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Abstract: A new type of near-f titanium alloy (Ti555211) was investigated. This alloy has excellent plasticity, high specific strength,
and excellent comprehensive properties, which is widely used in the aerospace and chemistry industries. Through the 3%3 orthogonal

experiments, the influences of different stages of two-step annealing treatment (solution temperature, aging temperature, aging time)
on the mechanical properties and microstructures of Ti555211 titanium alloy were investigated. Results show that with increasing
the solution temperature and decreasing the aging temperature, the alloy strength is increased. The elongation is increased with
decreasing the solution temperature and increasing the aging temperature. After treatment of 820 °C/2 h/air cooling and 580 °C/12 h/
air cooling, the alloy has better plasticity, and its tensile strength reaches 1333 MPa, which is higher than the strength index (1080
MPa) of similar alloys by 20%. The elongation of the Ti555211 titanium alloy is 12%, which is higher than the plasticity index (5%)

of similar alloys by 140%.
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Titanium alloys are widely used in the aerospace, ocean,
and petrochemistry fields, because they have excellent high-
temperature properties, outstanding fatigue property, superb
corrosion resistance, low density, and high specific strength! .

The commonly used titanium alloys include metastable-
type Ti-15-3") B type-21S", near- B type Til023™, Ti5553",
Ti55531M BT22M"", and TB17"" alloys. Orthogonal test
method is commonly used to study the process parameters of
near-a titanium alloys with tri-modal structure®. The proper-
ties", deformation behavior''”, and heat treatment effects®
of titanium alloys have also been extensively researched.

Titanium alloys are the main structural material for the
aircraft and engine application, which show important
application value and broad application prospects in the
aerospace industry. The traditional high strength and high
toughness titanium alloys are mainly represented by the Ti-
1023 (US) and BT22 (Russian) titanium alloys. With the
development of aerospace industry, a new type of high
strength and high toughness titanium alloy has been proposed
and rapidly applied: Timetal556 alloy (US) and VST55531
alloy (US and Russia). These nouvelle alloys are less sensitive
to the segregation and have good hardenability, high strength,
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and high fracture toughness, which are particularly suitable
for the manufacture of structural part, landing gear, wing, and
engine pylons of the connections between devices under large
stresses.

Ti555211 titanium alloy, as one of the new near-/ titanium
alloys, has been applied to manufacture key components of
main landing gears of aircraft''”. However, the microstructure
evolution and mechanical properties of near-f titanium alloys
are very sensitive to the heat treatment temperature. In order
to study the performance of Ti555211 titanium alloy to satisfy
the requirements of aviation industry, orthogonal tests were
conducted to investigate the effects of different heat
treatments on the microstructure and mechanical properties of
Ti555211 titanium alloy.

1 Experiment

In this research, Ti555211 titanium alloy (Western Super-
conducting Technologies Co., Ltd) was used as research
object. The element composition of Ti555211 titanium alloy
is listed in Table 1. The size of Ti555211 titanium alloy bar
was @350 mm, and the (a+f)/f transition temperature was
875—-880 °C. Solution temperature, aging temperature, and
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aging time are the key factors affecting the alloy performance.
The solution temperature was 780, 800, and 820 ° C. The
aging temperature was 580, 600, and 620 °C. The aging time
was 6, 9, and 12 h. The solid solution temperature, aging
temperature, and aging time were selected according to the
remelting temperature of Ti555211 titanium alloy, the
standard requirements of project agreement, and the reference
product standard (Q/1S M1004-2023). The mechanical
properties of the specimens were tested after heat treatment.
The metallographic specimens were prepared for observation
by scanning electron microscope (SEM). To analyze the
microstructure evolution of Ti555211 titanium alloy, the
specimens were characterized by electron back-scattered
diffraction (EBSD). Before EBSD, the specimens were
subjected to electrolytic polishing, and the electrolyte was
composed of 10wt% perchloric acid and 90wt% absolute
alcohol. The polishing temperature and polishing time were
20 °C and 60 s, respectively.

2 Results and Analysis

Orthogonal tests were conducted to investigate the
relationship between the mechanical properties and influence
factors. Table 2 shows the tensile strength results of range
analysis. Table 3 shows the elongation results of range
analysis. In Table 3, the range R is the difference between the
largest and smallest results (R=X_—X ., where X indicates
the related factor).

According to the principle of orthogonal experiment,
the influence degree of the factor on the experimental result
is represented by the range. As shown in Table 3, the
influence factors from the most important to the least
important are solution temperature, aging temperature, and
aging time.

Fig. 1 shows the variation of tensile strength under the
interaction of three factors, except the unreliable results. It can
be seen that the tensile strength is increased with increasing
the solution temperature (Fig. la). However, the tensile
strength is decreased with increasing the aging temperature

Table 1 Element composition of Ti555211 titanium alloy (Wt%)

Al Mo \% Nb Fe Zr Ti
5.8 4.5 53 1.9 1.0 0.9 Bal.

(Fig. 1b). The effect of aging time on the strength is slight
(Fig. 1c). Three levels of aging temperature and aging time
appear simultaneously. It can be concluded that the aging
temperature and aging time do not affect the average effect of
the three factors. The tensile strength is only affected by the
solution temperature. Similarly, the extreme difference in
aging temperature and aging time is only caused by the
changes of their levels.

Additionally, the optimal treatment can be obtained:
treatment at 820 °C for 2 h with air cooling (AC) and 580 °C
for 12 h with AC. Ductility is another key performance.
As shown in Fig.2, with decreasing the solution temperature
or increasing the aging temperature, the elongation can
be enhanced. In brief, after treatment of 820 ° C/2 hW/AC
and 580 °C/12 h/AC, the alloy has better plasticity, and its
tensile strength reaches 1333 MPa, which is higher than
the strength index (1080 MPa) of similar alloys by 20%.
The elongation of Ti555211 titanium alloy is 12%, which
is higher than the plasticity index (5%) of similar alloys
by 140%.

3 Microstructure and Properties of Ti555211
Titanium Alloy

3.1 Solution temperature

As shown in Fig. 3, with increasing the solution
temperature, the number of equiaxed primary a particles is
decreased. This phenomenon can be explained by the fact that
with increasing the solution temperature, the thermodynamic
stability of a phase is decreased, which results in the gradual
dissolution of original a phase particles during the forging
process. With increasing the solution temperature, the tensile
strength is increased, whereas the elongation is decreased.

3.2 Aging temperature

Fig.4 shows the microstructures of Ti555211 titanium alloy
after treatments at different aging temperatures. It can be seen
that with increasing the aging temperature, the size of the
secondary o phase embedded in the substrate S sheet is
increased, whereas its content is gradually reduced. The
secondary o phase changes from the closed state to loosely-
arranged state.

Tensile strength is increased with decreasing the aging
temperature, because the content of the secondary a phase is

Table 2 Orthogonal test factors and three levels of results

Specimen Solution temperature/°C Aging temperature/°C Aging time/h Tensile strength/MPa Elongation/%
1# 780 580 6 1223 16.5
2# 780 600 9 1176 17
3# 780 620 12 1147 18
4# 800 580 9 1271 14
S# 800 600 12 1224 16
6# 800 620 6 1188 18.5
T# 820 580 12 1333 12
8# 820 600 6 1313 12.5
o# 820 620 9 1253 14.5
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Table 3 Range analysis of strength and elongation

Solution Aging
Range temperature/ temperature/ Error
time
°C °C
Tensile strength/MPa 117.667 79.667 8.000 11.334
Elongation/% 4.167 2.833 0.666 1.000

reduced. Because the interface area between a and f phases
reduces, the secondary phase strengthening weakens, which
degrades the tensile strength. Because the shape of secondary
phase changes from small grains to fine equiaxed grains, the
dislocation can easily bypass the equiaxed o phase, resulting

alloy. Therefore, the elongation improves.
3.3 Fracture morphologies

Fig. 5 shows the room temperature tensile fracture
morphologies of Ti555211 titanium alloy bars after treatments
at different solution temperatures. It can be seen that the
specimens show obvious diameter shrinkage in the fracture
process at solution temperatures of 780 — 820 ° C, and the
central area of the section is basically composed of gray
coarse fiber area, which presents the obvious ductile fracture
characteristics. With increasing the solution temperature, the
coarse fiber area is decreased.

The spherical or short rod-shaped primary o« phase hinders
the growth of f phase in the Ti555211 titanium alloy and
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Fig.3 Microstructures of Ti555211 titanium alloy after treatments at different solution temperatures: (a) 780 ° C/2 h/AC+600 ° C/9 h/AC;
(b) 800 °C/2 h/AC+600 °C/12 h/AC; (c) 820 °C/2 h/AC+600 °C/6 h/AC
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Fig.4 Microstructures of Ti555211 titanium alloy after treatments at different aging temperatures: (a) 820 °C/2 h/AC+580 °C/6 h/AC; (b) 820 °C/

2 W/AC+600 °C/9 h/AC; (c) 820 °C/2 /AC+620 °C/12 h/AC

Fig.5 Room temperature tensile fracture morphologies of Ti555211 titanium alloy bars after treatments at different solution temperatures:
(a, d) 780 °C/2 h/AC+600 °C/9 h/AC; (b, e) 800 °C/2 h/AC+600 °C/12 h/AC; (c, f) 820 °C/2 h/AC+600 °C/6 h/AC

microstructure. At the initial stage of deformation, £ matrix
cannot be deformed due to the precipitation of needle-shaped
or strip-shaped secondary a phase in S Matrix, and the
primary a phase bears the main plastic deformation of the
alloy. The plastic deformation of spherical or short rod-shaped
primary o phase results in work hardening. More external
stress is required to continue the deformation, and the f matrix
deforms accompanied with the precipitation of the secondary
o phase. With the deformation further proceeding, the necking
phenomenon occurs, indicating that micropores exist in the
alloy structure.

3.4 EBSD analysis

EBSD can be used to analyze the orientation distribution,
grain size, and phase content of specimens. Fig.6 shows the
phase distributions of Ti555211 titanium alloy after different
treatments. As shown in Fig. 6 and Fig. 7, it can be seen
that the content of o phase is decreased from 50.2% to 40.2%
with increasing the solution temperature. These results
all prove that the increase in solution temperature leads to
the redissolution of equiaxed a phase and the formation of

f phase.

Fig.7 shows the inverse pole figures (IPFs) of orientations
of Ti555211 titanium alloy after treatments at different
solution temperatures. Fig.8 shows the internal orientations of
o phase in Ti555211 titanium alloy. Fig. 9 shows the pole
figure (PF) results of Ti555211 titanium alloy. It can be seen
that the orientation of equiaxed o phase can be obtained in all
three states. As shown in Fig. 8 and Fig. 9, the internal
orientation of equiaxed o phase still has small angle
orientation difference. According to Fig.9, Burgers orientation
relation (BOR) exists between the green grain boundary of a
phase and the £ matrix.

In the {0001}, and {110}, PFs as well as the {1120}, and
{111}, PFs, a4, (the grain boundary of a phase) and a,
phases have corresponding poles with the f matrix. Besides,
there is no corresponding pole between the equiaxed a,
phase and £ matrix, which indicates that the BOR relationship
between o phase and f matrix is partially destroyed during
hot working.
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Fig.6 Phase distributions of Ti555211 titanium alloys after different treatments: (a) 780 °C/2 h/AC+620 °C/12 h/AC; (b) 800 °C/2 h/AC+600 °C/

12 h/AC; (c) 820 °C/2 h/AC+580 °C/12
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Fig.7 IPF orientations of Ti555211 titanium alloys after different treatments: (a) 780 °C/2 h/AC+620 °C/12 h/AC; (b) 800 °C/2 h/AC+600 °C/12
hWAC; (c) 820 °C/2 h/AC+580 °C/12 h/AC
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Fig.9 PF results of Ti555211 titanium alloy

4 Conclusions

1) The optimal heat process parameters of Ti555211 alloy
should be 820 °C and 2 h with air cooling as well as 580 °C
and 12 h with air cooling.

2) The solution temperature affects the number of primary o
phase. With increasing the solution temperature, the number
of primary a phase is decreased. The aging temperature affects
the size of the secondary a phase. With increasing the aging
temperature, the size of the secondary o phase is gradually
increased, and its content is gradually reduced.

3) Burgers orientation relation exists between the grain
boundary of a phase and the f matrix: {0001} //{110}, and
{1120} //{111},.
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