DOI: 10.12442/j.issn.1002-185X.20240537

烧结温度对 ZrW₂O₈/AI 复合材料组织结构与性能的影响

洪春福1,2, 贾正发1, 赵凯乐1, 赵桂林3, 舒琳翔1, 邹林池1,2, 戴品强1,2

(1 福建理工大学,材料科学与工程学院,福建,福州,350118)
(2 福建理工大学,福建省新材料制备与成形技术重点实验室,福建,福州,350118)
(3 福建省南平市三金电子有限公司,福建,南平,353000)

摘 要:本文采用放电等离子烧结法,分别在不同烧结温度下制备 50%ZrW₂O₈/Al 复合材料,研究复合材料的微观组织、物相组成、致 密度、热膨胀系数及热导率。结果表明:不同温度烧结的复合材料均含有 γ-ZrW₂O₈。随着烧结温度从 475 ℃逐渐提高到 575 ℃,复合材料的密度和 γ-ZrW₂O₈含量均逐渐升高。经室温~300℃第一次热膨胀实验去应力后,复合材料中 γ 相含量显著减少。第二次热膨胀实验测得随烧结温度升高,热膨胀系数先增大后减小,525 ℃样品最高(4.89×10⁶ K⁻¹)。ZrW₂O₈/Al 复合材料的烧结致密度显著影响其性能,525 ℃烧结复合材料的致密度高(92.9%)、热导率最大(31.9 W/m·K)。525 ℃是兼顾复合材料的成分稳定和烧结致密度的优化烧结温度。

关键词: 放电等离子烧结; ZrW₂O₈/Al 复合材料; 烧结温度; 显微组织; 热膨胀系数

中图法分类号: TB333 文献标识码: A 文章编号: 1002-185X(2017)0?-0???-0?

半导体器件在工作时,常因自热引起的温度上升或 环境温度变化而发生热膨胀/收缩等现象。若器件与基板 的热膨胀系数不匹配,温度的急剧变化会造成接合处极 大的热错配力^[1-2],可能会导致异种材料的界面间变形、 脱离,甚至断裂。常规电子封装用材料,一般采用高导 热金属如 Cu、Al等与具有低膨胀系数的 Si、SiC、石墨 等材料复合,制备低膨胀、高导热的复合材料^[3]。

目前颗粒增强铝基复合材料的制备工艺主要有液相法^[4-5]、固相法^[6-7]和固液两相法^[8]三种。固相法主要包括 热压真空烧结法、放电等离子烧结法(Spark Plasma Sintering, SPS)、激光烧结法、热挤压法和旋转摩擦法。 SPS 利用脉冲电流对粉末进行感应加热,具有升降温速 度快、复合材料致密度高等优良的特点,近年来引起广 泛关注^[9-11]。刘芳等人^[12]报道采用放电等离子烧结技术 制备 Si/Al 电子封装材料,550 °C烧结的 50%Si/Al 复合 材料的热膨胀系数为 11×10⁻⁶ K⁻¹。

自从 Sleight 报道钨酸锆(ZrW₂O₈)具有宽温度的高负 热膨胀特性以来,其相结构、高温转变特性及主制备技 术引起广泛的研究兴趣^[13]。ZrW₂O₈ 具有三种晶相^[14], 分别为低温α相(-8.9×10⁻⁶ K⁻¹),高温β相(-4.9×10⁻⁶ K⁻¹) 和高压γ相(-1×10⁻⁶ K⁻¹)。α相在 0.2 GPa 的压力下, 转变为γ相。当温度升高到 120 °C时发生逆转变,重新 得到α。在 150 °C左右时,ZrW₂O₈发生有序相向无序相 转变($\alpha \rightarrow \beta$)。鉴于 ZrW₂O₈的负热膨胀性质,在低热膨 胀复合材料领域有重要应用前景。黄兰萍等人^[15]采用模 压浸渗复合法制备了高致密度 63%ZrW₂O₈/Al 复合材 料,发现三次循环后复合材料的热膨胀系数为 3×10^{-6} K⁻¹。王浩伟课题组^[16]采用压力浸渗方法制备出 50%ZrW₂O₈/Al 复合材料,热处理后复合材料的热膨胀 较为平缓,热膨胀系数为 $6\sim9\times10^{-6}$ K⁻¹。Dunand^[17]利用 热等静压法制备 ZrW₂O₈/Cu 复合材料,复合材料致密度 高达 98.8%,但是较高的制备压力使得体系中出现了大 量的 γ-ZrW₂O₈,经过适当的热处理得到热膨胀系数 $4\sim5\times10^{-6}$ K⁻¹。

日本学者 Matsumoto A 等^[18]用 SPS 成功制备出了结 构均一的 25~75%ZrW₂O₈/Al 复合材料,并开展热膨胀性 能研究。王鑫等^[19]报道采用 SPS 制备了接近致密的 ZrW₂O₈/Fe-Ni 复合材料,实验表明在 117 ℃左右发生了 明显 的体 积膨胀,证明制备 的复合材料中存在 γ-ZrW₂O₈。周畅等^[20]采用 SPS 制备了低热膨胀多孔 ZrW₂O₈/Al 复合材料,并研究烧结压力对材料显微组织 与性能影响,结果表明烧结压力的提高可以改善其显微 组织,提高组织的致密性,并且孔洞可以缓解热应力。 魏徽等^[21]采用粉末冶金法制备 ZrW₂O₈/Al 复合材料,探 究了 Al 基体体积分数的变化对复合材料性能的影响。 50%ZrW₂O₈/Al 复合材料的热膨胀系数为 11.9×10⁻⁶ K⁻¹。 SPS 制备 ZrW₂O₈/Al 复合材料引起广泛的研究兴

趣。复合材料的性能受组织结构的影响。而在 SPS 烧结

收到初稿日期:

基金项目:福建省自然科学基金(2019J01786);福州市科技重大项目(2022-ZD-010)

作者简介:洪春福,男,1981年生,博士,副教授,福建理工大学,材料科学与工程学院,福建,福州 350118, E-mail: c.f.hong@fjut.edu.cn

工艺中,烧结温度对组织结构有重要影响,但相关的报 道较少。本文采用放电等离子烧结技术制备了 ZrW₂O₈/Al 复合材料,研究烧结温度对复合材料的微观 组织、物相组成、致密度、热膨胀系数和热导率的影响。

1 实验

••

采用固相法制备 ZrW₂O₈ 粉体。以干燥的分析纯氧 化锆 (99.95 at%) 和氧化钨 (99.95 at%)为原料,按 1:2 摩尔比称量混合后,加入适量无水乙醇,并采用行星式 球磨机研磨 24 h。随后将混合物移入石英坩埚,压实并 盖严后,进行固相烧结。ZrW₂O₈粉体的烧结、获取工艺 为:1)在 1200 ℃保温 2 h; 2)升温到 1260 ℃保温 5 min, 随后下降到 1200 ℃保温 2 h; 3) 重复 1 次第 2 步; 4) 淬火; 5) 干燥、磨成细粉后,取过 200 目筛网的粉体。

采用平均粒径为 45 μm、纯度> 99.95%的球形铝粉 与上述 ZrW₂O₈ 粉体混合。混料过程为:将 ZrW₂O₈ 与 Al 粉按照体积分数 1:1 进行配料;在低速卧室球磨机上 以 80 r/min 的转速混合 12 h,使其均匀。

将混合物装入 Φ30 mm 石墨模具中并置于放电等离 子烧结炉 (SPS-5T-5-III) 中进行烧结。本实验采用的烧 结温度分别为 457、500、525、550、575 ℃。烧结过程 为: 1) 设备抽真空到 10⁻³ Pa,随后施加 30 MPa 的轴向 压力; 2) 按 75 ℃/min 从室温升至 150 ℃,随后以 100 ℃/min 升温至 400 ℃; 3) 以 25 ℃/min 的速率升至 目标温度,保温 5 min; 4) 卸压降温,最后取出试样。

采用 Nova NanoSEM 45 型场发射扫描电镜观察复 合材料的显微组织。使用 D8 Advance 型 X 射线衍射仪 分析复合材料的物相组成,并用 K 值法计算相含量。采 用阿基米德排水法测量复合材料的致密度。采用 RPY-III 型热膨胀仪测量复合材料的线膨胀系数,温度范围为 25~300 ℃,升温速率 5 ℃/min。复合材料的热导率是通 过 LFA457 型热系数测量仪,采用激光闪光法进行测量, 试样尺寸为 10 mm×10 mm×1 mm。

2 结果与讨论

2.1 ZrW₂O₈/Al复合材料的微观形貌

图 1 所示为 ZrW₂O₈/Al 复合材料的微观形貌。图中 深灰色为铝基体,浅灰色不规则块体为 ZrW₂O₈ 颗粒。 Al 在所有复合材料中均呈现均匀分布。部分复合材料的 组织形貌出现孔洞、ZrW₂O₈ 颗粒破裂和裂缝等缺陷。 475 ℃烧结的样品中,Al 尚未形成连续的网络结构,可 观察到较明显的微孔洞和裂缝。随着烧结温度的升高, 上述缺陷的数量先减少后增加。525 ℃烧结的样品中, ZrW₂O₈ 与 Al 紧密结合,缺陷较少。当烧结温度上升到 550 ℃及以上时,ZrW₂O₈ 颗粒间距减小,部分 ZrW₂O₈ 颗粒破裂、破碎。

烧结温度对复合材料的微观结构有显著影响。在 475 ℃烧结时,ZrW₂O₈颗粒分布均匀,但Al颗粒的流 动性较差,未能完全填空复合材料的颗粒间隙。一部分 ZrW₂O₈颗粒不能完全被Al包裹,最终在复合材料中形 成孔洞和缝隙。随着烧结温度的上升,Al的变形和流动 能力提升,复合材料的缺陷逐渐减少。

当烧结温度为 550 ℃及以上时,有少量铝自模具配 合间隙处渗出。结合这两个温度下烧结的复合材料中, ZrW₂O₈颗粒间距减小乃至部分接触,可以推断是由于在 上述温度下,Al的流动性极强,在载荷作用下,会通过 模具的微小间隙挤出。张洋等^[22]人也报道了类似的现 象。当温度过高时,Al容易渗出,并通过毛细作用力带 动部分 ZrW₂O₈颗粒重新排布^[23]。

在本实验中,当烧结温度为 525 ℃时,Al 没有渗出, 复合材料两相接触良好,没有观察到明显缺陷。

图1 不同温度烧结 ZrW2O8/Al 复合材料的显微组织

Fig.1 Microstructure of ZrW2O8/Al composites sintered at

different temperatures: (a) 475 °C, (b) 500 °C, (c) 525 °C, (d)

550 °C, (e)575 °C

2.2 ZrW₂O₈/Al 复合材料致密度

复合材料在不同烧结温度下的密度变化,以及通过 理论密度(3.87 g/cm³)算得致密度如图 2 所示。大体上, 致密度随烧结温度的升高而持续增加。475 ℃烧结时, 致密度为 88.3%; 550 ℃烧结时,致密度提高到 95.4%。 烧结温度继续升高到 575 ℃时,致密度基本不变。

复合材料的致密度与显微组织的变化趋势基本一 致。在 475~525 ℃区间,随着烧结温度的升高,Al 颗粒 合并长大与塑性变形能力均持续提高。在 525 ℃、30 MPa 外加压力的作用下,完全合并长大、易变形的 Al 与周围的 ZrW₂O₈颗粒紧密接触,形成致密的复合材料。 当烧结温度继续上升到 550 ℃时,复合材料的实际 密度跃升到 3.69 g/cm³的高值。一方面,温度升高促进 致密化程度的提升。另一方面,密度因 AI 体积含量的下 降而上升。此时仍参考 50 vol% AI 的理论密度值,则致 密度数值的提升较大。据此,可以采用两个区间来表达 复合材料烧结温度对致密度的影响。在烧结温度低于 550 ℃的区间(如图中 Zone I),随着温度的上升,复合 材料的致密度持续提升。而在烧结温度达到 550 ℃后的 第二区间(如图中 Zone II),持续致密化以及铝含量减 少显著提升了实际密度。

但是,在第二区间内继续升高温度并没有导致密度 的持续提升。说明 Al 的溢出受两个因素影响:一方面, 温度对 Al 的流动能力有重要影响。在 550 ℃、30 MPa 的烧结条件下, Al 具有极强的流动性,可以通过极微小 的模具间隙溢出。另一方面,刚性 ZrW₂O₈ 颗粒间距减 小或是直接接触,可缓解或截止持续溢出。从而,烧结 温度的上升并未导致致密度持续增加。

Fig.2 Density of ZrW2O8/Al composites sintered at different

temperatures

2.3 ZrW₂O₈/Al 复合材料物相组成

图 3 为 ZrW_2O_8/Al 复合材料的 XRD 图谱。虽然原 料 ZrW_2O_8 为单一的 α 相 (PCPDF#501868),但不同温 度烧结的复合材料中的 ZrW_2O_8 均呈现 α 、 γ 两相共存。 Gallardo-Amores 等^[24]研究表明, ZrW_2O_8 在超过 200 MPa 的压强下才发生 $\alpha \rightarrow \gamma$ 相转变。本实验烧结过程中施加的 载荷为 30 MPa,远低于相变的理论应力值。

图 3 不同烧结温度制备的复合材料的 XRD 图谱

Fig.3 XRD patterns of composite materials prepared at

different sintering temperatures

其他研究也报道了 SPS 烧结制备的 ZrW₂O₈ 复合材 料中含有 γ-ZrW₂O₈ 的现象^[25]。γ 相的产生与复合材料中 的热错配应力有关。在完成高温、高压烧结后的冷却过 程中,随着温度的降低,复合材料中的 ZrW₂O₈ 持续膨 胀,而 Al 基体收缩,因而在复合材料体系中生成较大的 热错配应力(残余应力),导致部分 α-ZrW₂O₈ 转变成 γ 相。基于增强体和基体之间的弹性相互作用,残余应力 可以用公式(1)估算

$$\sigma_{therm} = \frac{\Delta \alpha \Delta T}{\frac{1 + \nu_m}{2E_m} + \frac{1 - 2\nu_p}{E_p}} \tag{1}$$

其中 *E* 是杨氏模量, *v* 是泊松比, 下标 *m* 和 *p* 分别 表示基体(Al) 和颗粒(ZrW₂O₈)。 $\Delta \alpha$ 为两相热膨胀 系数的差值, ΔT 表示室温和热循环温度之间的差值。 本实验中, 若不考虑复合材料在烧结时的孔隙率,以及 降温时 Al 和 ZrW₂O₈ 两相接触界面的应力弛豫,则可依 据两相的性能参数(*E_m* = 70 GPa, *E_p* = 88.3 GPa, *v_m* = 0.33, *v_p* = 0.303), 计算出完全致密样品的热错配应 力如图 4 所示。不同烧结温度下,热错配应力值均远大 于 ZrW₂O₈ 发生 $\alpha \rightarrow \gamma$ 所需的 200 MPa, 且随着烧结温度 的上升而增大。

随着烧结温度的上升,复合材料中γ-ZrW₂O₈的相对 含量也持续增加,如图4所示。当烧结温度为475℃时, γ相含量为30.8%。525℃烧结的复合材料中γ相含量达 到48.4%。当烧结温度为575℃时,γ-ZrW₂O₈的相对含 量达到62.8%的最大值。 γ相含量与复合材料降温时的应力释放能力密切相
 关。475 ℃烧结的复合材料中存在孔洞、缝隙等缺陷。
 这些缺陷可缓解热错配应力。当烧结温度升高时,复合
 材料致密度的提升导致γ相含量增加。

••

图 4 不同烧结温度制备对复合材料相组成

composition of composite materials

烧结温度继续上升到 550 ℃及以上时,热错配应力 继续增加。与此同时,随着复合材料中 Al 相对含量的下 降,一方面,ZrW₂O₈颗粒承受的压应力继续增加,导致 γ-ZrW₂O₈的相对含量持续增加;另一方面,降温过程中 复合材料协调变形能力下降,应力集中现象加剧,出现 了部分 ZrW₂O₈颗粒破裂、破碎的现象。

2.4 ZrW₂O₈/Al 复合材料的热膨胀系数

图 5 所示为 ZrW₂O₈/Al 复合材料在室温~300 ℃升、 降温时第一次热循环的长度变化曲线。升、降温过程中, 所有试样均呈现正膨胀。以 575 ℃烧结的复合材料为例: 由室温升到 120 ℃过程中,复合材料呈现斜率较均匀的 正膨胀;从 120 ℃上升到 150 ℃时,复合材料急剧膨胀; 随后在 150~300 ℃升温过程中,热膨胀曲线的斜率逐渐 减小。当温度下降时,试样长度收缩曲线与升温过程不 重合。在 300~150 ℃及 110~60 ℃的降温过程中,样品 较均匀地收缩;在 150~110 ℃的温度区间内,出现一个 长度几乎保持不变的平台。在第一次升、降温后,样品 的热膨胀曲线未回到原点,长度增加。

所有试样均呈现上述长度变化规律。不同烧结温度 主要影响复合材料在 120~150 ℃温度区间内升、降温时 膨胀曲线的斜率,使得降温时,各样品的长度增加值出 现差异。如图 5 所示,575 ℃烧结复合材料的长度增加 最多,500 ℃次之,475、525 和 550 ℃样品的长度增加 量相对较小。

图 6 所示为 ZrW₂O₈/Al 复合材料第一次热循环的升 温过程中热膨胀系数随温度变化曲线。在热膨胀实验温 度上升的过程中,不同温度烧结的复合材料具有相同的 热膨胀系数变化规律。以 525 ℃烧结的复合材料为例: 室温附近,样品的热膨胀系数为 4.5×10⁻⁶ K⁻¹,并随着温 度上升略有波动; 80 ℃之后,热膨胀系数急剧上升,在 110 ℃处达到 11×10⁻⁶ K⁻¹ 的最大值,随后迅速下降, 150 ℃时降到 6×10⁻⁶ K⁻¹;温度继续上升,热膨胀系数相 对平缓地继续下降,270 ℃时降到 4×10⁻⁶ K⁻¹;270~300 ℃ 区间,热膨胀系数较快地下降到接近零膨胀。

图 6 ZrW₂O₈/Al复合材料第一次热循环升温阶段的线膨胀系数变化

Fig.6 Changes of linear expansion coefficient of ZrW₂O₈/Al composites during the first thermal cycle

ZrW₂O₈在不同温度的相状态,及其对复合材料热膨胀系数的影响,引起广泛的研究兴趣^[26-29]。在室温~80 ℃

区间,复合材料中的 ZrW₂O₈ 为 γ+α 两相共存, α-ZrW₂O₈ 的高负热膨胀极大地补偿了 Al 的正膨胀。在 80~150 ℃ 出现的热膨胀系数快速增大的现象,是由于 ZrW₂O₈ 发 生 γ→α 相转变(伴随着 5%的体积扩张)导致的。在 150 ℃附近, α-ZrW₂O₈ 转变为热膨胀系数较低的 β 相^[30], 复合材料在 150~250 ℃的平均热膨胀系数大于其在室温 ~80 ℃的温度区间。另外,在 150 ℃以上出现了平均热 膨胀系数持续下降的现象,推测是随着温度的上升,铝 的变形能力逐渐增强,逐渐地填充 ZrW₂O₈ 发生 γ→α 相 转变而引发的复合材料界面撕裂、缝隙等体缺陷和体积 扩张,补偿了 Al 的热膨胀。

发生 ZrW₂O₈的 γ→α 相转变的温度与复合材料中 γ 相的含量有关。γ 相的含量越少,则起始转变温度越低。 575 ℃烧结的复合材料的起始转变和终了时的温度最 高。从组织结构的角度分析,由于 γ→α 相转变是一个体 积膨胀的过程,则受复合材料中应力状态影响。575 ℃ 烧结的复合材料中 Al 含量低,残余压应力大,不利于 γ→α 相转变的低温进行。相反,475 ℃烧结的复合材料 结构疏松,促进 γ→α 相转变温度的下移。

对经过一次热膨胀测量的样品进行 XRD 检测,结 果如图 7 所示。经过一次热循环后,575 ℃烧结的复合 材料中还存在 γ-ZrW₂O₈,其他温度的复合材料中γ相残 余极少。此外,575 ℃烧结的复合材料在烧结态和第一 次热循环后,均出现 WO₂ (PCPDF#321393)和 WO₃ (PCPDF#461096)相的衍射峰,表明出现了部分钨酸 锆分解。

图 7 ZrW₂O₈/Al 复合材料经第一次热循环后的 XRD 图谱

Fig.7 XRD patterns of ZrW₂O₈/Al composites after the first

thermal cycle

对复合材料进行第一次热膨胀循环实验,以及热循 环前、后的 XRD 图谱对比分析,证实了烧结态复合材 料中存在较高的残余应力。经过热循环后,残余应力缓 解,试样伸长。复合材料应力缓解程度与烧结温度有关。 在第二次热循环时,样品的热膨胀曲线如图8所示。

••

与第一次热循环相比,第二次热循环时的膨胀曲线呈现如下区别:1)当热循环温度升到 300 ℃时,525 ℃烧结试样的热膨胀量(dL/L₀)略有减小,其它试样均大幅下降;2)热循环结束后,550 ℃和 575 ℃烧结试样的长度有少量增加,其它试样基本回复原长度;3)从 120 ℃上升到 150 ℃时,复合材料的膨胀量相比第一次热循环时减小。

图 8 ZrW₂O₈/Al 复合材料第二次热循环的热膨胀曲线图 Fig.8 Thermal expansion curve of ZrW₂O₈/Al composite material in the second thermal cycle

图9所示为ZrW₂O₈/Al复合材料在室温~300 ℃第二 次热循环的升温阶段的热膨胀系数变化曲线,呈现如下 特点:1)所有试样均存在一个热膨胀系数增大的峰,说 明复合材料中仍有 γ -ZrW₂O₈。2)525 ℃烧结试样的热 膨胀系数明显高于其他试样,且在更低的温度下发生 $\gamma \rightarrow \alpha$ 相转变。3)与第一次热循环的热膨胀系数变化曲 线相比,所有复合材料的热膨胀系数均下降,特别是发 生 $\gamma \rightarrow \alpha$ 转变的热膨胀系数值的增量显著减少。在整个热 循环温度范围内,热膨胀系数的波动变小。

经过一次热循环后,极大地缓解了烧结态的残余应 力。但由于两相巨大的热膨胀不匹配,仍有应力残余。 继续对复合材料进行热膨胀实验发现,热膨胀曲线与第 二次热膨胀实验的差异极小,即第二次热循环的热膨胀 系数曲线已基本稳定。

••

图 9 ZrW₂O₈/Al复合材料第二次热循环升温阶段的线膨胀系数变化

Fig.9 Changes of linear expansion coefficient of ZrW₂O₈/Al composites during the second thermal cycle

图 10 为复合材料在第一次和第二次热循环测得的 平均热膨胀系数对比。该平均热膨胀系数通过计算样品 从室温升温到 300 ℃的热膨胀数值求得。不同烧结温度 样品的第一次热循环的平均热膨胀系数在 5~5.7×10⁻⁶ K⁻¹区间。第二次热循环的平均热膨胀系数呈现较大波 动,且均比第一次低。其中,475、500 和 550 ℃烧结样 品的平均热膨胀系数显著下降。525 ℃烧结样品的平均 热膨胀系数下降最少。

复合材料第二次热循环的热膨胀系数显著低于第一次热循环,是因为在第一次热循环中,复合材料发生了 少量塑性变形(长度延伸),缓解残余应力。其中,575℃ 烧结复合材料的塑性变形量最大,约为 0.06%; 475~525℃烧结复合材料的变形量均较少,约为 0.03%。 可以推断,上述变形对复合材料致密度的影响较小。

对于在 475~525 ℃区间烧结的复合材料,第二次热 循环的平均热膨胀系数随着烧结温度的升高而迅速上 升,与其致密度相关。当热循环的温度在 100 ℃以下时, 复合材料中的孔洞极大地补偿了 Al 的正膨胀,显著地降 低了复合材料的线膨胀系数。而 525 ℃烧结复合材料在 100 ℃以下即发生 $\gamma \rightarrow \alpha$ 相转变,可能的原因是复合材料 两相结合良好、结构致密,因而在低温下,即协同发生 了 Al 的正膨胀和 ZrW₂O₈ 的膨胀型 $\gamma \rightarrow \alpha$ 相转变。在 525~575 ℃区间烧结的复合材料,第二次热循环的平均 热膨胀系数先迅速降低,主要因素是复合材料中 ZrW₂O₈ 含量的上升;而 575 ℃时的上升是因为仍有 $\gamma \rightarrow \alpha$ 相转 变。

混合法则(ROM)^[21]是使用加平均值法预测复合材 料热膨胀系数与各组分体积含量关系的一种方法。 Kerner^[31]模型引入增强体和基体的模量进行修正,其计 算公式为:

$$\alpha_{c} = \alpha_{m}V_{m} + \alpha_{p}V_{p} + V_{p}V_{m}(\alpha_{p} - \alpha_{m})$$

$$\times \frac{K_{p} - K_{m}}{V_{m}K_{m} + V_{p}K_{p} + (3K_{p}K_{m} / 4G_{m})}$$
(2)

式中 $\alpha_{\rm c}$ 、 α_m 和 α_p 分别为复合材料、基体(Al)和增强体 (ZrW₂O₈)的热膨胀系数,V表示体积分数, K_m 和 K_p 分 别为基体(Al)和增强体(ZrW₂O₈)的弹性模量, G_m 为 Al 基体剪切模量。

根据公式 (2), 复合材料的热膨胀系数随着 Al 含量 降低而下降。50%ZrW₂O₈/Al 复合材料材料的热膨胀系 数为 7.16×10⁻⁶ K⁻¹。而本实验所有样品的热膨胀系数均 低于理论预测,是由于样品的致密度有重要影响。在升 温过程中,孔隙会部分地补偿基体相的热膨胀,导致热 膨胀系数下降。其中,525 ℃烧结的最致密的复合材料 的热膨胀系数最高。

525 ℃烧结的复合材料,在室温~300 ℃区间的平均 热膨胀系数为4.6×10⁻⁶ K⁻¹,与硅(平均4.0×10⁻⁶ K⁻¹)接 近^[32]。且在室温~200 ℃区间的热膨胀系数位于4~6×10⁻⁶ K⁻¹的范围内,与硅具有极好的界面热膨胀匹配性。

图 10 ZrW₂O₈/Al 复合材料 2 次热循环的平均热膨胀系数对 比

Fig.10 Comparison of average thermal expansion coefficients

of ZrW_2O_8/Al composites during two thermal cycles

2.5 ZrW₂O₈/Al复合材料的导热性能

图11 所示为ZrW₂O₈/Al复合材料的热导率随烧结温 度的变化关系。随着烧结温度的升高,ZrW₂O₈/Al 复合 材料的热导率先升高后降低,525 ℃烧结的复合材料的 热导率最佳。插图所示为各个复合材料从室温~300 ℃的 热导率变化曲线。

ZrW₂O₈/Al 复合材料的热导率与其第二次热膨胀测 量的平均热膨胀系数的变化规律一致。在475~525 ℃时, 复合材料的热导率随烧结温度同向升高。这是因为复合 材料的热导率随致密度上升而增加。结合对复合材料的 致密度分析,在保温过程中易变形的 Al 与 ZrW₂O₈颗粒 在 30 MPa 外加压力的作用下结合得更加紧密,孔洞、 裂缝等缺陷的减少,会增大 ZrW₂O₈/Al 复合材料的界面 传热系数,从而增大热导率。

ZrW₂O₈的热导率(0.8 W/m·k)远远低于 Al 的热导 率(238 W/m·k)。当烧结温度继续上升到 550 ℃和 575 ℃ 时, Al 的溢出导致形成具有高浓度 ZrW₂O₈颗粒的局部 区域,复合材料的热导率降低。

图 11 不同烧结温度的 ZrW₂O₈/Al 复合材料的热导率

Fig.11 Thermal conductivity of ZrW2O8/Al composites at

different sintering temperatures

3 结论

1)烧结温度对放电等离子烧结 50%ZrW₂O₈/Al 复合 材料的显微组织有重要影响,烧结温度为 475 ℃和 500 ℃时,复合材料有较多孔洞;550 ℃以上烧结时出 现 Al 的溢出;525 ℃烧结的复合材料的结构致密(致密 度 92.9%),两相结合良好。

2)所有烧结态复合材料均含有残余应力, ZrW₂O₈呈现 α、γ 两相共存,相含量随着烧结温度升高而增加。复合材料经室温~300 ℃热膨胀实验后,出现 0.03%~0.06%的延伸,残余应力缓解,γ相含量下降。

3)室温~300 ℃第 2 次热膨胀实验时,所有复合材料 的平均热膨胀系数均低于第 1 次热膨胀实验结果。随着 烧结温度的升高,2 次实验的平均热膨胀系数均呈现先 增加后降低的趋势,与复合材料的致密度和成分变化有 关。

4)525 ℃烧结的复合材料的热导率最高,室温 ~300 ℃的平均热膨胀系数为4.89×10⁻⁶ K⁻¹,室温~200 ℃ 的热膨胀系数处于 4~6×10⁻⁶ K⁻¹范围内。

致谢:感谢福建省自然科学基金(2019J01786)和福州 市科技重大项目(2022-ZD-010)对本研究的支持,感谢 福州大学郑振环老师对物相分析给予的帮助。

参考文献 References

[1] Zhang Yihao(张益豪),Yan Yi(严毅),Wang Zhenjun(王振军) et al. *Rare Metal Materials and Engineering*(稀有金属材料与工程)[J],2022,51(02):661-668

[2] Gong Hao(龚浩), Zou Chunming(邹鹑鸣), Wei Zunjie(魏尊杰) et al. Rare Metal Materials and Engineering(稀有金属材料与工 程)[J], 2022, 51(07): 2475-2482

[3] Hu Yong(胡勇), Yang Haokun(杨浩坤), Deng Jun(邓君) et al. Journal of Dongguan University of Technology(东莞理工学院学 报)[J], 2021, 28(01): 118-122

[4] Yu W,Wang Y,Li Y et al. Composites Part B:Engineering[J],2023,255: 110611

[5]Liu Y,Lai R,He C et al. *Materials* Characterization[J],2022,186:111795

[6] Zhang J,Liu Q,Yang S et al. Progress in Natural Science: Materials International[J],2020,30(2):192-199

[7] Shi Q,Mertens R,Dadbakhsh S et al. Journal of Materials Processing Technology[J],2022,299:117357

[8] Cao C,Zhang X,Chen T et al. Materials Research[J],2017,20:236-248.

[9] Cohen S,Ratzker B,Kalabukhov S et al. *Journal of the European Ceramic Society*[J],2023,43(14):6628-6633

[10] Imran M,Deillon L,Sizova I et al. Materials & Design[J],2022,223: 111210

[11] Gao Lian(高濂),Gong Bendashu(宫本大树).Spark Plasma Sintering[J],1997,(02):129-133

[12] Liu Fang(刘芳), Chang Qingming(常庆明), Sun ze(孙泽) et al. Hot Working Technology(热加工工艺)[J], 2020, 49(06): 77-80+84

[13] Mary T A,Evans J S O, Vogt T et al. Science[J],1996,272(5258):90-92

[14] EvansJ S O. Science[J],1997,275(5296):61-65.

[15] Huang Lanping(黄兰萍), Chen Kanghua(陈康华). Heat Treatment of Metals(金属热处理)[J], 2006, (01): 20-22

[16] Wu Y,Wang M L,Chen Z et al. Journal of Materials Science[J],2013,48(7):2928-2933

[17] Holzer H,Dunand D C. Journal of materials research[J],1999,14(3):780-789

[18] Matsumoto A,Kobayashi K,Nishio T et al. *Thermec'2003,Pts* 1-5[J] 2003, 426-4:2279-2283 [19] Wang xin(王鑫), Wang xinlin(王新林), Zhang Yanghuan(张羊换)
et al. Journal of Functional Materials(金属功能材料)[J], 2011, 18(03): 36-40

[20] Zhou C, Zhang Q, Liu S et al. Journal of Alloys and Compounds[J],2016,670:182-187

[21] Wei H,Li C,Xu Y et al. RSC advances[J],2024,14(6):3952-3961

[22] Zhang Yang(张洋),Liu Cansen(刘灿森),Wang juan(王娟) et al. Iron Steel Vanadium Titanium(钢铁钒钛)[J],2023,44(06):81-87

[23] Zheng Yi(郑毅). Study on Microstructure and Properties of Si₃N₄/5083Al Composites Prepared by SPS(SPS 法制备 Si₃N₄/5083Al 复合材料的显微组织及性能研究)[D].Harbin:Harbin Institute of Technology,2020

[24] Gallardo-Amores J M,Amador U,Moran E et al. *International Journal of Inorganic Materials*[J],2000,2(1):123-129

[25] Wang Xin(王鑫),Feng Meng(冯猛),Zhang Jianfu(张建福) et al. Journal of Functional Materials(金属功能材料)[J],2009,16(02):60-64

[26] Zhong Chongcui(钟崇翠). Preparation and Properties of ZrW₂O₈/BADCy Composites(ZrW₂O₈/BADCy 复合材料的制备及性 能研究)[D].Mianyang:Southwest University of Science and Technology,2020

[27] Zhong Chongcui(钟崇翠),Wang Danrong(王丹蓉),Ruan Kangjie(阮康杰) et al. Journal of Southwest University of Science and Technology(西南科技大学学报)[J],2020,35(01):15-21+63

[28] Zhou Chang(周畅). Design and Characterization of Zero Expansion ZrW₂O₈/Al Composites(基于零膨胀 ZrW₂O₈/Al 复合材料 设计与表征)[D].Harbin:Harbin Institute of Technology,2017

[29] Shen Yuanzun(沈沅樽).Study on Thermal Expansion Characteristics and Mechanical Properties of Three-Dimensional Graphene-Based Nano-Ceramic Composites(三维石墨烯基纳米陶瓷 复合材料热膨胀特性与力学性能研究)[D].Lanzhou:Lanzhou University,2020

[30] Yang C,Li J,Yang D et al. ACS Sustainable Chemistry & Engineering [J],2019,7(17):14747-14755

[31] Kerner E.The Elastic and Thermo-Elastic Properties of Composite Media [J], Section B,1956,69(8):808

[32] Qiao Shixiang(乔诗翔),Li Haojie(李豪杰),Yu Hang(于航) et al. *Chinese Journal of Scientific Instrument*(仪器仪表学报)[J],2023,44(05)

Effect of Sintering Temperature on the Microstructure and Properties of ZrW₂O₈/Al Composite Prepared by Discharge Plasma Sintering

Hong Chunfu^{1,2}, Jia Zhengfa¹, Zhao Kaile¹, Zhao Guilin³, Shu Linxiang¹, Zou Linchi^{1,2}, Dai Pinqiang^{1,2}

(1.School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China

(2.Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fujian University of Technology, Fuzhou 350118, China (3.Sanjin Electronics Co., Ltd., Nanping City 353000, China

Abstract: 50%ZrW₂O₈/Al composites were prepared by means of discharge plasma sintering. The effect of sintering temperatures on the microstructure, phase composition, density, thermal expansion coefficient and thermal conductivity of the composites was studied. The results show that the composites sintered at different temperatures contain γ -ZrW₂O₈. As the sintering temperature gradually increases from 475 °C to 575 °C, the density and content ratio of γ -ZrW₂O₈ in the composites gradually increase. After a process of stress relief by the first thermal expansion test (from room temperature to 300°C), the content ratio of γ -ZrW₂O₈ in the composite material was significantly reduced. The second thermal expansion test revealed that as the sintering temperature increases, the thermal expansion coefficient first increases and then decreases, with the 525 °C sample being the highest (4.89×10⁻⁶ K⁻¹). The sintering density of the composite significantly affects its performance. The ZrW₂O₈/Al composite sintered at 525 °C presents both the highest density (92.9%) and thermal conductivity (31.9 W/m·K). 525 °C is the optimal sintering temperature that takes into account the composition stability and sintering density of the composites.

Key words: Discharge plasma sintering; ZrW2O8/Al composite; Sintering temperature; Microstructure; Thermal expansion coefficient

Corresponding author: Hong Chunfu, Ph. D., Fujian University of Technology, Fuzhou 350118, P. R. China, E-mail: c.f.hong@fjut.edu.cn

