https://doi.org/10.12442/j.issn.1002-185X.20240651

牙科植入物 Zr-30Ti-xCu 合金显微组织及性能

陈哲斌,崔越,胡丽娟,马润泽,徐诗形,姚美意

(上海大学 材料研究所, 上海 200072)

摘 要: 锆(Zr)及其合金具有较低的弹性模量、良好的耐腐蚀性能和优异的生物相容性,近年来在牙科植入物候选材料中 得到了广泛关注。本工作以 Zr 为基体,结合价电子浓度理论设计了成分为 Zr-30Ti-xCu(x = 0、3、7,质量分数,%)的新 型合金。使用 SEM/EDS 和 TEM/EDS 等表征了该合金的显微组织,通过显微硬度测试、室温拉伸实验、电化学测试、接触角 测试和抗菌性能实验表征了该合金的力学性能、腐蚀行为、生物相容性与抗菌性能。结果表明:通过 650 °C/15 min 淬火工艺 处理后 3 种合金基体主要为β相,添加 Cu 后合金基体中析出了 Zr₂Cu 第二相,且随着 Cu 含量的增加,Zr₂Cu 第二相数量增 多。随着 Cu 含量的增加,维氏显微硬度提高了 37%,接触角从 98.49°减小至 74.21°,表面润湿性提高,对于大肠埃希氏 菌和金黄色葡萄球菌表现出明显的抑制作用,且增强了合金在生理盐水中的耐腐蚀性能;3 种合金均具有较低的弹性模量 (67.8~78.9 GPa)和细胞毒性,但与 Cu 含量的关系不大。可见,Zr-30Ti-xCu 合金表现出了较优异的综合性能,可为新型牙 科金属植入物的选材提供理论依据和指导。

关键词: Zr-Ti 合金; 牙科植入物; 力学性能; 腐蚀行为; 生物相容性 中图法分类号 TG146.4⁺14; TG156.31 文献标识码: A 文章编号: 1002-1853

牙齿是人体最重要的器官之一。根据世界牙科联合 会(FDI)口腔健康观察项目的调查数据显示,中国总 体口腔健康状况评价为"非常好/好"的比例仅为57.8%[1]。 采用目前主流的治疗手段,牙科种植体在临床植入的失 败率依然达到 2%~3%[2]。导致种植体植入失败的两个主 要原因是松动和感染[2-3]。目前主流商用口腔种植体材料 一直是纯钛及钛合金(主要是 Ti-6Al-4V), 在室温下为密 排六方结构 (hcp) 的 α 相, 其弹性模量 (102~110 GPa) 相对于人骨(20~30 GPa)高出很多,这会产生应力屏蔽 效应,最终导致种植体的松动和脱落^[4]。同时有研究表 明该材料在抗菌能力方面仍表现较差,有90%的种植体 在临床植入后出现感染迹象,50%出现不可逆的组织损 伤^[5]。另外, Ti-6Al-4V 会释放出过量的 V、Ti 离子,导 致神经系统疾病, Ti 离子的过度释放也会导致牙龈炎症 和牙周炎症,进而损害人体健康^[6-8]。Ti及其合金弹性模 量过高的问题,可以通过改变晶体结构或引入 Zr 元素来 解决。体心立方结构 (bcc)β相Ti及其合金不仅具有比 α相更低的弹性模量(≥65 GPa),同时还可以保持较 高的抗拉强度^[9-10]。添加 Zr 元素后可以显著改善 Ti 合金 的力学、生物相容性、耐腐蚀性能等^[11-13]。Ti-Zr 合金作 为牙科植入物材料在临床中种植成功率达到 95.2%以上 [14]

Ti-Zr 合金种植体的成功应用促进了医用 Zr 基合金的研发^[14]。Guglielmotti 等^[15]使用酸洗后的纯 Zr 与纯 Ti 植入物植入维斯塔尔(Wistar)大鼠体内并保持 30 d, 结果表明,与 Ti 相比,Zr 与大鼠胫骨能发生更良好的 文章编号: 1002-185X(xxxx)0?-0???-0?

界面反应,说明 Zr 具有更良好的骨相容性,其腐蚀产物 的毒副作用也更低。根据 Zr-Ti 相图可知, Zr 与 Ti 可以 形成无限固溶体^[11],以 Zr 为主的β相结构 Zr-Ti 系合金 具有比纯 Ti 更接近人骨的弹性模量,同时其抗拉强度可 以达到 1154 MPa 以上^[14]。可见,在牙科植入物金属材 料领域, Zr 相较于 Ti 具有更加良好的骨相容性,更低 的腐蚀产物毒性和更低的弹性模量等优点。

种植体除了面临耐腐蚀性能和力学性能的相关问题 外,还面临着感染的问题。Kolawole 等^[16]研究发现,在 Ti-15Zr 合金中添加 Cu 后对大肠杆菌和金黄色葡萄球菌 的抗菌活性 *R* 分别达到 97.6%和 98.2%。同时有文献[17] 报道,将 Cu 粒子掺入微弧氧化膜层构建出的抗菌表面 能有效解决感染问题。此外,Yi 等^[18]研究 Ti-35Nb-7Zr-xCu 合金抗菌性能时发现,Cu 不仅能够起 到明显的抗菌作用,还对人体细胞表现出较低的细胞毒 性。综上,为了提升 Zr-Ti 合金的抗菌能力,可以考虑 在合金中加入少量 Cu。我们根据价电子浓度(VEC)的 计算设计出成分为 Zr-30Ti-xCu (*x*=0,3,7) 三元 Zr 基 合金,通过在合金 β 相温区进行淬火得到了淬火态合金, 并对合金的力学性能、腐蚀行为、生物相容性与抗菌性 能的表征,以评估其在生物医用材料应用的潜力。

1 材料与研究方法

1.1 合金成分设计

合金成分设计需同时兼顾材料的低弹性模量和较好 的抗菌性能,因此需要保证合金基体在室温下为β相,

作者简介:陈哲斌,男,1999年生,硕士,上海大学材料研究所,上海 200072,电话: 021-56338586, E-mail:czb1115380061@163.com

并且含有 Cu 的第二相析出。Zr-Ti 合金在质量比为 Zr:Ti=66:34 时,其α-β 相转变温度最低,约为 536℃。 因此合金成分设计应尽量靠近该质量比,同时由于 Cu 在 Zr 中的固溶度极低,只需加入少量 Cu 元素即可析出 含 Cu 第二相。根据上述确定成分范围,我们设计了 Zr-30Ti-xCu (x = 0、3、7)合金,分别定义为 0Cu、3Cu、 7Cu 合金。

为了预测所设计的 Zr-30Ti-xCu 合金能否形成稳定的 β 相,我们通过价电子浓度(VEC)计算进行了验证,计算结果如表 1 所示。一般情况下当 VEC \geq 4 时,即可获得主要为 β 相结构的合金,但可能会存在少量的 α 和 ω 相^[19]。因此根据计算结果预测,可以获得主要为 β 相结构的 Zr-30Ti-xCu 合金。

1.2 β相 Zr-30Ti-xCu 合金的制备

选用由国核维科锆铪有限公司提供的 99.99%纯度 海绵 Zr,和由中诺新材科技有限公司提供的 99.995%高 纯 Ti 颗粒与 99.999%高纯 Cu 颗粒,使用 WK-II型非自 耗电弧熔炼炉进行合金熔炼。为了确定合金的 α-β 相转 变温度,使用 setsys evo TGA/STA 同步热重-差示扫描量 热仪的差示扫描量热法(DSC)功能进行测试。DSC 测 试结果表明,3 种合金 α-β 相转变温度范围为 580 °C~630 °C。最终以合金的 α-β 相转变温度为依据, 按图 1 所示的工艺流程制备出厚度 1.2 mm 的淬火态合 金板材。

表1设计合金的价电子浓度计算结果

Table 1 Valence electron concentrations (VEC) of the design alloys

Al	VEC	
wt.%	at.%	VEC
Zr-30Ti	Zr ₅₅ Ti ₄₅	4.000
Zr-30Ti-3Cu	Zr _{52.1} Ti ₄₅ Cu _{3.4}	4.238
Zr-30Ti-7Cu	Zr _{48.4} Ti ₄₅ Cu _{7.7}	4.539

图1 合金熔炼和加工制备工艺

Fig.1 Preparation procedures of the experimental alloys

1.3 显微组织表征

使用低速锯从淬火态合金板上切取 10 mm×10 mm 的样品,先用砂纸进行打磨,然后用体积分数为 10%HF+40%HNO₃+50%H₂O 的混合酸液进行酸洗,使样 品表面光滑平整。通过使用荷兰 Empyrean S2 型 X 射线 衍射仪 (XRD) 和配备有能谱仪 (EDS) 的 Gemini 300 热场发射扫描电子显微镜 (SEM) 来表征样品的物相组 成、显微形貌和第二相析出情况。

采用配备有能谱仪(EDS)的 JEM-2100F 型高分辨 透射电子显微镜(TEM)观察分析合金的显微组织和微 区成分。0Cu 样品通过选区电子衍射(SAED)确定基 体的晶体结构,选取不同衍射亮斑分别拍摄明场像与暗 场像; 含 Cu 样品则先通过第二相颗粒的 SAED 花样确 定其晶体结构,再选取不同衍射亮斑分别拍摄明场像与 暗场像和高分辨晶格条纹像(HRTEM 像)。TEM 测试 的样品采用两种方法进行制备:0Cu 样品采用电解抛光 方法制备 TEM 薄样品,电解抛光液为体积分数 92% C₂H₆O + 8% HClO₄; 3Cu 和 7Cu 样品,由于第二相易 被电解抛光液腐蚀而发生脱落,因而采用 HELIOS-600I 双束聚焦离子束(FIB)制备。

1.4 力学性能测试

力学性能测试主要包括显微维氏硬度测试和拉伸试验。采用 HXD-1000TMC/LCD 型显微硬度计进行测量,使用参数为 0.9807 N/10 s,每个样品检测 5 个点并取平均值。使用 CMT-5205 微机控制电子试验机进行拉伸实验,拉伸速率为 0.6 mm/min,标距段长度为 10 mm,试样厚度为 1.2 mm,试样宽度为 2.0 mm。拉伸试验后,使用带有 EDS 的 SEM 观察断口形貌和微区成分。

1.5 生物相容性测试

润湿性会显著影响材料表面的细胞粘附、蛋白质吸附、血小板粘附与活化、血液凝固和组织生长过程^[20]。 良好的亲水性有利于骨整合,是植入固定装置的初始固 定和长期机械稳定性的关键要求。因此 Zr-30Ti-xCu 合金的生物相容性可以通过材料表面润湿性测试和细胞毒性测试来初步判断:材料的润湿性越好,人体对它的耐受性就越好^[21],并越有利于蛋白质和细胞吸附到生物材料表面,材料的细胞毒性越低,对细胞的生长和增殖不利影响越小。通过线切割获得 20 mm×10 mm 的样品,使用砂纸(400#~2000#)依次对样品进行打磨,在无水乙醇中超声清洗 15 min 后烘干,最后将样品置于高速全自动接触角测量仪中,使用液滴大小为 10 μL 的去离子水进行测量。

采用 Live/Dead 荧光染色法定性检测 Zr-30Ti-xCu 合 金的细胞毒性。在样品表面接种小鼠骨髓间充质干细胞 (mBMSC, 6×10⁴ cells/cm²),并在 37℃恒温箱中分别 培养 1、3 和 5 d,使用磷酸盐缓冲液(PBS)清洗 1 次 细胞以除去多余血清,每个样品上滴加 1 mL 染色剂, 室温避光孵育 15min, PBS 漂洗 3 次,使用激光共聚焦 显微镜下观察并拍照记录。

使用 3-(4, 5-二甲基噻唑-2)-2, 5-二苯基四氮唑 溴盐(MTT)试剂定量检测样品表面成骨细胞的增殖, 每组设 3 个平行样。将样品放置于 96 孔板中,在样品表 面接种成骨细胞(6×10^3 cells/cm²),并在 37℃恒温箱 中分别培养 1、3 和 5 d, PBS 清洗各孔 3 次,每孔加入 100 µL 含 0.5 mg/mL MTT 的培养基置于培养箱中孵育 4 h。采用离心机 800 rpm 离心 5 min,弃去上清液,每孔 加入 100 µL DMSO 并轻摇 10 min 后,使用酶标仪(Tecan F50)检测 570 nm 处吸光度。

1.6 抗菌性能测试

材料表面的抗菌性能通过琼脂扩散法和平板计数法 来表征材料表面的抗菌性能。实验中采用了大肠埃希氏 菌和金黄色葡萄球菌两种菌株(购自温州微穹微生物技 术有限公司)。琼脂扩散法操作步骤为:先倒入 10 ml 左右大豆酪蛋白琼脂培养基(TSA)作为下层培养基, 浓度约为10⁵~10⁶ CFU/ml的大肠埃希氏菌或金黄色葡萄 球菌菌液的 TSA 作为上层培养基。将置有样品的培养基 放于 37 ℃恒温条件下培养 24 h。抗菌性能的水平由样 品周围的抑菌区宽度 *H* 来评估:

$$H = \frac{D-d}{2} \tag{1}$$

其中, D 为样品和抑菌区的总直径, d 为样品直径, 单 位均为 mm。若 H≥1 mm, 或者不存在抑菌区但培养皿 内细菌的繁殖相较于阴性对照组(0Cu 样品)被有效抑 制,则被测试材料具有良好的抑菌能力, 否则认为材料 的离子在培养基上难以扩散或不具备离子抑菌能力。

平板计数法操作步骤为:首先将打磨好的样品放入 培养基中,加入适量浓度为10³~10⁴ CFU/ml 细菌悬浊液 滴,用无菌聚乙烯膜包裹样品与菌液,在 37 ℃恒温条 件下培养 24 h。培养完成后取出样品,用灭菌生理盐水 (100 ml)洗脱样品表面,将洗脱液接种到培养基平板 上,再在 37 ℃恒温培养 24 h 后统计菌落数。抗菌能力 用抗菌活性 *R* 评估:

$$R = \frac{N_{\text{control}} - N_{\text{sample}}}{N_{\text{control}}}$$
(2)

其中, N_{control}和 N_{sample}分别为对照样品(0Cu 样品)和测试样品(3Cu 和 7Cu 样品)的菌落数。

为进一步了解材料的抗菌机理,对接种在材料表面的细菌进行活性氧测试(ROS):吸取1 mL 稀释菌悬液(10⁷ CFU/mL)加于装有 Rosup 试剂(阳性对照)或样品的细菌培养管内,37℃孵育2h,培养完成后涡旋(以去除样品表面黏附菌体),将菌液转移至2 mL 离心管内,5000 rpm 离心5 min,弃去上清液。

配制 2,7-二氯荧光素二乙酸酯 (DCFH-DA,工作浓 度为 10 μg/mL)作为染色工作液,取 500 μg 染色工作 液重悬菌落并混匀,37℃避光染色 30 min。染色完成后, 用无菌生理盐水洗去染色液,取 10 μL 菌液滴于载玻 片上盖上盖玻片,放于 OLYMPUS FV1200 激光共聚 焦显微镜上拍摄。

1.7 耐腐蚀性能测试

采用线切割获得 10 mm×10 mm 的样品,砂纸打磨 后,用无水乙醇超声清洗后烘干。用环氧树脂封装,使 样品一侧通过导电胶与 Cu 导线连接,另一侧露出 1cm² 的截面,凝固后用无水乙醇超声清洗并吹干。在 Princeton MC 1000 的多通道电化学工作站上进行电化学测试,采 用标准 3 电极电解池,工作电极为待测 Zr-30Ti-xCu 合 金样品,参比电极为饱和甘汞电极(SCE),对电极为 铂电极,电解液为生理盐水(0.9% NaCl 水溶液),电 解池的温度控制在 37±2 ℃范围内。电化学测试按照开 路电位(OCP)测试、电化学阻抗谱(EIS)测试和动电 位极化曲线(Potentiodynamic Polarization Curve)测试 依次进行。为进一步评估材料的腐蚀行为,电化学测试 后采用 ZSimpWin 软件对阻抗谱曲线进行等效电路模型 拟合,得到相关等效元件参数,并采用 Keyence-VHX-100 型光学显微镜(OM)观察样品表面的点蚀坑。

2 结果分析与讨论

2.1 显微组织

XRD 结果(图 2)显示,3种合金基体均以β相为 主,0Cu合金中含有少量α相,而3Cu和7Cu合金中检 测到 Zr₂Cu 第二相,这与 VEC 计算结果相吻合。 SEM/EDS(图 3)和 TEM(图 4)结果显示,3种合金 样品均以板条状组织为主,3Cu 和 7Cu 合金中出现含 Cu 的颗粒状物质,较均匀分布于晶粒内部或晶界处,并且 随着 Cu 含量升高,第二相数量增多。 图 4c 存在两套 SAED 花样,分别对应 β 相 (PDF#34-0657)和 α 相 (PDF#05-0665)。这也进一步验证了淬火态 Zr-30Ti 合 金晶体结构主要为β相,但有少量的α相,这是合金淬 火过程中经历马氏体相变的结果。

图 5 为淬火态 3Cu 和 7Cu 合金显微组织的 TEM 分析结果。2 种合金均由细小的板条 β 相和 Zr₂Cu 第二相 组成,这与 XRD 分析结果(图 2)吻合。3Cu 合金中的 Zr₂Cu 第二相尺寸为 300~500 nm,而 7Cu 合金的为 150~550 nm,随着 Cu 含量增加,第二相数量明显增多。 同时,可观察到基体与 Zr₂Cu 之间存在明显的晶格畸变 (如图 5d1 和 d2 箭头所示)。

当含 Cu 合金样品在均匀化处理时(800℃)部分 Cu 固溶在基体中,剩余部分 Cu 以 Zr₂Cu 形式在晶粒内 部和在原β相晶粒晶界处析出,但当样品在热轧保温时 (650℃),部分 Cu 从基体中析出,导致原有 Zr₂Cu 长 大和新的 Zr₂Cu 颗粒形成,并在轧制过程中发生挤压变 形,导致 Zr₂Cu 颗粒形状不规则并出现了明显的尖角(图 5b1 和 b2 箭头所指部位)。在淬火处理保温时(650℃) Zr₂Cu 数量和尺寸继续增加,在淬火快冷的阶段,少数 β 相会发生共析反应分解成 α 相和 Zr₂Cu。

Fig.2 XRD patterns of quenched Zr-30Ti-xCu alloys

图 3 淬火态 Zr-30Ti-xCu 合金的 SEM/EDS 结果 Fig.3 SEM/EDS results of quenched Zr-30Ti-xCu alloys: (a) 0Cu alloy, (b) 3Cu alloy, (c) 7Cu alloy

图 4 淬火态 0Cu 合金的显微组织

Fig. 4 Microstructure of quenched 0Cu alloy: (a) TEM bright field image, (b) TEM dark field image, (c) SAED patterns

图 5 淬火态 3Cu 和 7Cu 合金的显微组织

Fig. 5 Microstructures of quenched 3Cu(a1~d1) and 7Cu(a2~d2) alloys: (a1, a2)TEM bright field images, (b1,b2) TEM dark field images, (c1, c2) SAED patterns of Zr₂Cu particles, (d1, d2) HRTEM images and SAED patterns of matrix (inserts)

2.2 力学性能

显微硬度结果(表2)显示,与0Cu合金相比,3Cu 和7Cu合金的维氏硬度分别提高29%和37%。

表 2 Zr-30Ti-xCu 合金的维氏硬度(HV_{0.1}) Table 2 Vickers hardness of Zr-30Ti-xCu alloys (HV_{0.1})

Allov	1	Te	est positi	on		Average
	1	2	3	4	5	i i eiuge
Zr-30Ti	330	316	323	299	320	318
Zr-30Ti-3Cu	412	387	418	408	421	409
Zr-30Ti-7Cu	432	465	407	430	449	436

室温拉伸曲线(图 6)和室温拉伸力学参数值(表 3) 显示,3种合金的弹性模量(67.8~78.9 GPa)均明显低 于传统商用 Ti 及其合金(102~110 GPa)^[4],同时也保 持了较高的屈服强度(428~615 MPa)和抗拉强度(661~844 MPa)。通过断口形貌 SEM/EDS(图7)的分析可知,3 种合金均存在韧窝,0Cu 断口表现出韧性断裂特征,3Cu 和 7Cu 在高倍 SEM/EDS 图可观察到有Zr₂Cu 颗粒沿着韧窝边缘处分布。

表 3 淬火态 Zr-30Ti-xCu 合金的室温拉伸力学性能 Table 3 Room temperature tensile mechanical properties of quenched Zr-30Ti-xCu alloys

Alloy	E/GPa	$R_{p0.2}/MPa$	<i>R</i> _m /MPa	<i>A</i> _t /%	
0Cu	67.8	615	844	9.64	
3Cu	75.1	524	794	3.53	
7Cu	78.9	428	661	2.64	

Zr-30Ti 合金中添加 Cu 后在保持合金较低弹性模量 的同时也提升了硬度。合金中加入 Cu 后,部分 Cu 固溶 到基体中,起到了固溶强化作用,同时析出的亚微米级 Zr₂Cu 第二相可以起到明显的沉淀硬化作用,两种强化 机制共同作用提高了合金的显微硬度。但 Cu 的添加降 低了合金的强度和塑性,这是因为一方面添加 Cu 可以 增加合金软韧的 β 相(bcc 结构)占比,从而降低合金 强度;另一方面,Zr₂Cu 第二相(体心四方结构^[22])与 Zr 基体之间存在明显的晶格畸变, 第二相颗粒形状不规 则且存在尖角(图 5b1 和 b2),这些尖角处具有较大的 应力集中, 甚至可能存在细小的孔隙或裂纹^[23], 样品在 拉伸变形的过程中, Zr_2Cu 与 β 相交界处尤其是尖角处 更易发生塑性变形导致微裂纹的萌生和扩展,随着应变 量的增加,晶界处的塑性应变速度要大于晶粒内部,因 此晶界处的应力大于晶粒内部^[24],合金中大量的 Zr₂Cu 第二相在原β相晶粒晶界处析出会导致拉伸时微裂纹大 量萌生并扩展,裂纹彼此交联从而发生断裂。图7观察 到 Zr₂Cu 颗粒沿着韧窝边缘处分布也证实了这一点,最 终降低了合金的强度和塑性。

图 7 淬火态 Zr-30Ti-xCu 合金拉伸断口 SEM/EDS 分析结果

Fig.7 SEM/EDS analysis results of the fracture surfaces of quenched Zr-30Ti-xCu alloys: (a1, a2) 0Cu alloy, (b1, b2) 3Cu alloy, (c1, c2) 7Cu alloy

2.3 生物相容性

图 8 为淬火态 Zr-30Ti-xCu 合金与去离子水的接触 角测量照片及其随 Cu 含量的变化情况。表 4 列出了淬 火态 Zr-30Ti-xCu 合金与去离子水的接触角数值。3 种合 金的接触角均较大,但随时间的延长和 Cu 含量的增加, 接触角逐渐减小,其中 7Cu 合金接触角<90°,表现出 亲水性,整个润湿过程逐渐由沾湿(Adhesion)过程变

为浸润(Immersion)过程。

由于 7Cu 合金内的 Zr₂Cu 第二相是具有亲水性的极 性固体,当基体内析出大量的 Zr₂Cu 时,合金表面的原 子或原子团的极性也随之增大,这也导致具有极性的水 分子在含 Cu 合金表面表现出了更好的亲水性^[25-26],合 金与去离子水的接触角变小。

图 9 和图 10 分别为 mBMSCs 在 Zr-30Ti-xCu 样品表

面培养1、3和5d后的活死染色图和增殖数据。随着培养时间的延长,细胞在3种合金表面的数量均随之增多,与对照组相差不大,并且只有极少数死细胞存在于合金表面,表现出较低的细胞毒性。横向对比3种合金发现,OCu合金在1d的细胞相对数量高于含Cu合金,但随着时间的延长,3种合金表面的细胞相对数量的差距逐渐缩小,并且在5d后基本持平。综合来看,3种合金对mBMSCs均表现出较低的细胞毒性,且在繁殖5d后细胞增殖数量基本相同。

材料的细胞毒性往往与其第二相颗粒、形貌和表面 粗糙度等有关^[27]。本工作中,在进行生物相容性相关测 试之前,都使用了砂纸对材料表面进行打磨,因此3种 样品表面形貌和表面粗糙度相差不大。但含 Cu 样品中 含有 Zr₂Cu 颗粒,对细胞会产生一定影响:首先 Cu 作 为过渡金属,可以通过 Fenton 反应导致氧化应激作用的 发生^[27],导致细胞受损,从而在短期内抑制细胞的增殖。 其次,一般而言颗粒的尺寸越小,其比表面积越大,表 面活性越高,产生 ROS 的能力也越大,从而对细胞损伤 也越大,因此纳米颗粒对细胞的损伤作用明显高于微米 级颗粒^[28],含 Cu 合金的中 Zr₂Cu 颗粒尺寸较大,为 150~550 nm,因此其表面活性不足以导致细胞大量死亡。 这解释了为什么活死染色图中仅有极少的死细胞存在, 但前期细胞增殖数量低于 0Cu 合金。

图 8 淬火态 Zr-30Ti-xCu 合金与去离子水的接触角测量结果

Fig.8 Measurement results of contact angle between quenched Zr-30Ti-xCu alloys and deionized water: (a) measurement photos, (b) the variation

of contact angle at different test time with Cu content

表 4 淬火态 Zr-30Ti-xCu 合金与去离子水的接触角

	Table 4 Contact angles between	quenched Zr-30Ti-xCu a	lloys and deionized wate
--	--------------------------------	------------------------	--------------------------

		Contact angle/°						
Alloy Time/s		NO.1		NO.2		NO.3		
		Left	Right	Left	Right	Left	Right	Average
7. 207	0	100.68	102.45	102.76	103.25	99.54	99.04	101.29
Zr-3011	5	98.23	99.38	96.23	98.09	97.27	101.75	98.49
7. 207. 20-	0	97.83	100.14	93.73	90.56	88.74	93.71	94.12
Zr-3011-3Cu	5	93.9	95.8	91.98	88.43	85.88	90.22	91.04
7. 207: 70-	0	88.23	88.08	80.23	81.65	72.65	73.96	80.80
Zr-3011-7Cu	5	76.85	77.39	81.63	78.44	65.94	65.02	74.21

Note: The left/right respectively represents the left/right contact angles between deionized water and the alloy surface in Figure. 8.

图 9 mBMSCs 在 Zr-30Ti-xCu 合金表面培养 1、3 和 5d 后的活死染色

Fig.9 Live/dead fluorescent staining of mBMSCs cultured on the Zr-30Ti-xCu alloys surface for 1, 3, and 5 d

2.4 抗菌性能

图 11 为 Zr-30Ti-xCu 合金在含有大肠埃希氏菌或金 黄色葡萄球菌菌液的 TSA 培养基上培养 24 h 后的培养 皿照片。Zr-30Ti-xCu 合金在琼脂扩散法测试中并未表现 出明显的抗菌性能,在 2 种菌液中合金周围均未出现明 显的抑菌带,同时合金周围区域细菌的繁殖也没有被抑 制的痕迹,这表明 Cu 离子在菌液中析出浓度并未达到 细菌的最小离子抑制浓度值(MIC)^[29],对细菌的抑制 作用较弱,因而样品周围没有抑菌带的产生。

图 12a 和 b 分别展示了采用平板计数法在 Zr-30Ti-xCu 合金表面定殖大肠埃希氏菌和金黄色葡萄 球菌后的菌落数量,图 12c 为 Zr-30Ti-xCu 合金表面菌落 数量与抗菌活性 R 随 Cu 含量的变化情况。由图 12 可知, 随着合金中 Cu 含量从 0%增加至 7%,大肠埃希氏菌和 金黄色葡萄球菌平均菌落数量分别从 220 和 49 降至 21 和 12。3Cu 合金对大肠埃希氏菌和金黄色葡萄球菌的抗 菌活性 R 分别为 40%与 51%,而 7Cu 合金则分别增加到 了 91%与 81%。可见,随着 Cu 含量增加,2 种细菌的 菌落数量均明显减少,这说明合金中添加 Cu 可以明显 抑制大肠埃希氏菌和金黄色葡萄球菌。

图 13 为在 Rosup(阳性对照)和 3 种合金表面共培养 2 h 的大肠杆菌 ROS 荧光图。如图 13a 所示,阳性对 照组有大量的绿色荧光斑点,说明在 Rosup 试剂的刺激 下,大肠杆菌产生了大量的 ROS。由图 13b~d 可知,随 着合金中 Cu 含量的增加,荧光斑数量明显增多,ROS 表达量增加。ROS 作为呼吸过程中氧的代谢副产物,外 界的影响会导致 ROS 水平急剧升高,会导致细胞发生氧 化应激,从而对细胞结构造成严重且不可逆的损伤^[30-31],因此可以认为添加 Cu 可以改善 Zr-30Ti 合金的抗菌性能。

Zr-30Ti-xCu 合金的抗菌能力可能与亚微米级含 Cu 第二相颗粒的析出相关。Zhang 等^[32]在研究含 Cu 的 430 铁素体不锈钢的抗菌机理的过程中发现,含 Cu 不锈钢 不仅可以通过释放出 Cu²⁺对游离细菌起到杀菌作用,同 时不锈钢表面的富 Cu 相与基体之间存在明显的电势差, 可以引发化学效应提高 ROS 的表达,进而降解细菌群体 感应(QS)信号,滞后了细菌生物膜的发育,最终起到 了抗菌作用。在本工作中,琼脂扩散法测试时含 Cu 合 金周围并未出现明显的抑菌带,说明合金中释放出的游 离 Cu²⁺浓度不足以起到明显的抗菌作用;但在平板计数 法测试时含 Cu 合金表现出有抑菌作用,,同时随着 Cu 含量从 0%增加至 7%, ROS 表达量也随之增加,因含 Cu 合金中析出了大量 Zr₂Cu 相,由此可以认为 Zr₂Cu 第 二相颗粒可以显著增强合金的抗菌性。

图 11 Zr-30Ti-xCu 合金在菌液中培养 24 h 后的照片

Fig.11 Photos of Zr-30Ti-xCu alloys cultured in bacterial fluid for 24 h: (a1~c1) Escherichia coli, (a2~c2) Staphylococcus aureus

图 12 Zr-30Ti-xCu 合金表面定殖后的菌落数量和抗菌活性 R

Fig.12 Number of bacterial colonies on the surfaces of Zr-30Ti-xCu alloys after colonization: (a) Escherichia coli, (b) Staphylococcus aureus, (c) changes in colony count and antibacterial activity *R* with Cu content

图 13 大肠杆菌在 Rosup 和 Zr-30Ti-xCu 合金表面共孵育 2h 后的 ROS 荧光染色图像

Fig.13 Fluorescent straining images of ROS in E. coli co-incubated on surfaces of specimens for 2 h: (a) Rosup, (b) 0Cu sample, (c) 3Cu sample,

(d) 7Cu sample

2.5 腐蚀行为

由淬火态 Zr-30Ti-xCu 样品在生理盐水中的开路电位-时间(*E*_{OCP}-*t*)曲线(图 14a)可知,0Cu 和 7Cu 合金初期的开路电位 *E*_{OCP} 值先减小后增大,而 3Cu 合金的初期 *E*_{OCP} 值则表现相对平稳;随着 Cu 含量的增加,合金的 *E*_{OCP} 值明显变大,这说明 Cu 的添加可以明显提高合金表面的耐腐蚀性,并且 3Cu 相较 0Cu 和 7Cu 表现出更好的稳定性。

淬火态 Zr-30Ti-xCu 合金的 EIS 测试结果列于图 14b~d。图 14b 为 Nyquist 图,随着 Cu 含量的增加,相 应合金的容抗弧半径增大,这表明极化电阻增大,其耐 腐蚀性能增强。图 14c 为 Bode 相角图,3 种合金均出现 了 2 个不同的极值,且相位角 θ 值均在较宽的频率范围 内保持高位,这说明淬火态 Zr-30Ti-xCu 合金的 EIS 有 2 个时间常数,分别对应 2 层氧化膜,其中一层是具有保 护性的致密钝化膜,另一层是保护性较差的疏松钝化膜。 图 14d 为 Bode 幅值图,该图表明合金中添加 Cu 可以显 著提高其低频下的阻抗值,其中 7Cu 合金低频下的阻抗 值更是达到了约 2.8×10⁶ Ohm cm²,这说明 Cu 的添加显 著增强了合金的耐腐蚀性能。

我们选择 R(RC)(RC)型模拟电路进行模拟^[33]。图 14f~h 为通过 R(RC)(RC)型模拟电路模拟出的淬火态 Zr-30Ti-xCu 合金阻抗谱拟合结果,表5为对应具体元件 的模拟数值。在 $R_s(R_1C_1)(R_2C_2)$ 电路中(图 14e), R_s 代表溶液电阻(包括溶液和多个元件的电阻值),R₁和 C1并联组成的复合元件代表钝化膜中较为疏松的一层, R2和C2并联组成的复合元件代表钝化膜中较为致密的 一层。结合图 14f~h 和表 5 中的拟合数据可知, 随着 Cu 的添加,两层钝化膜的电阻均值 R1 和 R2 均快速增大, 分别从 4 Ohm 和 1.04×10⁶ Ohm 增加至 1.00×10⁵ Ohm 和 5.79×10⁶ Ohm,这说明钝化膜的耐腐蚀性能得到提升。 疏松层的电容 C1 从 3.31×10⁻⁵ F 增大至 5.33×10⁻³ F, 而致 密层的电容 C2从 1.36×10-5 F 减小至 9.26×10-6 F, 说明疏 松层耐腐蚀性能变差,而致密层耐腐蚀性能有所增加。 可见, Cu的添加使得两层钝化膜的耐腐蚀性能均有所提 升,并且对于致密层的提升尤其明显。

表 5 淬火态 Zr-30Ti-xCu 合金的阻抗谱拟合参数 Table 5 Impedance spectrum fitting parameters of quenched

Zr-30Ti-xCu allovs

Alloy	R ₁ /Ohm	C ₁ /F	R ₂ /Ohm	C ₂ /F
Zr-30Ti	4	3.31E-5	1.04E6	1.36E-5
Zr-30Ti-3Cu	8	2.99E-5	1.57E6	1.84E-5
Zr-30Ti-7Cu	10000	5.33E-3	5.79E6	9.26E-6

图15a为淬火态Zr-30Ti-xCu合金在生理盐水中的动 电位极化曲线和测试后样品表面点蚀坑形貌金相照片, 图 15b~d 为点蚀坑形貌金相照片。表 6 为基于动电位极 化曲线分析得到的相关腐蚀数据。随着Cu含量的增加, 自腐蚀电位 Ecorr 值由-0.359 V 减小至-0.403 V, 自腐蚀电 流 icorr 值由 1749 nA/cm² 减小至 478 nA/cm², 这表明 Cu 的添加使得合金具有更高的被腐蚀的倾向, 但腐蚀速率 明显变慢。3种合金在强极化区均有一定范围的钝化区, 而在钝化区之后均出现一个明显的电流快速跳升的阶段, 即发生了点蚀,这个阶段的起始点对应的电位称为击破 电位 Ebn。结合样品表面点蚀坑的金相形貌(图 15b~d) 可知, Zr-30Ti-xCu 样品表面都存在点蚀坑, 这证明了 3 种合金表面均产生了点蚀而导致氧化膜被击穿。含 Cu 合金钝化区电位均明显低于 0Cu 合金, 同时 Ebo 值 (0.813~1.044 V)也明显大于 0Cu 合金(0.528 V),其 中 3Cu 合金 Ebp 值最大(1.044 V),这同样证明了 Cu 的添加整体上增强了 Zr-30Ti-xCu 合金在生理盐水中的 耐腐蚀性能。

综合开路电位,阻抗谱和极化曲线 3 种测试结果来 看,添加 Cu 可以提高合金在腐蚀初期生成钝化膜的耐 腐蚀性能和电化学行为的稳定性,使合金能有效减缓腐 蚀速率,并提高击破电位 *E*_{bp}值。可见,添加 Cu 可以有 效增强淬火态 Zr-30Ti-*x*Cu 合金在生理盐水中的耐腐蚀 性能。

在电化学测试过程中,关于淬火态 Zr-30Ti-xCu 合金钝化膜的生长方式,我们认为其符合 Wagner-Hauffe 假说的描述,即 Zr-30Ti-xCu 合金表面发生腐蚀时,O²⁻沿着氧化膜中的阴离子空位扩散至金属和氧化膜(O/M) 界面,与此同时 e⁻从 O/M 界面向外运动达到电荷平衡,最终导致氧化膜在 O/M 界面处生长^[11]。在 O/M 界面处 新生成的氧化膜相对外层氧化膜更为致密,对基体起到较好的保护作用。在合金中添加了 Cu 后则有效提高了氧化膜电阻,从而有效提高了淬火态含 Cu 合金的钝化能力。从热力学角度分析,由于淬火态 Zr-30Ti-xCu 合金中析出了大量的 Zr₂Cu 第二相,其电势明显低于基体,这些析出相形成了数量众多的电偶腐蚀微电池^[32],因此更易发生腐蚀,即 *E*_{corr}值减小,与此同时 Zr₂Cu 第二相相对基体更耐腐蚀,即 *i*_{cor}值也随之减小。

在生理盐水环境中的动电位极化曲线测试中,出现 了击破电位 *E*_{bp},并在合金表面出现了点蚀,这意味着合 金表面钝化膜发生破损。生理盐水环境中存在大量 Cl, 而 Cl⁻的存在可能是导致合金表面产生点蚀的原因之一。 Cl⁻可以有效渗透进入合金的钝化膜,随着 Cl⁻浓度增加, 亚稳点蚀发生的频率增加,最终导致点蚀坑的深度增大 ^[34]。淬火态 Zr-30Ti-xCu 合金中析出的 Zr₂Cu 第二相也 可能是导致点蚀坑产生的原因之一。在含 Cu 合金的 HRTEM 像(图 5d1 和 d2)可以看出,析出相周围区域 存在较大的应力集中(能量较高),更容易被腐蚀,导 致 Zr₂Cu 颗粒脱落从而产生微坑,最终微坑萌生成为点 蚀。但是尽管有点蚀的产生,在生理盐水中相同条件下 的淬火态 Zr-30Ti-xCu 合金在的 E_{corr} 值(\geq -0.403 V)仍 高于 cp-Ti 的 E_{corr} 值(-0.425 V)^[33],表现出了更低的腐 蚀倾向。

表 6 基于动电位极化曲线分析得到的 Zr-30Ti-*x*Cu 合金腐蚀数据 Table 6 Corrosion data of Zr-30Ti-*x*Cu alloys obtained based on potentiometric polarization curve analysis

Alloy	$E_{\rm corr}/{ m V}$	$i_{\rm corr}/{\rm nA/cm^2}$	$E_{\rm bp}/{ m V}$
Zr-30Ti	-0.359	1749	0.528
Zr-30Ti-3Cu	-0.377	746	1.044
Zr-30Ti-7Cu	-0.403	478	0.813

Figure.14 Simulation results of open circuit potential and electrochemical impedance testing of quenched Zr-30Ti-xCu alloys: (a) open circuit potential time curve, (b) Nyquist plot (raw data), (c) Bode phase angle plot (raw data), (d) Bode amplitude plot (raw data), (e) equivalent circuit diagram, (f) Nyquist plot (fitted data), (g) Bode phase angle plot (fitted data), (h) Bode amplitude plot (fitted data)

图 15 淬火态 Zr-30Ti-xCu 合金的动电位极化曲线和点蚀坑形貌金相照片

Figure .15 Potentiometric polarization curve (a) and metallographic photographs of pitting morphology (b-d) of quenched Zr-30Ti-xCu alloys : (b)

0Cu sample, (c) 3Cu sample, (d) 7Cu sample

3 结论

(1) 淬火态 Zr-30Ti-xCu 合金的基体主要以β相为 主,其中 0Cu 合金中还含有少量的α相,3Cu 与7Cu 合 金存在 Zr₂Cu 第二相,尺寸约为150~550 nm,并且随着 Cu 含量增加析出相数量明显增多。

(2)随着 Cu 含量的增加,淬火态 Zr-30Ti-xCu 合金硬度显著增大(318~436 HV_{0.1})。淬火态 3 种合金的 弹性模量均处在较低的水平(67.8~78.9 GPa),并且还 能保持一定的屈服强度(428~615MPa)与抗拉强度(661~844MPa)。

(3)随着 Cu 含量的增加,淬火态合金表面去离子水的接触角逐渐减小,其中淬火态 7Cu 合金接触角最小 (74.21°)。3种合金均表现出较低的细胞毒性,具有较为优异的细胞相容性。

(4)以 0Cu 合金作为对照, 3Cu 合金对大肠埃希 氏菌和金黄色葡萄球菌的抗菌活性 R 分别为 40%和 51%, 7Cu 合金的分别为 91%和 81%,两者均表现出了较好的 抗菌性能,这主要是由于细胞与含 Cu 合金中 Zr₂Cu 颗 粒发生了氧化应激作用, ROS 表达水平增加而导致的。

(5) 电化学特性显示,随着 Cu 含量的增加,淬火态 Zr-30Ti-xCu 合金在生理盐水中的腐蚀倾向变大(*E*_{corr}值-0.359 V 减小至-0.403 V),但腐蚀速率变慢(*i*_{corr}值由 1749 nA/cm²减小至 478 nA/cm²)。Zr-30Ti-xCu 合金形成的钝化膜由靠近 O/M 界面的致密钝化膜和远离 O/M 界面的疏松钝化膜两层组成。3 种合金均出现了点蚀,含 Cu 合金在生理盐水中表现出更好的钝化能力。Cu 的添加整体上增强了 Zr-30Ti-xCu 合金在生理盐水中的耐腐蚀性能。

参考文献 References

- Broomhead T, England R, Mason S et al. International dental journal[J], 2024, 74(3): 647-655.
- [2] Buser D, Mericske-stern R, Bernard P et al. Clinical Oral Implants Research[J], 1997, 8(3): 161-172.
- [3] Bozic K J, Kurtz S M, Lau E et al. Clinical Orthopaedics and Related Research[J], 2010, 468(1): 45- 51.
- [4] Kim M, An S, Huh C et al. Applied Science[J], 2019, 9(24): 5281.
- [5] Zhang E L, Zhao X T, Hu J L *et al. Bioactive Materials*[J], 2021, 6(8): 2569-2612
- [6] Lpoez M F, Jimenez J A, Gutierrez A et al. Electrochimica Acta[J], 2003, 48: 1395-1401.
- [7] Zhou Y L, Niinomi M, Akahori T et al. Materials Science and Engineering[J]. A, 2004, 384: 92-101.

- [8] Chang S H, Huang S P, Wu S K et al. Materials Today Communications[J], 2022, 32: 104079.
- [9] Geetha M, Singh A K, Asokamani R et al. Progress in Materials Science[J], 2009, 54(3): 397-425.
- [10] Sun C C(孙纯纯),Zhang J Y(张金勇),Li Y F(李运峰),Cai B Y(蔡变云),Guo Z J(郭志君),Shen B L(沈宝龙) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2022, 51(3): 1111~1124.
- [11] Liu J Z(刘建章). nuclear structural materials (核结构材料) [M], Beijing: Chemical Industry Press, 2007.
- [12] Niinomi M, Narushima T, Nakai M et al. Advances in Metallic Biomaterials: Tissues, Materials and Biological Reactions[M]. Berlin: Springer-Verlag, 2015.
- [13] Mareci D, Sutiman D, Chelariu R et al. Corrosion Science[J], 2013, 73: 106-122.
- [14] Lin J M (林家茂), Yao M Y (姚美意), Chen Z B (陈哲斌),
 Xu S T, (徐诗彤) Hu L J (胡丽娟) et al. Materials Reports (材料导报) [J], 2024, in press.
- [15] Guglielmotti M B, Renou S J, Cabrini R L et al. International Journal of Oral & Maxillofacial Implants[J], 1999, 14(4): 565-570.
- [16] Kolawole S K, Hai W, Zhang S et al. Journal of Materials Science and Technology[J], 2020, 50: 31-43.
- [17]Chen H(陈宏),Ding J(丁健),Ren Y Y(任雨雨) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2023, 52(2): 745~752.
- [18] Yi C B, Yuan Y X, Zhang L et al. Journal of Alloys and Compounds[J], 2021, 879: 160473.
- [19] Afrin M, Song T, Wei X et al. Advanced Engineering Materials[J], 2018, 20: 1800207.
- [20] Sharafadeen K K, Hai W, Zhang S Y, et al. Journal of Materials Science & Technology[J], 2020, 50: 31-43.
- [21] Hao L, Lawrence J, Li L et al. Applied Surface Science[J], 2005, 247(1): 453-457.
- [22] Zhang E L, Li F B, Wang H Y et al. Material Science and Engineering: C[J], 2013, 33(7): 4280-4287.
- [23] Annand K, Nord M, MacLaren I et al. Corrosion Science[J], 2017, 128213-223.
- [24] Li Z(李智),Hu L J(胡丽娟),Xie Y P(谢耀平) et al. Journal of Shanghai University(Natural Science) (上海大学学报(自然科 学版))[J], 2017, 23(03): 432-442.
- [25] Chen X, Zhu R F, Gao H et al.Surface and Coatings Technology[J], 2020, 385: 125362.
- [26] Arima Y, Iwata H et al. Biomaterials[J], 2007, 28(20):

3074-3082.

- [27] Sun X Y(孙新园), Ouyang J M(欧阳健明),Li Y B(李玉宝) et al. Journal of Synthetic Crystals(人工晶体学报)[J], 2014, 43(11): 2943-2949.
- [28] Ye Y Y, Liu J W, Xu J H *et al. Toxicology in Vitro*[J], 2010, 24(3): 751-758.
- [29] Zhang E L, Zhao X T, Hu J L *et al. Bioactive Materials*[J], 2021, 6(8): 2569-2612.
- [30] Van B, Dat J et al. Plant Physiol[J], 2006;141(2):384.
- [31] Prasad K, Dhar I et al. International Journal of Angiology[J],

2014;23(4):217.

- [32] Zhang Z , Zhang X , Jin T *et al. Rare Metals*[J], 2022, 41(02): 559-569.
- [33] Wei C X, Luo L Y, Wu Z X et al. Journal of the Mechanical Behavior of Biomedical Materials[J], 2020, 111: 104017.
- [34] Cui Y W, Chen L Y, Chu Y H et al. Corrosion Science[J], 2023, 215: 111017.

Microstructure and Properties of Dental Implant Zr-30Ti-xCu Alloys

Chen Zhebin, Cui Yue, Hu Lijuan, Ma Runze, Xu Shitong, Yao Meiyi

(Institute of Materials, Shanghai University, Shanghai 200072, China)

Abstract: Zirconium and its alloys have recently received considerable attention as candidate materials for dental implants due to its low modulus of elasticity, good corrosion resistance, and excellent biocompatibility. In this work, Zr-30Ti-xCu (x=0, 3, 7, mass fraction, %) alloys were designed by the valence electron concentration (VEC) theory. The microstructures of the alloys were characterized using SEM/EDS and TEM/EDS. The mechanical properties, corrosion behaviors, biocompatibility and antibacterial activities of the alloys were characterized through microhardness testing, room temperature tensile testing, electrochemical testing, contact angle testing, and antibacterial performance experiments. Results showed that after quenching at 650 °C/15 min, the three alloy matrices were mainly composed of β phase. In the Cu-containing alloys, Zr₂Cu second phase precipitated and the number of Zr₂Cu particles increased with the increase of Cu content. With the increase of Cu content, the Vickers microhardness increased by 37 %, the contact angle decreased from 98.49° to 74.21° to improve the surface wettability. Meanwhile, it showed a significant inhibitory effect on Escherichia coli and Staphylococcus aureus, and enhanced the corrosion resistance of the alloy in physiological saline solution. The three alloys had low elastic modulus (67.8-78.9 GPa) and cytotoxicity, but their relationship with Cu content was not obvious. It can be seen that Zr-30Ti-xCu alloy exhibits excellent comprehensive properties, which can provide theoretical basis and guidance for the selection of new dental implants.

Key words: Zr-Ti alloy; Dental implants; Mechanical properties; Corrosion behavior; Biocompatibility

Corresponding author: Yao Meiyi, Ph. D., Professor, Institute of Materials, Shanghai University, Shanghai 200072, P. R. China, Tel: 0086-21-56338586, E-mail: yaomeiyi@shu.edu.cn