密的 Al₂O₃ 为主。然而, Cu 含量增加通常会减弱高熵 合金的耐蚀性。Wu 等^[34]研究了 CoCrFeNiCu_x在 3.5% (质量分数) NaCl 溶液中的耐蚀性能,结果表明, 随 着 Cu 含量增加, 合金受局部腐蚀的倾向性增大, 这 是因为富 Cu 的枝晶间相和贫 Cu 的枝晶相形成一个具 有电位差的电偶腐蚀。

图 9 为铸态 AlZnMgCuMn 高熵合金的电势分布。 可以看出, 枝晶 Al-Mn 相具有较低的电位, 而基体 hcp 相的电位较高, 两相之间的电位差为±290 mV。因此, 在腐蚀发生的初期, 枝晶相作为阳极受到腐蚀, 基体 hcp 相具有较高的电位得到保护。随着腐蚀的加剧, 腐蚀微区彼此连接并发展成为大面积的腐蚀坑。

3 结 论

1) 铸态 AlZnMgCuMn 高熵合金由 Al-Mn 准晶体 相和 hcp 双相组成,前者具有良好的热稳定性。 400~600 ℃的热处理不能改变两相的形貌、分布和体 积分数。Al-Mn 相中两者元素的原子数之比约为 3:2; hcp 相中 Al、Zn、Mg、Cu 的原子数大致相近,这类 似于 AlZnMgCu 的四元高熵合金体系。

2) AlZnMgCuMn 高熵合金具有较高的抗压强度 (415 MPa),但塑性较差 (4.4%)。随着热处理温度的升高,压 缩断裂强度小幅度提高的同时伴随着断裂应变的小幅度 降低。铸态轻质 AlZnMgCuMn 具有较高的硬度 (4519.7 MPa),这与高熵合金的固溶强化和 Al-Mn 准晶体相有关。

3) 铸态 AlZnMgCuMn 的自腐蚀电位和电流分别 为-726.344 mV 和 1.882 μA/cm²,合金表面产生明显 的腐蚀坑,其深度约为 11.8 μm,热处理后耐蚀性相较 铸态合金有小幅度的降低。枝晶 Al-Mn 相具有较低的 电位作为阳极而优先被腐蚀,随着腐蚀的加剧,腐蚀 微区彼此连接并发展成为大面积的腐蚀坑。

参考文献 References

- [1] Yeh J W, Chen S K, Lin S J et al. Advanced Engineering Materials[J], 2004, 6(5): 299
- [2] Yeh J W. European Journal of Control[J], 2006, 31(6): 633
- [3] Wang C, Li T H, Liao Y C et al. Materials Science and Engineering A[J], 2019, 764: 138 192
- [4] Zhang Changliang(张长亮), Lu Yiping(戶一平). Materials Reports(材料导报)[J], 2019, 33(Z1): 329
- [5] Nong Z S, Lei Y N, Zhu J C. Intermetallics[J], 2018, 101: 144
- [6] Liu Yong(刘 勇), Zhu Jingchuan(朱景川), Zhao Xiaoliang(赵 晓亮) et al. Rare Metal Materials and Engineering(稀有金属 材料与工程)[J], 2018, 47(9): 2743
- [7] Zhang Z L, Zhao J P, Velet L et al. Urology[J], 2016, 87: 106
- [8] Wen Xin(温 鑫), Jin Guo(金 国), Pang Xuejia(庞学佳) et al.
 Materials Reports(材料导报)[J], 2017, 31(12): 79
- [9] Senkov O N, Wilks G B, Scott J M et al. Intermetallics[J], 2011, 19(5): 698
- [10] Chauhan P, Yebaji S, Nadakuduru V N et al. Journal of Alloys and Compounds[J], 2020, 820: 153 367
- [11] Zhao Haichao(赵海朝), Qiao Yulin(乔玉林), Liang Xiubing (梁秀兵) et al. Rare Metal Materials and Engineering(稀有金 属材料与工程)[J], 2020, 49(4): 1457
- [12] Huang Z Y, Dai Y Q, Li Z et al. Materials & Design[J], 2020, 186: 108 367
- [13] Yang X, Chen S Y, Cotton J D et al. Journal of Metals[J], 2014, 66: 2009
- [14] Li R X, Ren Z, Wu Y et al. Materials Science and Engineering A[J], 2021, 802: 140 637
- [15] Dai Yi(戴义), Gan Zhanghua(甘章华), Zhou Huanhua(周欢华) et al. Corrosion & Protection(腐蚀与防护)[J], 2014, 35(9): 871
- [16] Shechtman D G, Blech I A, Gratias D et al. Physical Review

Letters[J], 1984, 53(20): 1951

- [17] Kang S S, Dubors J M. Phil Mag A[J], 1992, 66: 151
- [18] Li R, Gao J C, Fan K. Materials Science Forum[J], 2010, 650: 265
- [19] Ma H K, Zhao L Q, Hu Z Y et al. Sci China Mater[J], 2021, 64: 440
- [20] Li R, Gao J C, Fan K. Materials Science Forum[J], 2011, 686: 235
- [21] Wang Y P, Li B S, Ren M X et al. Materials Science and Engineering A[J], 2008, 491(1-2): 154
- [22] Chang Haitao(畅海涛), Huo Xiaofeng(霍晓峰), Li Wanpeng (李万鹏) et al. Rare Metal Materials and Engineering(稀有 金属材料与工程)[J], 2020, 49(10): 3633
- [23] Alshataif Y A, Sivasankaran S, Al-Mufadi F A et al. Metals and Materials International[J], 2021, 27: 139
- [24] Pandey V K, Shadangi Y, Shivam V et al. Trans Indian Inst Met[J], 2021, 74: 33
- [25] Sharma A, Oh M C, Ahn B. Materials Science and Engineering A[J], 2020, 797: 140 066
- [26] Youssef K M, Zaddach A J, Niu C N et al. Materials

Research Letters[J], 2015, 3(2): 95

- [27] Sanchez J M, Vicario I, Albizuri J et al. Journal of Materials Research and Technology[J], 2019, 8(1): 795
- [28] Tseng K, Yang Y C, Juan C C et al. Sci China Technol Sci[J], 2018, 61: 184
- [29] Salemi F, Karimzadeh F, Abbasi M H. Metall Mater Trans A[J], 2021, 52: 1947
- [30] Baek E J, Ahn T Y, Jung J G et al. Journal of Alloys and Compounds[J], 2017, 696: 450
- [31] Li Y S, Li R X, Zhang Y. Res Appl Mat Sci[J], 2019, 1(1): 10
- [32] Zhang Shuyan(张舒研), Gao Yangyang(高洋洋), Zhang Zhibin (张志彬) et al. Journal of Materials Engineering(材料工 程)[J], 2021, 49(1): 44
- [33] Qiu Y, Thomas S, Fabijanic D et al. Materials & Design[J], 2019, 170: 107 698
- [34] Hsu Y J, Chiang W C, Wu J K et al. Materials Chemistry and Physics[J], 2005, 92(1): 112

Microstructure, Mechanical Properties, Corrosion Resistance and Mechanism Analysis of AlZnMgCuMn High-Entropy Alloy

Guo Wenhui, Qi Mingfan, Xu Yuzhao, Li Jingyuan

(Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract: The study aims to investigate the heat treatment process of light high-entropy alloy AlZnMgCuMn and its effects on microstructure, mechanical properties and corrosion resistance. The microstructure of this alloy was characterized by XRD, SEM and EDS. The mechanical properties were evaluated by electronic universal testing machine and Vickers hardness tester. The corrosion resistance and mechanism were analyzed by potentiodynamic polarization test, impedance spectrum test, CLSM and AFM. The results show that AlZnMgCuMn alloy is composed of Al-Mn quasicrystalline phase and hcp phase and the former shows dendrite morphology, while the latter is distributed between dendrites. The effects of heat treatment on the morphology, distribution and volume fraction of the two phases are small. The compression fracture strength, fracture strain and Vickers hardness of as-cast AlZnMgCuMn are 415 MPa, 4.4% and 4519.7 MPa, respectively. The E_{corr} and I_{corr} of as-cast alloy are -726.344 mV and $1.882 \mu A/cm^2$, respectively. After electrochemical corrosion, obvious corrosion pittings are formed on the surface of alloy, the depth of which is about 11.8 μ m. The dendritic Al-Mn phase has a lower potential as an anode and is preferred to be corroded. As the corrosion intensifies, the corrosion microdomains are connected with each other and develop into a large corrosion area.

Key words: light high-entropy alloy; microstructure; mechanical properties; corrosion mechanism

Corresponding author: Li Jingyuan, Ph. D., Professor, Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China, E-mail: lijy@ustb.edu.cn