Bi₂Sn₂O₇含量对改性 Ag/SnO₂ 电接触复合材料微观 结构及性能的影响

胡钟元¹, 王开旭², 周 馨¹, 高林辉¹, 李 跃^{1,3}

(1. 浙江大学 温州研究院,浙江 温州 325036)(2. 温州宏丰电工合金有限公司,浙江 温州 325603)(3. 浙江大学 材料科学与工程学院,浙江 杭州 310027)

摘 要: 以 SnO₂、Bi₂Sn₂O₇为增强相粉体,化学银粉为基体相,采用高能球磨辅助常压烧结工艺制备出系列 Bi₂Sn₂O₇ 改性 SnO₂增强银基复合材料。考察了 Bi₂Sn₂O₇含量、球磨时间、烧结制度对 Ag/SnO₂-Bi₂Sn₂O₇复合材料物理性能的影响规律。结果表明:随着球磨时间从 1 h 延长至 12 h,掺杂质量分数 6%Bi₂Sn₂O₇的 Ag/SnO₂-6%Bi₂Sn₂O₇复合材料物理性能的影粒态向片状结构发生转变,Ag/SnO₂-6%Bi₂Sn₂O₇复合材料的电阻率呈逐渐上升趋势而密度呈不断下降趋势。烧结温度的提升和 Bi₂Sn₂O₇掺杂量的增加均有助于降低 Ag/SnO₂-Bi₂Sn₂O₇复合材料的电阻率,且当 Bi₂Sn₂O₇掺杂量为 12%、烧结温度 900 ℃时,样品 Ag/SnO₂-12%Bi₂Sn₂O₇的电阻率达到最佳值 2.24 μΩ·cm。循环 50 次的初期电弧烧蚀试验分析可知,相比于纯 Ag/SnO₂ 而言,Bi₂Sn₂O₇改性样品表面的烧损面积并未快速扩展至整个表面,且当 Bi₂Sn₂O₇表面烧蚀区出现了飞溅现象,这可能归因于其较低的表面 HV_{0.3}硬度 (807.32 MPa)。

关键词: 电接触复合材料; 掺杂改性; Bi₂Sn₂O₇; 高能球磨; 常压烧结; 电弧烧蚀

中图法分类号: TM501⁺.3 文献标识码: A 文章编号: 1002-185X(2022)10-3808-11

银基电接触复合材料是电气化设备、低压电器电路 中通断控制及负载电流的关键材料,承担着接通、断开、 导通及隔离电流的作用^[1]。环保型 Ag/SnO₂材料因其潜在 的综合优异性能而成为目前的研究热点,但其在服役过 程中仍存在电学性能欠佳、电弧烧蚀特性不明等问题。

学者们从增强相属性、制备工艺、掺杂改性等层 面开展了 Ag/SnO₂ 材料体系优化研究。Zhang 等^[2]研 究发现颗粒尺寸 300 nm 的 SnO₂增强银基复合材料表 现为较高的硬度和密度,但导电率有所下降。Li 等^[3] 研究发现细小纳米级的 60 nm SnO₂ 增强银基复合材 料可有效降低闭合和分断的电弧能量,减少质量损失 和相对材料转移量。从制备工艺优化而言,Li 等^[4]原 位制备的纳米级 CuO 颗粒改性 Ag/SnO₂材料表现出优 良的电导率和力学性能,改善了材料的抗电弧侵蚀能 力。Wu 等^[5]研究发现相比于 ASE(atomizing-sinteringextrusion)方法,MSE (mixing-sintering-extrusion) 法制备的 Ag/10SnO₂材料表现出最低的燃弧时间和总 质量损失。从掺杂改性而言,Wingert^[6]、Shen^[7]等探 究了 Bi₂O₃ 等 10 余种次组元改性银基复合材料的质 量损失及电弧侵蚀行为,为优选特定的增强相氧化物 类型提供参考依据。Zhang 等^[8]研究发现 Y 元素改性 SnO₂增强银基复合材料的电学性能最佳,其次 La 改 性,再次为 Ce 改性。Wang 等^[9]发现 Ag/SnO₂-Bi₂O₃ 材料的最优初始烧结温度为 820 ℃,而且相比于 Ag/SnO₂-La₂O₃、Ag/SnO₂-TiO₂ 而言,Ag/SnO₂-Bi₂O₃ 表现出最合适的接触电阻性能。Biyik 等^[10]研究发现 10% B₂O₃ (体积分数) 改性银基复合材料达到最小的 质量损失和良好的抗电弧侵蚀性能。周晓龙等^[11]表明 NiO 掺杂量的增加对减小 AgSnO₂NiO 材料的燃弧能 量作用不明显,但减少了质量损失。吴新合^[12]已较为 系统地研究了 Ag/SnO₂-Bi₂O₃ 材料的原位反应合成法 制备及其电寿命性能研究,为该材料体系的批量化生 产应用提供数据支持。

此外,另有学者通过共掺或复相增强改性技术改善Ag/SnO₂ 触点材料的电学性能。郑晓华等^[13]发现 (CuO, Fe₂O₃)复相掺杂改性 Ag/SnO₂ 材料表现出最佳 的导电性能,其电阻率最小至 2.25 μΩ·cm。陈令等^[14] 理论计算指出共掺改性技术有助于提高 Ag/SnO₂ 材料

收稿日期: 2021-10-21

基金项目:浙江省重点研发计划(2017C01051);浙江省自然科学基金(LQ20E020008);中央高校基本科研业务费专项资金(K20200042) 作者简介:胡钟元,男,1987年生,硕士,浙江大学温州研究院,浙江 温州 325036, E-mail:jdzcitytimes@163.com

的抗损伤恢复能力。Wang 等^[15]指出 Ni-N 共掺 SnO₂ 增强银基复合材料拥有良好的力学和服役寿命性能。 李志国等^[16]报道指出复相改性技术在银基触点材料 性能优化上的潜在优势。

而至目前鲜有报道关于 Bi₂Sn₂O₇ 掺杂含量对改性 Ag/SnO₂ 体系的物理性能和耐电弧烧蚀特性研究。为 此,本工作系统地考察了球磨时间、烧结制度等工艺 参数对复相陶瓷 Bi₂Sn₂O₇ 掺杂改性 Ag/SnO₂-Bi₂Sn₂O₇ 材料物理性能影响规律,初步探究了 Bi₂Sn₂O₇ 掺杂量 对改性 Ag/SnO₂-Bi₂Sn₂O₇ 材料的耐电弧烧蚀特性,为 后续深入开展电寿命试验研究奠定数据基础。

1 实 验

1.1 增强相粉体合成

以硝酸铋 Bi(NO₃)₃ 5H₂O,和锡酸钾 K₂SnO₃ 3H₂O 为原材料,以一定的化学计量比称取相应的溶质质量, 再以浓硝酸和去离子水为溶剂,借助磁力搅拌器溶解粉 体,形成均匀溶液。再将锡酸钾溶液逐滴加入硝酸铋的 稀酸溶液中,搅拌若干时间,得到混合溶液,向该混合 溶液滴加质量分数为 20%的 NaOH,调制 pH 至 12。将得 到的溶液倒入聚四氟乙烯内衬中,放入烘箱中,于水热 温度 180 ℃条件下熟化反应 12 h,将得到的反应产物进 行离心、烘干,最终合成淡黄色 Bi₂Sn₂O₇粉体^[17]。

将一定量的 SnCl₄ 5H₂O 溶解在去离子水中,形成 0.3 mol/L,500 mL 均一溶液。向均一溶液中添加 5% PEG200,并持续搅拌 1 h。向上述溶液中逐滴加入沉 淀剂氨水(浓度 25%~28%),直到反应溶液 pH=7。连 续搅拌反应 5 h 后得到乳白色反应产物,离心洗涤去 除上清液,沉淀产物于干燥箱中干燥 90 min 后收集白 色的前驱体粉末,然后将前驱体粉末置入马弗炉中于 焙烧温度 600 ℃下反应 3 h,最终获得白色的 SnO₂ 粉 体^[18]。

1.2 Ag/SnO₂-Bi₂Sn₂O₇复合粉体的制备

所用 $Bi_2Sn_2O_7$ 粉体和 SnO_2 粉体为上述制备工艺所 自制合成,而化学银粉(粒度 \leq 74 µm,纯度 99.99%, 采购自温州宏丰电工合金股份有限公司)。相应的微观 形貌与粒度分布如图 1 所示。采用高能球磨工艺制备了 $Bi_2Sn_2O_7$ 含量不同的 Ag/SnO_2 - $Bi_2Sn_2O_7$ 复合粉体。所用 球磨罐的材质为氧化锆,相应的尺寸规格为直径 Φ 85 mm×78 mm;氧化锆研磨球: Φ 15 mm 球: Φ 5 mm 球=1:1。 按照表 1 所示的质量比进行配制不同 $Bi_2Sn_2O_7$ 含量改 性 的 Ag/SnO_2 - $Bi_2Sn_2O_7$ 复 合 粉 体 , 即 Ag/SnO_2 - $0\%Bi_2Sn_2O_7$ (ASB0)、 Ag/SnO_2 - $2\%Bi_2Sn_2O_7$ (ASB2)、 Ag/SnO_2 - $6\%Bi_2Sn_2O_7$ (ASB6)、 Ag/SnO_2 -12% $Bi_2Sn_2O_7$ (ASB12)。然后,按照玛瑙球与复合粉体的质 量比 3:1 称取相应的氧化锆球,按照无水乙醇与复合粉体的质量比 2:1 称取相应的过程控制剂无水乙醇。将银粉、SnO₂ 粉、Bi₂Sn₂O₇ 粉、玛瑙球和无水乙醇依次放入玛瑙罐中,并于球磨转速 300 r/min 条件下进行研磨,制备出系列 Ag/SnO₂-Bi₂Sn₂O₇ 复合粉体。

1.3 Ag/SnO₂-Bi₂Sn₂O₇ 电接触复合材料的制备

以上述制得的系列 Ag/SnO₂-Bi₂Sn₂O₇ 复合粉体为 原料,采用常压烧结工艺制备相应的 Ag/SnO₂-Bi₂Sn₂O₇ 电接触复合材料。首先,将所制的复合粉末 导入内腔直径 *Φ*10 mm 的不锈钢模具中,于 30 MPa 冷压压力下保压 10 s 制备出尺寸为 *Φ*10 mm 2 mm 的 Ag/SnO₂-Bi₂Sn₂O₇ 素坯。然后,将 Ag/SnO₂-Bi₂Sn₂O₇ 素坯置于高温烧结炉(KSL-1200X,合肥科晶材料技 术有限公司)中进行空气气氛常压烧结,其具体步骤 如下:将加热温度按照加热速率 10 ℃/min 从室温升 至 600 ℃,并于第一段温度 600 ℃下保持 3 h。其次, 在相同的升温速率 10 ℃/min 下,于空气气氛下设定 750~900 ℃的烧结温度,制备出 Ag/SnO₂-Bi₂Sn₂O₇ 电 接触复合材料。

1.4 结构与性能表征

采用附带能谱的场发射扫描电镜(SIGMA HV-01-043 FSEM (Carl Zeiss SMT Pte Ltd, Germany)) 对样品进行表面形貌与成分分析;利用 XRD 衍射仪 (Holland, PANalytical B.V.,石墨单色化 Cu Ka Irradiation ($\lambda = 0.154\ 056\ nm$),步长 0.02 %,扫描范围 20 ~90 °) 对样品的物相组成进行表征;采用 Image J Software 对复合粉体进行粒度分析;采用电导率仪 (D60K)、电子密度计(XS104, METTLER TOLEDO)、 维氏硬度计(HVS-1000)等对样品的物理性能进行检 测。利用电弧试验机对样品表面的初期电弧烧蚀特性 进行探究。

2 结果与讨论

2.1 增强相粉体微观形貌及物相组成

图 1 所示为化学银粉、颗粒状 SnO₂ 粉体和 Bi₂Sn₂O₇粉体 SEM 形貌、粒度分布及 XRD 图谱。由 图 1 可知,所合成的 Ag 粉、SnO₂ 粉体和 Bi₂Sn₂O₇粉 体呈颗粒态,物相上分别为立方晶体结构的纯 Ag 相 (对应于 PDF#04-0783,空间群为 Fm-3m(225))、四 方晶体结构的 SnO₂相(对应于 PDF#71-0651,空间群 为 P42/mnm(136))和立方晶体结构的 Bi₂Sn₂O₇相(对 应于 PDF#87-0284,空间群为 Fd-3m(227))。从粒度分 布上可知,纯银粉的平均粒度为 4.62±2.077 μm,SnO₂ 粉体平均粒度为 37.139±2.002 μm,而 Bi₂Sn₂O₇粉体 平均粒度为 5.448±3.167 μm。

2.2 Ag/SnO₂-BSO 复合粉体微观形貌及物相组成

图 2 所示为不同球磨时间下 ASB6 复合粉体微观 SEM 形貌、粒度分布与 XRD 图谱。由图 2 可知,随 着球磨时间从 1 h 延长至 12 h, ASB6 复合粉体从颗粒 态向片状结构发生转变。当球磨时间小于 4 h 时,随 球磨时间延长, ASB6 复合粉体的片状结构比例明显 增多;但当球磨时间高于 8 h 时, ASB6 复合粉体的结 构基本上以片状为主,且在球磨时间 12 h条件下 ASB6 复合粉体的片状结构尺寸细化、均匀化,平均粒度为 41.778±3.613 μm。而从 XRD 图谱上分析可知,不同 球磨时间下 ASB6 复合粉体的物相均由 Ag、SnO₂ 和 Bi₂Sn₂O₇构成。随着球磨时间的延长,ASB6 复合粉体 主要由纯 Ag 相组成,其中 SnO₂ 和 Bi₂Sn₂O₇相的特征 衍射峰强度逐渐变得微弱。

图 1 银粉、颗粒状 SnO2粉体和 Bi2Sn2O7粉体的 SEM 形貌、粒度分布与 XRD 图谱

Fig.1 SEM morphologies, particle size distribution (a~c) and XRD patterns (a1~c1) of silver powder (a, a1), granular SnO₂ (b, b1) and Bi₂Sn₂O₇ powder (c, c1)

Table 1	Table 1 Formula and milling process of Ag/SnO2-Bi2Sn2O7 composite powder with different Bi2Sn2O7 contents					
Sample	Ag powder/g	SnO ₂ powder/g	$Bi_2Sn_2O_7$ powder/g	Milling process		
ASB0	8.8	1.2	0.0	300 r/min, 4 h		
ASB2	8.8	1.0	0.2	300 r/min, 4 h		
ASB6	8.8	0.6	0.6	300 r/min, 1~12 h		
ASB12	8.8	0.0	1.2	300 r/min, 4 h		

表 1 不同 Bi₂Sn₂O₇含量的 Ag/SnO₂-Bi₂Sn₂O₇复合粉体配方及球磨工艺

Fig.2 SEM morphologies, particle size distribution (a~e) and XRD patterns (a1~e1) of ASB6 powders with different milling time: (a, a1) 1 h, (b, b1) 2 h, (c, c1) 4 h, (d, d1) 8 h, and (e, e1) 12 h

图 3 所示为在球磨转速 300 r/min、球磨时间 8 h 恒定条件下 ASB 复合粉体微观形貌 SEM 形貌、粒度 分布与 XRD 图谱。由图 3 可知,随着锡酸铋 (BSO) 掺杂量的增加,ASB 复合粉体均呈片状形态。而且当 锡酸铋掺杂量为 0%~6%,ASB 复合粉体的平均粒度 比较相近 (见图 3a~3c)。但是,当 BSO 掺杂量为 12% 时,ASB12 复合粉体的颗粒尺寸细化程度较高,平均 粒度为 17.89±9.877 μm。相应地,由 XRD 图谱分析 可知,随着 BSO 掺杂量的增加,ASB 复合粉体的主 晶相均为纯银相,而增强相 SnO₂的衍射峰强度呈逐渐 减弱或消失的趋势。而且,当 BSO 掺杂量为 12%时, ASB12 复合粉体主要由纯银相和锡酸铋相构成。

图 3 不同 BSO 含量改性 ASB 复合粉体 SEM 形貌、粒度分布与 XRD 图谱

Fig.3 SEM morphologies, particle size distribution (a~d) and XRD patterns (a1~d1) of modified ASB composite powders with different BSO contents: (a, a1) ASB0, (b, b1) ASB2, (c, c1) ASB6, and (d, d1) ASB12

2.3 Ag/SnO₂-BSO 复合材料物理性能影响研究

2.3.1 球磨时间

图4所示为不同球磨时间下 Ag/SnO2-BSO 复合材 料物理性能的变化曲线。由图 4 可知,随着球磨时间 从1h延长至12h,样品ASB6的电阻率呈逐渐增加 的趋势。当球磨时间超过4h后,电阻率的增长速率 显著,在球磨时间12h下达到最高电阻率3.17 μΩ·cm。 同理,样品 ASB6 的密度呈现不断下降的类似趋势, 尤其在球磨时间 12 h 下达到最低密度 7.345 g cm⁻³。 这说明球磨时间的过度延长反而不利于粉体的致密化 烧结,导致 Ag/SnO₂-BSO 复合材料的密度特性严重恶 化。由微结构分析可知,经球磨时间 1 h 后的 ASB6 样品表面的氧化物颗粒离散分布在银基体中,无明显 的波浪纹理(图 5a),但当球磨时间超过1h后,ASB6 样品表面出现了大量波浪纹理组织,该组织中心区域 为金属银基体,纹理边沿为特定排列的氧化物颗粒(见 图 5b, 5c)。而且,随着球磨时间的继续延长,宽型的 波浪纹理组织逐渐消失,转变为更为细腻的波纹组织 (见图 5d, 5e);但仔细观察可以发现,当球磨时间延 长至 12 h 时,表面已经出了不均匀的偏析组织(见图 5e)。结合图 2 可知,经高能球磨后,原本颗粒态的增 强相粉体和具有一定延展性的颗粒态银粉在球磨机械 剪切力的作用下发生了变形,获得了片状形态的 ASB

- 图 4 Ag/SnO₂-BSO 电接触复合材料物理性能随球磨时间的变 化曲线
- Fig.4 Variation curves of physical properties of Ag/SnO₂-BSO electrical contact composites with milling time

图 5 不同球磨时间下 Ag/SnO2-BSO 电接触复合材料 ASB6 样品的金相组织

Fig.5 Metallographic microstructures of Ag/SnO₂-BSO electrical contact composites ASB6 sample milled for various time: (a, a1) 1 h, (b, b1) 2 h, (c, c1) 4 h, (d, d1) 8 h, and (e, e1) 12 h

复合粉体。而这些片状形态的 ASB 复合粉体在后续的 成型压制-烧结工艺处理过程中形成了如图 5 所示的 波纹组织。综上分析可知,经球磨时间 8 h 后的样品 ASB6 获得了较为细腻的微观组织,以及合适的电阻 率 2.92 μΩ·cm 和密度 8.417 g·cm⁻³,明显优于传统的 Ag/SnO₂材料。

2.3.2 BSO 掺杂含量

图 6 所示为不同 BSO 含量下改性 Ag/SnO₂-BSO 复合材料物理性能的变化曲线。由图 6a 可知,当烧结 温度一定时,随着 BSO 掺杂量从 0%增加至 12%, Ag/SnO₂-BSO 复合材料的电阻率呈逐渐下降趋势,尤 其,BSO 掺杂含量 12%时制得的 ASB12 复合材料表 现出最小的电阻率。同理,当烧结温度分别为 830、840、860 ℃时,相应的改性 Ag/SnO₂-BSO 复合材料 电阻率大体上呈轻微上升趋势,并无显著变化。类似

地,当 BSO 掺杂量一定时,随着烧结温度从 750 ℃ 增加至 900 ℃,Ag/SnO₂-BSO 复合材料的电阻率均表 现为逐渐下降趋势,且当 BSO 掺杂量为 12%、烧结 温度 900 ℃时,样品 ASB12 的电阻率达最小值 2.24 μΩ·cm。类似地,由图 6b 的密度变化曲线可知,当烧 结温度一定时,随着 BSO 掺杂量的增加,改性 Ag/SnO₂-BSO 复合材料的密度呈逐渐上升的趋势。而 当 BSO 掺杂量一定时,烧结温度的增加对改性样品的 密度变化呈一定的波动性变化。

图 7 所示为不同烧结时间下 Ag/SnO₂-BSO 电接触 复合材料物理性能的变化曲线。随着烧结时间从 3 h 延长至 16 h,不同 BSO 掺杂量改性 Ag/SnO₂-BSO 复 合材料的电阻率变化不大。当 BSO 掺杂量为 0%时, ASBO 样品经不同烧结时间处理后均在 3.5 μΩ·cm 左 右。同理,ASB2 样品的电阻率维持在 3.0 μΩ·cm 左右。

图 6 Ag/SnO₂-BSO 电接触复合材料物理性能随 BSO 含量的变化曲线

Fig.6 Variation curves of physical properties of Ag/SnO2-BSO electrical contact composites with BSO content

图 7 在 830 ℃不同烧结时间下 Ag/SnO₂-BSO 电接触复合材料物理性能的变化曲线

Fig.7 Variation curves of physical properties of Ag/SnO₂-BSO electrical contact composites sintered at 830 °C for different time

而 ASB6 和 ASB12 样品的电阻率分别在 2.9、2.4 μΩ·cm 附近波动。由此可知,烧结时间的延长对 Ag/SnO₂-BSO 复合材料的电阻率降低程度不显著。但 是可以发现,在烧结时间恒定条件下,随着 BSO 掺杂 量的增加,改性 Ag/SnO₂-BSO 复合材料的电阻率是呈 逐渐下降的变化趋势(见图 7a)。类似地,由图 7b 的 密度变化曲线可知,随着烧结时间的延长,改性 Ag/SnO₂-BSO 复合材料的密度变化不大。而且当烧结 时间一定时,BSO 掺杂量的增加亦使改性样品的密度 变化呈略微上升趋势。可以说,在固相烧结反应过程 中,烧结时间的延长对改性 Ag/SnO₂-BSO 复合材料的 电阻率和密度性能的改善作用不显著。

2.4 Ag/SnO₂-BSO 复合材料耐电弧烧蚀特性分析

作为在电器装备中起电连接作用的关键材料, Ag/SnO₂-BSO 电接触复合材料在电接通-分断过程中产 生的电弧烧蚀行为极易诱发电器装备起火、发生熔焊或 短路故障等安全可靠性。为此,本工作初探了不同 Bi₂Sn₂O₇ 含量对 Ag/SnO₂-BSO 复合材料的耐电弧烧蚀 特性影响规律,尤其是关于初期电弧烧蚀特性与改性 Ag/SnO₂-BSO 复合材料初始表面硬度、致密度等静态物 理性能之间的关联性分析。在上述球磨工艺最优值(300 r/min, 8 h)、初压初烧工艺(30 MPa, 900 ℃, 6 h)的最 优参数基础上,采用与初压初烧相同的处理工艺对 Ag/SnO₂-BSO 复合材料进行了复压复烧工艺处理,制备 了相应的 Ag/SnO₂-BSO 复合材料圆片(尺寸规格为直径 *Φ*6 mm,厚度 1.65 mm)。同时,为了保证电弧烧蚀行 为对比试验的可比性,采用粗抛+精抛组合技术对 Ag/SnO₂-BSO 复合材料圆片表面进行了磨抛处理,获 得基本一致的表面粗糙度。相应地,Ag/SnO₂-BSO 样 品的性能参数如表 2 所示,并在相应的电弧烧蚀试验 参数(见表 3)对其进行循环 50 次的初期电弧烧蚀特 性对比试验。

2.4.1 Ag/SnO₂-BSO 复合材料表面硬度

图 8 所示为 Ag/SnO₂-BSO 复合材料表面硬度分布 图。由图 8a~8d 可知,当 BSO 掺杂量为 0%时,ASBO 样品的表面硬度平均值(HV_{0.3})为 1066.04 MPa,表 面基体银相为图中灰白色区域,而呈河流花样式的氧 化物增强相为图中深灰色区域。当掺杂量为 2%时, ASB2 样品的表面硬度平均值(HV_{0.3})为 941.98 MPa, 当掺杂量为 6%时,ASB6 样品的表面硬度平均值 (HV_{0.3})下降至 910.91 MPa,当掺杂量为 12%时, ASB12 样品的表面硬度平均值继续下降至 807.32 MPa。由此可知,随着 BSO 含量的增加,Ag/SnO₂-BSO 复合材料表面的河流花样式显微组织逐渐消失, Ag/SnO₂-BSO 复合材料的表面硬度呈逐渐下降趋势, 且当 BSO 占比 12%时,ASB12 样品的表面硬度最低, 这可能归因于其较低的致密度 95.43%(见表 2)。 2.4.2 Ag/SnO₂-BSO 复合材料电弧烧蚀特性

以上述制备的 Ag/SnO₂-BSO 复合材料为研究 对象,进一步探究不同 BSO 掺杂改性 Ag/SnO₂-BSO 复合材料的初期电弧烧蚀特性。将制备的 Ag/SnO₂-BSO 复合材料进行了循环 50 次的初期电弧烧蚀试 验。图 9 所示为 Ag/SnO₂-BSO 复合材料元件烧蚀 3D 投影照片。

表 2 电弧烧蚀试验用 Ag/SnO₂-BSO 电接触复合材料的基本性能参数

	1 1	8 -		8	
Sample	Surface roughness/ µm	Density/ g cm ⁻³	Theoretical density/ g cm ⁻³	Relative density/ %	Hardness, HV _{0.3} /MPa
ASB0	0.122, 0.122, 0.02	9.61	9.89	97.16	1066.04
ASB2	0.025, 0.026, 0.027	9.682	9.94	97.40	941.98
ASB6	0.022, 0.109, 0.027	9.721	10.03	96.91	910.91
ASB12	0.014, 0.12, 0.105	9.696	10.16	95.43	807.32

Table 2 Basic properties of Ag/SnO₂-BSO electrical contact composites for arc ablation testing

表 3 Ag/SnO₂-BSO 电接触复合材料的电弧烧蚀试验参数

Fable	3	Arc	ablation	test	parameters	of	Ag/SnO ₂ -BSO
-------	---	-----	----------	------	------------	----	--------------------------

electrical contact composites					
Testing item	Parameter				
Type of load	Inductive load				
Sample	ASB0, ASB2, ASB6, ASB12				
Voltage/V	220				
Current/A	193 (AC)				
Frequency/times h ⁻¹	300				

可以发现,当 BSO 含量为 0%, ASB0 样品的静 触点和动触点经 50 次电弧烧蚀试验后烧损面积趋近 于整个表面,而且表面出现了大量微孔洞(见图 9a~9a1)。当 BSO 含量继续增加时,样品表面的烧损 面积并未完全覆盖整个表面,亦存在一些微孔洞特征 (见图 9b~9d 和图 9b1~9d1),而且当 BSO 含量为 6% 时,ASB6 样品表面的烧损面积最小。当 BSO 含量为 12%时,ASB12 样品表面的烧蚀区域出现了明显的飞 溅现象,造成这一现象的原因之一可能在于本次试验 稀有金属材料与工程

中所制备的 ASB12 样品的表面硬度最低,导致耐电 弧冲击能力较差。经高倍观察 Ag/SnO₂-BSO 复合材 料元件电弧烧蚀的表面微观结构(见图 10)可以发 现,经电弧烧蚀后的 ASB 样品表面存在富银区(区 域1、3和7)、氧化物偏聚区(2、4、5、6、9、10)、 微孔洞(箭头所指)、弧坑(区域 8)等烧蚀特征。 其中,当 BSO 掺杂量为 2%时, ASB2 样品表面出现 呈细小的叶片状析出物,经能谱分析可知主要由质量 分数 66.01% Ag、31.63% Sn、1.61% Bi、0.53% O 和 0.22% C 构成 (见图 10e 的能谱)。而当 BSO 掺杂量 为 12%时, ASB12 样品表面发生氧化物偏聚现象, 经能谱分析可知主要由 Bi 元素 (33.78%)、Sn 元素 (45.34%)和少量的 Ag 元素 (19.16%)和 O 元素 (1.72%)(见图 10f 的能谱)。

1148.27 MPa ^a	b 920.61 MPa	899.84 MPa ^c	807.32 MPa d
1030.67 MPa ^{Oxide} phase	957.362 MPa	926.59 MPa	815.16 MPa
1078.10 MPa Ag phase	947.954 MPa	905.91 MPa	800.07 MPa
HE 15 0kv 15.3mm x200 BSECOMP 9/13/2021 19:30 200um	HF 15.0KV 15.4mm x200 BSECOMP 9/13/2021 19:37 2000m	HF 15.0kV 15.4mm x200 BSECOMP 9/13/2021 19.57 200um	HF 15.0kV 15.4mm x200 BSECOMP 9/13/2021 20:10 200um

图 8 Ag/SnO₂-BSO 电接触复合材料硬度分布与显微组织

Fig.8 Surface hardness distribution and microstructures of Ag/SnO₂-BSO electrical contact composites: (a) ASB0, (b) ASB2, (c) ASB6, and (d) ASB12

图 9 Ag/SnO2-BSO 电接触复合材料经循环 50 次后表面电弧烧蚀 3D 投影照片

Fig.9 Surface arc ablation 3D photographs of Ag/SnO₂-BSO electrical contact composites after 50 cycles: (a, a₁) ASB0, (b, b₁) ASB2, (c, c₁) ASB6, and (d, d₁) ASB12

图 10 Ag/SnO₂-BSO 电接触复合材料经循环 50 次后表面电弧烧蚀微观结构和 EDS 能谱 Fig.10 Surface arc ablation microstructures (a~d, a1~d1) of Ag/SnO₂-BSO electrical contact composites after 50 cycles and EDS spectra of region 4 marked in Fig.10b (e) and region 10 marked in Fig.10d1 (f)

3 结 论

1)随着球磨时间从1h延长至12h,ASB6复合 粉体从颗粒态向片状结构发生转变,样品ASB6的电 阻率呈逐渐上升趋势而密度呈不断下降趋势;经球磨 时间8h后的样品ASB6获得较为细腻的微观组织, 以及合适的电阻率2.92 μΩ·cm和密度8.417 g cm⁻³。

2) 烧结温度的提升和 BSO 掺杂量的增加均有助 于降低 Ag/SnO₂-BSO 复合材料的电阻率,但是,烧结 时间的延长并未对改性 Ag/SnO₂-BSO 材料的电阻率 和密度性能起到改善作用。尤其,当 BSO 掺杂量为 12%、烧结温度 900 ℃保温 6 h 时,样品 ASB12 的电 阻率达到最佳值 2.24 μ Ω cm,明显优于传统的 Ag/SnO₂材料。

3) 循环 50 次的初期电弧烧蚀试验分析可知,相 比于纯 Ag/SnO₂(ASB0)而言,当 BSO 含量继续增 加时,样品表面的烧损面积并未快速扩展至整个表面, 而且当 BSO 含量为 6%时, ASB6 样品表面的烧损面积最小。而当 BSO 含量为 12%时, ASB12 样品表面的烧蚀区域出现了液滴飞溅现象,造成这一现象的可能原因之一在于本次试验中所制备的 ASB12 样品的表面硬度最低。

参考文献 References

- Wu Xinhe(吴新合), Shen Tao(沈 涛), Yang Hui(杨 辉) et al. Precious Metals(贵金属)[J], 2021, 42(1): 79
- [2] Zhang Miao, Wang Xianhui, Yang Xiaohong et al. Transactions of Nonferrous Metals Society of China[J], 2016, 26(3): 783
- [3] Li Hangyu, Wang Xianhui, Liu Yanfeng et al. Vacuum[J], 2017, 135: 55
- [4] Li Guijing, Cui Huijie, Chen Jun et al. Journal of Alloys and Compounds[J], 2017, 696: 1228
- [5] Wu Chunping, Zhao Qian, Li Nana et al. Journal of Alloys and Compounds[J], 2018, 766: 161

- [6] Wingert P C, Leung C H. IEEE Transactions on Components, Hybrids, and Manufacturing Technology[J], 1989, 12(1): 16
- [7] Shen Y S, Zdanuk E, Krock R. IEEE Transactions on Parts Hybrids and Packaging[J], 1972, 8(1): 16
- [8] Zhang Ying, Wang Jingqin, Kang Huiling. IEEE Transactions on Components, Packaging and Manufacturing Technology[J], 2018, 9(5): 864
- [9] Wang Haitao, Wang Zixiang, Wang Lianzheng et al. International Journal of Minerals, Metallurgy and Materials[J], 2018, 25(11): 1275
- [10] Biyik S, Arslan F, Aydin M. Journal of Electronic Materials[J], 2015, 44(1): 457
- [11] Zhou Xiaolong(周晓龙), Xiong Aihu(熊爱虎), Liu Manmen (刘满门) et al. Rare Metal Materials and Engineering(稀有金 属材料与工程)[J], 2019, 48(9): 2885
- [12] Wu Xinhe(吴新合). Dissertation for Master(硕士论文)[D].Hangzhou: Zhejiang University, 2018

- [13] Zheng Xiaohua(郑晓华), Wu Junchen(吴君臣), Wang Guicong (王贵葱) et al. Rare Metal Materials and Engineering(稀有金 属材料与工程)[J], 2020, 49(7): 2494
- [14] Chen Ling(陈 令), Wang Jingqin(王景芹), Zhu Yancai(朱艳彩) et al. Journal of Synthetic Crystals(人工晶体学报)[J], 2019, 48(11): 2056
- [15] Wang Jingqin, Yang Jianyu, Zhu Yancai et al. Crystals[J], 2021, 11(6): 707
- [16] Li Zhiguo(李志国), Zhou Xiaolong(周晓龙), Hu Riming(胡日茗) et al. Materials Reports(材料导报)[J], 2018, 32(S1): 90
- [17] Li Lei(李 磊), Long Tengfa(龙腾发), He Xingcun(何星存) et al. Bulletin of the Chinese Ceramic Society(硅酸盐通 报)[J], 2012, 31(3): 711
- [18] Zhang Jianrong(张建荣), Gao Lian(高 濂). Chinese Journal of Inorganic Chemistry(无机化学学报)[J], 2003, 19(6): 641

Effect of Bi₂Sn₂O₇ Content on Microstructure and Properties of Modified Ag/SnO₂ Electrical Contact Composites

Hu Zhongyuan¹, Wang Kaixu², Zhou Xin¹, Gao Linhui¹, Li Yue^{1,3}

(1. Institute of Wenzhou, Zhejiang University, Wenzhou 325036, China)

(2. Wenzhou Hongfeng Electrical Alloy Co., Ltd, Wenzhou 325603, China)

(3. School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract: With as-prepared SnO₂ and Bi₂Sn₂O₇ as reinforcing phase powder and chemical silver powder as matrix phase, series of Bi₂Sn₂O₇ modified Ag/SnO₂ electrical contact composites were prepared by high energy ball milling assisted sintering process. The effects of Bi₂Sn₂O₇ content, milling time and sintering parameters on physical properties of Ag/SnO₂-Bi₂Sn₂O₇ electrical contact composites were investigated. The results show that with milling time ranges from 1 h up to 12 h, the morphologies of Ag/SnO₂-6wt%Bi₂Sn₂O₇ electrical contact composites powder change from granular to flake structure. And the resistivity of Ag/SnO₂-6wt%Bi₂Sn₂O₇ doping content could benefit for reducing the resistivity of Ag/SnO₂-Bi₂Sn₂O₇ electrical contact composites. With the Bi₂Sn₂O₇ doping content of 12wt% and the sintering temperature at 900 °C, the resistivity of Ag/SnO₂-12wt%Bi₂Sn₂O₇ reaches the optimal value of 2.24 μ Ω·cm. According to the initial arc ablation testing after 50 cycles, compared with pure Ag/SnO₂, the ablation area of the modified Ag/SnO₂-6wt%Bi₂Sn₂O₇ samples does not rapidly expand to the whole surface, and when the Bi₂Sn₂O₇ content is 6wt%, the ablation area of Ag/SnO₂-6wt%Bi₂Sn₂O₇ sample is the smallest. While, with the Bi₂Sn₂O₇ content of 12wt%, the Ag/SnO₂-12wt%Bi₂Sn₂O₇ sample appears obvious splash phenomenon, which may be due to its lower HV_{0.3} hardness of 807.32 MPa.

Key words: electrical contact composites; doping modification; Bi₂Sn₂O₇; high energy ball milling; pressureless sintering; arc ablation

Corresponding author: Li Yue, Ph. D., Institute of Wenzhou, Zhejiang University, Wenzhou 325036, P. R. China, E-mail: liyue8@zju.edu.cn