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Abstract: According to the spatial distribution pattern of melt pool size features, a prediction method of melt pool width based on 

edge iterative model was proposed. In order to obtain accurate melt pool width, mathematical morphological method was used to 

denoise the melt pool image and coarse segmentation was conducted on the melt pool image by manual thresholding method. The 

Canny algorithm was then employed to extract the melt pool edge. Finally, the edge iterative model was used for edge iteration and 

the melt pool width after fine segmentation was obtained. Comparison experiment results show that this algorithm has good accuracy 

and robustness, and it is simple and efficient.
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Laser-directed energy deposition (LDED) is a unique 
manufacture technique, which uses high-energy laser beam to 
form melt pool in the deposition area. The laser beam moves 
at high speed, and the to-be-deposited material is directly fed 
into the high-temperature melt zone in the powder form and 
deposited layer by layer after melting. LDED technique has 
the advantages of high material utilization, fast part forming, 
and no mold fixtures, which is suitable for the manufacture of 
complex parts and the repair and remanufacture of valuable 
parts[1–4]. Melt pool is the smallest forming unit in LDED pro-
cess. Slight variations in process parameters and deposition 
environment can cause large fluctuations in the melt pool size, 
affecting the deposition quality. Therefore, online inspection 
and closed-loop control of the laser melt pool are essential[5].

Laser processing exhibits high-energy characteristics, and 
its non-contact visual detection[6–8] is the mainstream detection 
method in recent years. The key characteristics of melt pool 
include width, height, depth, area, and temperature, which are 
usually used for monitoring. Algorithm can also be used to 
predict the key characteristics of melt pool. Su et al[9] designed 
an infrared detection system to detect the melt pool edge and 
then obtained a vector perpendicular to the direction of 

scanning speed. The maximum value between the 
abovementioned vector and the melt pool edge is taken as the 
melt pool width. Zheng et al[10] predicted the melt pool width 
by extracting the pool boundary from the image, and the 
prediction error is less than 5%. Sun et al[11] predicted the melt 
pool width and length by ellipse fitting with prediction 
accuracy of 95% and 90%, respectively. Le et al[12] calculated 
the melt pool length and width by counting the pixel points on 
the horizontal and vertical axes, respectively. Huang et al[13] 
developed a gas metal arc welding-based binocular vision 
system to obtain the melt pool width by minimizing the 
external rectangles. Similar approach is reported in Ref. [14]. 
The melt pool depth can also be predicted based on the melt 
pool width data. For example, Jeon et al[15] proposed an online 
melt pool depth prediction method to predict the melt pool 
depth during multi-layer multi-pass deposition process. 
Goossens et al[16] proposed a physically resolved model to 
calculate the depth-to-width ratio of melt pool based on the 
process parameters and material properties. Other detection 
methods of melt pool features have also been investigated. Liu 
et al[17] developed a real-time online prediction system to 
estimate the layer height based on the DaNN network within 
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0.018 s. Zhu et al[18] applied deep learning method onto 3D 
additive manufacture (AM) modeling and accurately predicted 
the temperature and melt pool dynamics in the AM process of 
metal materials. Zheng et al[19] adjusted the laser power and 
scanning speed to achieve the designed cooling rate and size 
of melt pool. Colodron et al[20] presented a field-programmable 
gate array-based image processing system with test frame rate 
of 110 frame/s. Ding et al[21] designed an inspection system to 
detect powder and melt pool size, but the specific inspection 
method of melt pool width was not mentioned.

With the development of physical model for LDED process 
and the improvement in computing capability of hardware, the 
prediction methods of melt pool characteristics based on 
simulation data and machine learning are increasingly 
valued[22–24]. However, a significant gap in prediction accuracy 
exists among different methods, not to mention the gap 
between detection accuracy of machine vision and prediction 
accuracy. Currently, the detection method of online visualized 
melt pool is the preferred solution for melt pool feature 
detection. Song et al[25] reported that the melt pool width can 
better reflect the characteristics of melt pool, compared with 
other melt pool features. Although the abovementioned edge 
detection algorithms can detect the melt pool width, serious 
interference restricts their industrial applications. As shown in 
Fig.1, there is noise caused by arc light and powder splash in 
LDED process. Therefore, the accuracy of melt pool feature 
extraction can be greatly influenced[26–27]. The melt pool 
feature extraction methods should be further ameliorated and 
have strong anti-interference capability.

In this research, a melt pool width extraction algorithm 
based on edge iterative model coupled with morphology 
characteristics of melt pool region and processing efficiency 
of image algorithms was proposed. This algorithm provided 
practical guidance for the development of stable melt pool 
edge extraction algorithm with high accuracy and high 
robustness.

11  Experiment  Experiment

Fig. 2 shows the experiment system used in this research. 
The system consisted of AM and image acquisition units. AM 
unit was mainly composed of Siemens CNC (420D), IPG 

laser, and deposition head with circular powder feeding mode. 
The maximum laser power was 2000 W. The light path in the 
deposition head was controlled by a mounted beam splitter 
with the angle of 45° for the propagation along both forward 
and reverse light paths. The forward light path passed the laser 
with wavelength of 1070±10 nm, and the reverse light path 
passed the visible light with wavelength of 390 – 780 nm. 
During the forward propagation, a focusing mirror with focal 
length of 250 mm focused the beam with diameter of 15.5 mm 
into spot with diameter of approximately 1.2 mm on the 
substrate surface. The high temperature laser beam melted the 
powder to form melt pool, producing reflected light which 
was reflected to CMOS camera through spectroscope. The 
CMOS camera was coaxially mounted for high equipment 
integration and no image distortion. The front end of CMOS 
camera was equipped with a band-pass filter (540±10 nm) and 
a neutral density filter (5%). The band-pass filter can improve 
the image clarity and reduce ambient light interference. The 
neutral density filter can prevent the incident light range   
from exceeding the dynamic acquisition range of the camera 
(73 dB).

During the experiment, the melt pool was a relatively small 
part of the whole image, and the image was cropped to 
improve the image processing efficiency. The raw image 
resolution was 1024×768, and the resolution of cropped image 
was 200×192. Fe101 alloy powder was used in the 
experiment, and its powder particle size ranged from 20 μm to 
53 μm. The composition of Fe101 alloy powder is shown in 
Table 1. The substrate material was 316L alloy, and the 
diameter of powder spot on the substrate surface was about 
1.17 mm, which was located below the laser focus.

22  Principle  Principle,, Results Results,, and Analysis and Analysis

The melt pool width extraction process is shown in Fig.3.
2.1  Image preprocessing 

Fig.4 shows the pre-processing results of melt pool image. 
Fig. 4a shows the raw image of melt pool acquired by the 
hardware. The laser scanning direction and the melt pool 

Fig.1　Representative image of melt pool captured by coaxial camera
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Fig.2　Schematic diagram of coaxial monitoring system

Table 1　Composition of Fe101 alloy powder (wt%)

C

0.03

Mn

0.35

Si

7.86

Ni

0.77

Mo

14.55

Cr

0.12

N

0.045

P

0.42

Fe

Bal.
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width are marked in Fig. 4a. Initially, the raw image is con-

verted to grayscale image and subject to median filtering to 

enhance computational efficiency and to minimize random 

noise during data transfer. Subsequently, the image undergoes 

thresholding for segmentation, which is determined by deposi-

ting a single melt and extracting its width data for comparison 

with the binary image width data under various thresholds. In 

this case, the threshold value is 94, as shown in Fig. 4b. 

Finally, the Canny algorithm is used to extract the edges of the 

binary image and the resultant image is shown in Fig.4c.

2.2  Melt pool width extraction based on edge itera-       

tive model 

2.2.1　Melt pool width extraction

During the deposition process, the melt pool formed by 

laser-melted powder is theoretically circular, which is 

determined by the light spot. However, the slow cooling rate 
at the end of melt pool often results in “trailing” phenomenon, 
leading to the elliptical melt pool, as shown in Fig. 4c. This 
phenomenon changes the area and length of melt pool but 
does not affect the width of melt pool. The melt pool 
temperature indicates that the melting part of the powder has 
the highest temperature, resulting in the largest theoretical 
melt pool diameter. The theoretical circle always falls within 
the boundary regardless of the melt pool shape. Based on 
these analyses, the maximum inner tangent circle diameter 
(pixels) of the melt pool boundary is used as the melt pool 
width in this research.

Fig.5a shows the schematic diagram of the detection results 
of melt pool width. It can be seen that the melt pool width 
extracted by the maximum inner tangent circle algorithm is 
highly consistent with that obtained by manual measurement 
in Fig.4a. The calculation process is as follows.

(1) The pixel point in the melt pool image is set as ai,j with 
i, j∈[image width, image high].

(2) Define the set of contour points in Fig.4b as Q[q1, q2,…, 
qn] with n as the number of profile points.

(3) Calculate the distances gi,j between the points in set Q 
and the point ai,j, and then calculate the sum of all distances.

(4) Loop through Eq.(1) of all pixel points in the melt pool 
image, as follows:

gmax =
ì
í
î

ïïgi,j ( gmax < gi,j )

gmax ( gmax ≥ gi,j )
 (1)

where gmax is the historical maximum distance and gi, j is the 
current iterative distance.
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Fig.3　Schematic diagram of melt pool width extraction process
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Fig.4　Pre-processing of melt pool image: (a) raw image; (b) binary image; (c) Canny edge extraction result

0        1         2        3        4        5        6        7

Number of Tests

440

430

420

410

400

T
im

e/
m

s

b

Fig.5　Melt pool width extraction process by algorithm method (a); calculation durations of algorithm in melt pool width extraction process (b)
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(5) The coordinates of the pixel point corresponding to gmax 
are the center of the maximum inner tangent circle, and the 
diameter of the inner tangent circle is the width of melt pool.

Fig. 5b shows the calculation durations of the algorithm in 
the melt pool width extraction process. One image is treated 
six times to avoid systematic error, and the time consumption 
range of each cycle is controlled as 416 – 426 ms. It can be 
seen that the algorithm needs to iterate one iteration for each 
pixel point during the cycle. The numerous iterations result in 
time-consuming calculation, indicating that this algorithm is 
redundant.
2.2.2　Edge iterative model

The edge iterative model can be described as follows.
(1) As shown in Fig. 6a, the set of contour points Q is   

firstly counted. Three points (P1, P2, P3) with point-to-point 
distances of one-third of the contour length are selected. The 
purpose of averaging sampling is to effectively avoid loops 
falling into the local optimum solution. Take one point as the 
intersection and connect it to other two points, as shown in 
Fig. 6b. P2 is the intersection point, and the perpendicular 
bisector O1M and O1N of the P2P3 and P2P1 sides can be 
obtained, respectively. Draw the minimum enclosing circle 

around ΔP1P2P3 with the intersection point O1 as the center 
and O1P3 as the radius. Therefore, the constrains are as 
follows:

ì

í

î

ïïïï

ïïïï

P1,  P2,  P3 ∈ Q

MO1 ⊥ P2 P3,  NO1 ⊥ P2 P1

MP2 = MP3,  NP2 = N1

(2)

(2) If ΔP1P2P3 is not an acute triangle, the point should be 
re-selected until △P1P2P3 is an acute triangle.
∠P1, ∠P2, ∠P3 < 90° (3)

(3) Find the edge point Pmin in the circle with the smallest 
distance to point O1 and replace the nearest point (P1, P2, or 
P3) with Pmin while still satisfying Eq.(2).

O1 Pmin ≥ O1 P1 (4)

(4) Repeat the abovementioned step until there is no edge 
point Pmin inside the circle Oi. At this time, the point Oi is the 
center of the circle inside the melt pool shape, and the distance 
OiPi1 is the radius R of the circle.

As shown in Fig.6b, the coordinates of point M, N, and Oi 
are (XM, YM), (XN, YN), and (XO, YO), respectively. Then, the 
coordinates of the circle center can be represented by Eq.(5), 
as follows:

XO =
(YM - YN ) (Y3 - Y1 ) (Y3 - Y2 ) + XM ( X3 - X1 ) (Y3 - Y2 ) - XN ( X3 - X2 ) (Y3 - Y1 )

( X3 - X1 ) (Y3 - Y2 ) - ( X3 - X2 ) (Y3 - Y1 )

YO =
( XN - XM ) ( X3 - X1 ) ( X3 - X2 ) + YM (Y3 - Y1 ) ( X3 - X2 ) - YN (Y3 - Y2 ) ( X3 - X1 )

( X3 - X1 ) (Y3 - Y2 ) - ( X3 - X2 ) (Y3 - Y1 )

(5)

where (X1, Y1), (X2, Y2), and (X3, Y3) are the coordinates of point 
P1, P2, and P3, respectively.

The radius of the circle can be calculated by Eq. (6), as 
follows:

R = ( XO - Xi1 )2 + (YO - Yi1 )2 (6)

The results of optimized algorithm extraction method are 
shown in Fig.7. Fig.7a and 7b show the first two iterations of 
the model, whereas Fig. 7c shows the final detection result. 
The iterative paths over the circle center during the algorithm 
calculation with five iterations are denoted by O1 – On. The 
initial points of the iterative model are chosen randomly, 
leading to fluctuated algorithm detection durations. Fig. 7d 
shows the calculation durations of the optimized algorithm in 
the melt pool width extraction process. After model 
optimization, the average calculation duration sharply 

decreases from 422 ms to 3.75 ms.
2.3  Effectiveness of different methods for melt pool   

width detection 

The algorithm calculation was conducted by Intel Core I5 
1135 CPU with frequency of 2.40 GHz and 16 G RAM. The 
experiment parameters were as follows: powder feeding rate 
of 0.16 g/s, scanning speed of 10 mm/s, and laser power of 
600 W. A circular deposition trajectory was selected for the 
printing scheme with an interlayer lift of 0.3 mm. Although 
machine learning methods are superior in the melt pool 
feature extraction in recent years[17–18], the large data quantity, 
high quality requirements of hardware, and poor real-time 
performance restrict their application only into the experiment 
stages. Therefore, in this research, the performance of the 
optimized algorithm was compared with that of traditional 
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Fig.6　Schematic diagrams of edge iterative model of melt pool width extraction process: (a) set of contour points; (b) initial width extraction;  

(c) iterative width extraction
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melt pool width extraction algorithms. The traditional focal 

distance (FD) method[9] and minimum bounding rectangle 

(MBR) method[13–14] were selected for comparison.

Fig.8 shows the schematic diagram with captured melt pool 

images and appearances of deposition sample and interference 

points. To validate the algorithm robustness, three levels (low, 

medium, and high) of interference melt pool images were 

selected for comparative analysis of melt pool width 

extraction. The spatial placement of these images was 

determined by the video timestamps. It should be noted that 

the actual location of the melt pool image may not coincide 

with the inferred spatial location due to the delay in image 

data transmission and machine movement, which causes the 

error of 1 ms. Nonetheless, the deposition layer corresponding 

to the melt pool image can still be identified, and the width of 

the same deposition layer remains relatively stable.

Hence, the microscopic-measured width of cross-section of 

the deposition layer is considered as the actual pixel width of 

the detected melt pool image. After measuring the melt pool 

width, the number of melt pool pixels was calculated from the 

pixel ratio, which was calibrated as 0.118 68 mm/pixel in this 

research. The algorithms predict the width by the number of 

image pixels.

Under each interference level condition, two groups of melt 

pool detection were conducted, and the L1, L2, M1, M2, H1, 

and H2 represent the detection groups under low, medium, 

and high interference level. For comparison, the raw images, 

FD algorithm results, MBR algorithm results, and optimized 
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Fig.7　Melt pool width extraction process by optimized algorithm method: (a) the first iteration, (b) the second iteration, and (c) final iteration; 

calculation durations of optimized algorithm in melt pool width extraction process (d)

Fig.8　Schematic diagram with captured melt pool images (a) and appearances (b–d) of deposition sample and interference points: (b) overall 

appearance; (c) cross-section A; (d) cross-section B
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algorithm results are shown in Fig. 9 – Fig. 11. FD algorithm 

uses the Canny algorithm to extract the melt pool edge, finds a 

straight line perpendicular to the scanning direction, and 

measures the maximum distance between the two 

intersections of the line and the melt pool edge as the melt 

pool width. MBR algorithm calculates the minimum outer 

rectangle of the melt pool edge. The length of the short side of 

the rectangle is considered as the melt pool width.

Table 2 presents the melt pool width results obtained by 

different algorithms. Fig. 12a shows the error of three 

algorithms. Although FD method has very high detection 

accuracy (the error is less than 1 pixel under low interference 

condition), its robustness is relatively low. Particularly, the 

calculation error occurs when the interference, such as spatter 

and arc light, is distributed along the vertical direction of the 

scanning speed. MBR algorithm shows high detection 

accuracy with the error of less than 3 pixels under low 

interference condition. However, this algorithm is susceptible 

to interference, such as powder spatter, which may consider 

the spattered part of the edge as the wrapping target. Besides, 

MBR algorithm cannot deal with the situation that the melt 

pool width changes from the short side to the long side and 

the correct rectangular output edge cannot be deduced from 

the melt pool change. The optimized algorithm shows good 

Fig.9　Melt pool image processing results under low interference condition: (a, e) raw images; (b, f) FD algorithm; (c, g) MBR algorithm;         

(d, h) optimized algorithm

Fig.10　Melt pool image processing results under medium interference condition: (a, e) raw images; (b, f) FD algorithm; (c, g) MBR algorithm; 

(d, h) optimized algorithm
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robustness against the interference, such as splash and arc 
light, and it ensures high detection accuracy with error of less 
than 1 pixel under different interference conditions.

Notably, the melt pool identification area is located at the 
rear of the scanning direction, as shown in Fig. 9f. This is 
because several significant interference may already gather in 
a short time at the rear position of the melt pool. This 
phenomenon causes error in the visualized algorithm 
calculation. The optimized algorithm determines the location 
of melt pool through the analysis of grayscale picture. The 
grayscale range is 0–255, but the grayscale value of the actual 
melt pool can exceed 255. However, the exceeding portion is 
still displayed as 255 in the image. The small spot size (<1.2 
mm) may cause obvious powder splash and arc light. When 
multiple interference is concentrated in the rear area of melt 
pool, the reflected light intensity is close to 255 at some 
locations, showing brightness close to that of the melt pool. 
Thus, it is difficult to distinguish the splash from the actual 
melt pool. However, the probability of this phenomenon is 
relatively low. Different algorithms have their specific 
advantages, and they all should be further investigated.

Fig.12b shows the time consumption of three algorithms for 

melt pool width detection. The average time consumption of 

the optimized algorithm is 2.55 ms, and all results are less 

than 4 ms. Due to the random selection of the initial points, 

the optimized algorithm has a more significant fluctuation in 

detection duration than other algorithms, and its maximum 

standard error is 0.5 ms. FD algorithm uses the least time with 

the average time consumption of 1.89 ms. The average time 

consumption of MBR algorithm is 5.92 ms. The standard error 

of these two algorithms is less than 0.03 ms, which can be 

ignored in this research. The purpose of online detection of 

Fig.11　Melt pool image processing results under high interference condition: (a, e) raw images; (b, f) FD algorithm; (c, g) MBR algorithm;      

(d, h) optimized algorithm

Table 2　Melt pool width results obtained by different algorithms 

(pixel)

Interference

level

L1

L2

M1

M2

H1

H2

Measurement

16.3

15.3

15.7

15.5

15.6

16.0

FD

algorithm

16.5

16.3

21.3

20.4

22.3

23.8

MBR

algorithm

17.9

14.9

21.5

19.4

17.5

20.8

Optimized

algorithm

16.6

14.8

14.9

14.9

15.4

16.3

L1       L2      M1      M2     H1      H2

L1       L2      M1      M2     H1      H2

Interference Level
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Fig.12　Error (a) and time consumption (b) of three algorithms for 

melt pool width detection
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LDED melt pool width is to provide data for subsequent 
feature control. The delay of mainstream Modbus, RS-232, 
and serial communication is 10 – 20 ms, considering the 
feedback algorithm processing time and other hardware 
delays. Thus, the time consumption of a single cycle is usually 
longer than 25 ms. Clearly, the optimized algorithm meets the 
requirements.

Briefly, the optimized algorithm can accurately identify the 
width of melt pool under different working conditions and has 
good robustness against various types of noise.
2.4  Experiment and analysis

Deposition experiments were conducted to validate the 
feasibility and adaptability of the proposed approach. Single-
track deposition was chosen as the experiment method. On the 
one hand, single-track deposition can avoid variable 
introduction, such as overlap ratio and interlayer lift, which 
can affect the accuracy of deposition width measurement. On 
the other hand, single-track deposition can reduce the 
deposition time and material consumption.

Based on the single-track deposition experiments, the 
process range was determined: laser power of 400 – 800 W, 
powder feeding rate of 0.25–0.35 g/s, and scanning speed of   
9–11 mm/s. In this case, the formation quality can be ensured. 
An orthogonal experiment design was devised based on this 
parameter range: the interval of laser power was 200 W, the 
interval of scanning speed was 1 mm/s, and the interval of 
powder feeding rate was 0.05 g/s. The experiment parameters 
and results are shown in Table 3.

Fig.13 shows the overall morphologies as well as melt pool 
images and metallographic results at point A (25 mm away 
from the beginning side) of different single-track deposition 
specimens corresponding to those in Table 2. The total track 
length is 50 mm. The melt pool widths at the beginning and 
end of the single-track deposition specimen show uneven 
phenomena, which is caused by the running mechanism that 
the acceleration and deceleration occur at both ends of the 
deposited track. Therefore, a buffer zone of 10 mm is left at 
both ends of the deposition track. The melt pool width was 
extracted by camera and the specimens with length of 30 mm 
in the middle of the layer were used for analysis. After the 
samples were cut, the mean values of the melt pool widths of 
the cross-sections with the distance of 10, 25, and 40 mm 

from the beginning side are taken as the actual widths of      
the melt pool.

Non-uniform powder accumulation can be observed in the 
cross-section along the deposition track. This phenomenon 
may be attributed to the non-vertical alignment between the 
processing head and the substrate, or the uneven powder 
distribution, which causes uneven powder aggregation at the 
laser focus and thereby affects the deposition morphology. 
However, this influence has a relatively minor effect on the 
melt pool width and can be ignored during measurement.

Fig. 14a shows the melt pool width comparison between 
measured results and algorithm calculation results. The experi-
ment results show that the algorithms mentioned in this 
research are practical for melt pool width extraction within  
the specific processing parameters. The overall FD and    
MBR extraction results are high, and FD algorithm method 
has the highest average relative error of 12.67%, as shown in 
Fig. 14b. The melt pool width extracted by FD algorithm 
method is proportional to the interferences with direction 
perpendicular to the scanning direction. The average relative 
error of MBR algorithm method is 8.44%. MBR algorithm 
method adjusts the rectangular profile with the existence of 
interferences, thereby reducing the width extraction error to 
some extent. However, along the width detection, the 
extracted values are inaccurate.

Compared with FD and MBR algorithm methods, the 
detection algorithm of melt pool width based on the edge 
iterative model shows higher accuracy and better robustness, 
and its average relative error is only 2.46%. This is mainly 
due to the numerous interference in the melt pool area and the 
complicated boundary variation. At the same time, the 
optimized algorithm has high resistance against the boundary 
variation and can therefore detect the melt pool edge in more 
practical situations.

Fig.14b illustrates the relative error of different algorithms 
for melt pool width detection. It can be seen that with 
increasing the laser power, the relative error of different 
algorithms is decreased. This can be attributed to the increased 
melt pool width, which results from higher laser power, 
thereby reducing the relative ratio between interference and 
melt pool. The algorithms mentioned in this research all 
maintain the high detection accuracy under different 

Table 3　Experiment parameters and melt pool width results

Specimen No.

1

2

3

4

5

6

7

8

9

Laser power, P/W

300

300

300

500

500

500

700

700

700

Scanning speed, V/mm·min−1

480

600

720

480

600

720

480

600

720

Powder feeding rate, G/g·s−1

0.25

0.35

0.30

0.35

0.30

0.25

0.30

0.25

0.35

Melt pool width/mm

1.41

1.22

1.16

1.81

1.69

1.58

2.22

2.12

2.00
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experiment parameters. Additionally, with increasing the laser 
power, the detected values obtained by optimized algorithm 
are firstly lower than the actual ones and then higher than the 
actual ones. It can also be observed that the melt pool images 
become brighter with increasing the laser power. It is inferred 

that the increased reflected light intensity under high power 
conditions causes overexposure of the camera. The exposure 
time should be reduced. The processing efficiency of 
optimized algorithm is worse than that of the traditional 
detection algorithms, but the optimized algorithm has 

Fig.13　Overall morphologies as well as melt pool images and metallographic results at point A of different single-track deposition specimens
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Fig.14　Melt pool width comparison between measured results and algorithm calculation results (a); relative error of different algorithms (b)
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excellent detection accuracy and high robustness. These 
advantages can be further improved by adaptive exposure to 
enhance the data acquisition accuracy and dynamic 
acquisition range. Briefly, the optimized algorithm method 
considers the laser energy distribution and the laws of powder 
metallurgy forming changes, which thereby exhibits excellent 
robustness and high extraction accuracy. The detection 
efficiency can meet the requirements of industrial online 
detection.

33  Conclusions   Conclusions 

1) In LDED image recognition, interference, such as 
powder splash and arc light, may lead to inaccurate detection 
of melt pool width. The traditional algorithm for melt pool 
width extraction has restrictions due to the boundary features 
of the melt pool.

2) The optimized algorithm method considers the laser 
energy distribution and the laws of powder metallurgy 
forming changes, which thereby exhibits excellent robustness 
and high extraction accuracy. The detection efficiency can 
meet the requirements of industrial online detection.

3) The optimized algorithm can effectively extract the melt 
pool width under various process parameters, and the 
calculated results and measured results are in good agreement. 
The average error of the optimized algorithm is only 2.46%.
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基于边缘迭代模型的激光沉积熔池宽度预测方法

苗立国 1，邢 飞 1，2，柴媛欣 1，闫成鑫 1，刘伟军 1

(1. 沈阳工业大学  机械工程学院，辽宁  沈阳  110870)

(2. 南京中科煜宸激光技术有限公司，江苏  南京  210038)

摘 要：根据熔池尺寸特征空间分布规律，提出了一种基于边缘迭代模型的熔池宽度预测方法。为了获得精确的熔池宽度，采用数学形

态学的方法对熔池图像进行去噪，并用手动阈值的方法对熔池图像进行粗分割。之后利用Canny算法提取出熔池边缘。最后，使用边缘

迭代模型进行边缘迭代，得到精分割后的熔池宽度。对比实验结果表明，该算法具有良好的检测精度和鲁棒性，且简易高效。
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