DOI: 10.12442/j.issn.1002-185X.20240681

IN625 合金激光熔覆修复 EA4T 钢显微组织及力学性能研究

方喜风1, 王睿1, 霍会宾2, 杨倩2, 孙晓光1*

(1中车青岛四方机车车辆股份有限公司,山东 青岛 266111)(2西安增材制造国家研究院有限公司,陕西 西安 710117)

摘 要: 选用 IN625 高温合金作为修复原材料,对 EA4T 车轴钢表面进行激光增材修复研究,通过 X 射线衍射仪、扫描电镜显微镜、维氏硬度计以及万能实验机分析了 IN625 激光熔覆试样不同区域相组成、显微组织及晶粒尺寸,并测试了其力学性能。结果表明: IN625 激光熔覆层底部为多种生长方向的柱状晶组织,中部为单一生长方向的柱状晶组织且晶粒尺寸最大,顶部为以等轴晶为主的杂晶区域;熔覆层和基体发生了 Ni、Cr 和 Fe 元素的互扩散作用,扩散区域大约为 9 μm; IN625 激光熔覆试样综合力学性能远高于 EA4T 基体材料,显微硬度达到 295 HV0.2、抗拉强度达到 888 MPa、延伸率达到 38.0%。 关键词: 激光熔覆修复; IN625 合金; EA4T 钢;显微组织; 力学性能

中图法分类号: TG146 文献标识码: A 文章编号: 1002-185X(2017)0?-0???-0?

车轴是机车车辆转向架的关键承载部件,由于服役 过程中受到扭矩、弯矩及静压应力等复合交变应力,在 轮座、集电环座、齿轮座等配合部位会产生微振磨蚀造 成的周向划痕等损伤,检修退卸和组装过程中则会产生 划伤,这些微小缺陷可能导致整轴的损伤累积和疲劳破 环,直接危及机车运行安全^[1]。因此,为了保障机车车 辆的安全服役,当车轴损伤深度超过相关标准规定时, 需对其进行封存报废处理^[2]。激光增材修复技术是基于 激光快速成型和再制造理念发展起来的一种先进修复技 术,该技术利用高能激光束和运动控制系统作为热源和 控制路径驱动,针对各种原因产生的划伤、磨损和腐蚀 等损伤零件进行局部高质量修复,具有基材变形小、基 体冶金结合以及热影响区可控等优点,在车轴零件修复 再制造领域表现出巨大潜力^[3-6]。

EA4T 车轴钢是一种采用欧洲技术标准的合金钢, 由于其具有优良的综合性能,被广泛用于我国高速铁路 列车车轴上^[2]。近年来随着我国轨道列车运营年限、运 营里程的不断增加,因损伤超限而报废的车轴数量剧增, 因此,采用激光增材技术对车轴进行再制造,恢复其尺 寸和使用性能具有极其重要的经济价值。

肖棚等^[7]在 EA4T 车轴钢表面激光熔覆 24CrNiMo 合金粉末,结果表明熔覆层主要为马氏体组织,底部为 胞状枝晶,中部为柱状晶和枝晶,顶部为取向随机的细 小枝晶,熔覆层硬度达到 368~409 HV_{0.2},拉伸强度达 到 1017 MPa,屈服强度达到 943 MPa,均明显高于基体, 然而塑性和疲劳性能有所下降。Chen 等^[8]采用 Fe-Cr-Ni 合金在 EA4T 车轴上进行激光熔覆试验,研究表明熔覆 层的疲劳裂纹扩展速率低于基体试样。Xie 等[9]通过激光 熔覆技术在 EA4T 钢上制备了 Fe314 合金熔覆层,结果 表明,熔覆层的显微组织为柱状晶和等轴晶体,晶间析 出物主要包括 Fe₃C、FeB 和 Cr₂C₃,在熔覆区内越靠近 结合区, Cr 元素含量越低, Fe 元素含量越高, 同时熔覆 层表现出优于基材的耐腐蚀性。李从辰等[10]同样在 EA4T 钢表面激光熔覆 Fe314 不锈钢,结果表明结合区 组织由熔覆层底部的平面晶和垂直于界面生长的粗大树 枝晶组成,熔覆层中部和上部组织以交叉树枝晶为主; 熔覆层显微硬度在 338~404 HV0.2之间,且熔覆试样抗 拉性能增加,屈服强度与抗拉强度均高于标准值,但塑 性韧性降低。Wang 等[11]采用了激光熔覆技术对列车车 轮表面进行的改性,通过在激光熔覆过程中添加 La₂O₃ 稀土元素在轮轨表面制得了晶粒更加细化得 Fe 基合金 层,使得车轮表面得磨耗特性和滚动接触疲劳特性有所 提升。

熔覆材料的选择对于激光修复 EA4T 车轴尺寸及性 能的恢复具有至关重要的作用。理论上,选择与基体化 学成分一致的材料进行修复,界面附近应力失配、微观 组织缺陷等均可控制在较好的范围,能有效提高界面性 能。但由于 EA4T 车轴材料经过调制处理后具有较高的 强韧性,采用相同材料熔覆则无法进行后续热处理,存 在较多马氏体组织,造成熔覆层强度高但塑韧性差,无 法满足车轴整体性能需求。所以,本项目选用异质材料 作为激光修复原材料。一般对于异质修复材料的选择需

基金项目:中车重大科研项目资助(项目号 2023CTA016)

作者简介:孙晓光,男,1984年生,博士,正高级工程师,中车青岛四方机车车辆股份有限公司,山东,青岛,266111,电话:0532-87808925, E-mail:sunx_sf@126.com

要考虑: (1) 热膨胀系数匹配原则; (2) 熔点匹配原 则; (3) 润湿性原则; (4) 力学性能匹配原则等。基 于以上原则,本工作选用 IN625 高温合金粉末作为 EA4T 车轴钢激光修复原材料。何广忠等[12]采用优化后的工艺 参数在 EA4T 上激光熔覆 IN625 镍基粉末,其熔覆试样 拉伸性能优于母材标准要求,冲击性能优于基材的冲击 性能,疲劳寿命与基材相当,达到了车轴服役性能的要 求,可用于后续高速动车组 EA4T 车轴的修复。Tudu 等 ^[13]研究了激光定向能量沉积 IN625 和 IN625-SS304L 复 合材料与 SS304L 基板界面性能的比较,结果表明 IN625 和 IN625-SS304L 热影响区厚度分别为 26 µm 和 12.5 μm, 热处理后, 两种试样的热影响区均减少了 50%。徐 庆东等^[14]对激光成形修复 Inconel 625 合金不同区域组 织进行了研究,结果表明修复区组织为呈外延生长的柱 状枝晶,相组成为 y 基体相、沿晶界析出的 Laves 相以 及少量 MC 型碳化物, 层与层界面处 Laves 相析出急剧 增加形成层间过度区。本文采用 IN625 高温合金粉末作 为修复材料对 EA4T 车轴钢进行激光熔覆,重点研究了 熔覆层不同区域以及界面处微观组织结构,并对熔覆试 样显微硬度以及拉伸性能做了表征,以期为高速列车车 轴的激光增材修复提供参考。

1 实验

EA4T 钢是一种车轴专用的低碳合金钢,选用 IN625 高温合金作为 EA4T 车轴激光修复粉末原材料,其化学 成份和 EA4T 基体化学成份如表 1 所示, IN625 高温合 金粉末流动性为 15.4 s/50g,粒径统计结果如图 1 所示, 其中 D10=61.28 μm, D50=91.15 μm, D90=137.61 μm, 粉末形貌如图 2 所示,粉末球形度较好,但有部分卫星 粉颗粒和不规则粉末颗粒的存在。

采用本单位自研 ALM-6000C 超高速激光熔覆系统 平台进行 EA4T 激光熔覆修复实验,该系统配备有 6000 W 光纤激光器、高速熔覆头、双粉缸送粉器、水冷机以 及 KUKA6 轴机器人运动装置等。实验前将 IN625 合金 粉末放置 120 ℃真空干燥箱内烘干 2 h 后倒入送粉器 中,并用砂纸打磨、清洗 EA4T 基材表面后固定在工作 台上。通过前期实验确定 IN625 激光增材修复 EA4T 钢 最佳工艺参数为:激光功率 1400 W,熔覆速度 0.05 m/s, 送粉速率 2 r/min,搭接率为 70 %,单层往复式扫描策略, 上下熔覆层之间扫描方向呈 0°。

采用线切割机将 IN625 激光熔覆块体和 EA4T 基板 一起切割后作为金相分析试样,对其纵截面进行机械研 磨并抛光,选用王水(HNO3: HCl=1: 3)进行腐蚀后 采用JSM-7900F场发射扫描电子显微镜观察试样微观组 织;采用 Bruker D8 Discover 型 X 射线衍射仪(XRD) 对 IN625 熔覆试样进行微区物相结构分析,光斑尺寸为 0.3 mm,角度为20~115°,分别对IN625试样顶部、 中部以及底部进行表征测试:采用氯离子抛光去应力, 抛光电流 2.2 mA, 电压 5.0 KV, 抛光时间为 6 h, 抛光 后试样通过背散射电子衍射(EBSD)进行晶体结构、 晶粒尺寸以及织构测试,并使用 Channel 5 软件进行数 据处理。显微硬度测试采用 HM-210D 显微维氏硬度计, 试样载荷为 1.96 N, 加载时间为 20 s, 从熔覆层与基体 界面位置处开始上下两侧每隔 0.1 mm 进行一次测量, 各测量 8 个点后设定为每隔 0.2 mm 测量一次, 直至熔 覆层顶部和基体底部,同一深度测量三个点取平均值; 采用 INSTRON 5982 万能实验机进行室温拉伸性能测 试,每组3根试样,求其平均值。

图 1 IN625 合金粉末粒径分布

Fig.1 Particle size distribution of IN625 alloy powder

图 2 IN625 合金粉末形貌图

Fig.2 Powder morphology of IN625 alloy

表 1	EA4T 基体材料和 IN625 合金粉末化字成份

Table 1 Chemical composition of EA41 substrate and IN625 alloy powder (w)	sition of EA4T substrate and IN625 alloy powder $(w/\%)$
---	--

Materials	Ni	Cr	Мо	Nb	Mn	Si	С	Ti	Al
EA4T	0.29	1.04	0.26	/	0.69	0.16	0.27	/	/
IN625	Bal.	21.62	9.24	4.02	0.01	0.10	0.005	0.14	0.23

• 2 •	怖有金周材科与上柱						弟** 仓		
Materials	Р	S	Cu	Fe	V	Со	0	Ν	
EA4T	< 0.001	0.001	0.14	Bal.	0.04	/	0.037	0.032	
IN625	0.009	0.002	0.02	2.18	/	0.08	0.012	0.007	

2 结果与讨论

2.1 IN625 激光熔覆层微观组织

图 3 所示为激光熔覆 IN625 合金试样纵截面外观形 貌及宏微观组织照片,观察图3(a)可以发现,熔覆试 样未出现宏观裂纹、气孔等缺陷,表现出较好的熔覆质 量。从图 3(b) 腐蚀后的 IN625 合金熔覆层低倍显微形 貌可以看到若干呈抛物线形状的熔池边界线。在激光熔 覆过程中,由于激光能量呈高斯分布,中心能量高于边 缘能量的特征使得粉末熔化后熔池中心温度高于边缘温 度,熔池中部温度高,表面张力小,而边缘温度低,表 面张力大,熔池边缘处的流体在剪切力的作用下沿着固 液界面向内流动,在底部中心区域相遇后向上流动,形 成了具有漩涡特征的熔流,最终形成了抛物线形状的熔 池[15]。在熔覆过程中单道之间的搭接率为70%,即后一 个熔池会覆盖前一个熔池的一部分,最终形成图3(b) 所示的熔池形态。

图 3 (a) 中 A、B、C 三个白色框选区域的微观组 织结构如图(c)(d)(e)所示,即分别对应激光熔覆 IN625 合金试样的顶部区域、中部区域以及底部区域。 在激光熔覆过程中,靠近基板的初始沉积层表现出了不 同生长方向的枝晶组织结构,如图3(e)所示,白色箭 头表示了晶粒的生长方向。随着沉积层数的增加,最大 温度梯度方向逐渐平行于沉积高度方向,熔体凝固时, 先前的晶粒作为后续凝固层的成核位点并在热流的作用 下呈枝晶状单向生长,主干方向与温度梯度方向平行的 枝晶生长更占优势,逐渐淘汰掉与最大温度梯度方向存 在较大取向差得枝晶,最终形成了贯穿多个沉积层具有 外延生长特性的柱状晶组织[16-17],如图(d)所示。在熔 覆试样的顶部位置出现了以等轴晶为主的杂晶区域,如 图(c)所示,当激光熔覆进行到最后一层时,不会受到 后续激光的重熔作用,并且已沉积层积累了足够多的热 量, 增大了最后一沉积层的温度梯度, 进而增大凝固速 度,使得晶体形貌趋向等轴晶转变,因此在成形件表面 形成一层很薄的等轴晶区[18]。

为了更加深入了解激光熔覆 IN625 合金试样在不同 熔覆高度的微观组织变化规律,对激光熔覆 IN625 合金 试样的顶部、中部以及底部区域分别进行了 EBSD 测试。 图 4 (a) ~ (c) 激光熔覆 IN625 合金试样 IPF 图结果 显示,在熔覆高度上,熔覆层内部显微组织呈现区域分 布的特点,在熔覆层底部区域与基体直接相连,能够直 接向基板进行传热,冷却速率较高,晶粒没有足够的时 间生长,因此晶粒细小;随着激光熔覆的进行,热循环 和热累积作用导致基体和熔覆层底部温度提高,中部区 域与底部区域之间的温度梯度降低,冷却速度也随之降 低,足够长的保温时间使得晶粒发生了长大;顶部区域 上部分晶粒代表了激光熔覆形成的初始晶粒,该区域晶 粒位于熔覆最后一层,未经过重熔,因此晶粒保持了原 始状态,没有特定晶体取向,且晶粒尺寸较小。图 4(a4)~ (c₄) 晶粒尺寸统计图也得出同样的结论,激光熔覆 IN625 试样顶部平均晶粒尺寸 26.1 µm, 中部平均晶粒尺 寸为49.9μm,底部为31.2μm,试样顶部晶粒最小,而 中部晶粒尺寸最大。图4(a₃)~(c₃)为IN625激光熔 覆试样不同区域的反极图,熔覆层中部和底部区域的晶 粒取向为 Z0//[001]方向, 织构强度由熔覆层底部的 5.07 增加到熔覆层中部的 6.65。

图 3 激光熔覆 IN625 合金试样外观形貌及宏微观组织照片

Fig.3 Morphology of laser cladding IN625 alloy sample(a),Macro-organization(b),Top microstructure(c),Middle microstructure(d),Bottom microstructure (e)

图 4 激光熔覆 IN625 合金试样 IPF 图、再结晶分布图、应变分布图以及晶粒尺寸

Fig.4 IPF diagrams (a-c), recrystallization distribution diagrams (a1-c1), local strain distribution (a2-c2), inverse polar diagram (a3-c3) and grain size

(a4-c4) of laser cladding IN625 alloy sample top (a), middle (b) and bottom (c)

图 4 (a₁) ~ (c₁) 为激光熔覆 IN625 合金试样顶部、 中部和底部的再结晶分布图,图中蓝色区域为再结晶晶 粒,黄色区域为未完成再结晶的亚结构,红色区域为未 发生再结晶的原始组织。由于激光增材制造特殊的成形 方式,使得熔覆试样各个区域均发生了再结晶,试样下 部有少部分区域未发生再结晶。图 4 (a₂) ~ (c₂)可以 看出,高应变区域(绿色)对应的是未再结晶区域,低 应变区(蓝色)对应的是再结晶和亚结构区域。激光熔 覆过程中,由于快速加热和冷却产生的热应力以及循环 热导致 IN625 合金组织发生局部再结晶。再结晶的驱动 力是储存变形能,动态再结晶发生后变形晶粒中的位错 被释放,再结晶晶粒中没有发生晶格畸变,因此,在结 晶区域位错密度和应变低于未再结晶区域。

对激光熔覆 IN625 合金试样顶部、中部和底部进行 微区 XRD 测试,测试结果如图 5 所示。熔覆层顶部和 中部主要由单一的镍基奥氏体γ相组成,而底部测试区 域由于无限接近与基板,与基板之间进行了元素的扩散 与交互,尤其 Fe 元素,因而存在镍基奥氏体γ相和铁基 奥氏体 γ 相两种物相。

Fig.5 X-ray diffraction patterns of laser cladding IN625 alloy samples 2.2 IN625-EA4T 熔合界面微观组织

图 6 (a) 所示为 EA4T 基板上激光熔覆 IN625 合金 材料的熔合界面形貌图,图中上部分浅色区域为 IN625 激光熔覆层,下部分深色区域为 EA4T 基板,熔覆区域 和基体界面分明,过度均匀且呈曲线状分布,在界面处 还可观察到一条宽约 9 μm 左右的浅灰色条带区域,如 图中白色箭头所示,这是由于合金元素的交互扩散作用 而形成的。图 6 (b)为熔合界面区域的 IPF 图,从图中 可以看出 IN625 熔覆层晶粒并未延续基体晶粒的生长。

图 7(a) 对熔合界面位置处进行了线扫描测试,其 结果如图 7(b) 所示,图中可以看出 Ni、Cr 和 Fe 三种 元素发生了互扩散作用,由于粉末材料和基体材料在成 分上存在较大的浓度差,金属熔体在凝固过程中,固液 界面前沿推动元素发生了扩散,从而造成了界面区域处 成分的不均匀性。测量图中三种元素含量发生变化的距 离范围均为9 μm 左右,这与图 6 中显示的浅灰色条带 区域宽度相吻合。同时对图 7 (a)中的 6 个点进行了元 素成分测试,结果如表 2 所示,点 3 处的 Fe 元素质量百 分比骤然增加到了 14.52%,该元素发生了从基体向熔覆 区的扩散;而 Ni、Cr 元素百分比含量均有所降低,这两 种元素发生了从熔覆区向基体的扩散,合金元素之间的 交互扩散结合,表明 IN625 熔覆层与 EA4T 基体之间形 成了良好的冶金结合。

图 6 熔合界面区域形貌图和 IPF 图

Fig.6 Topography(a) and IPF diagram (b) of fusion interface region

Fig.7 EDS diagram of fusion interface region: (a) scanning area,(b) line scan element distribution

表 2 熔合界面区域点扫描元素分布

Point	С	Si	Cr	Mn	Fe	Ni	Мо
1	9.96	/	20.70	/	5.12	57.59	6.63
2	9.53	/	20.82	/	3.72	59.09	6.85
3	9.11	/	17.54	/	14.52	50.47	6.70
4	6.98	/	1.43	0.50	91.10	/	/
5	6.71	0.35	0.89	0.78	91.27	/	/
6	7.35	0.30	1.16	0.75	90.43	/	/

第XX卷	第XX期	稀有金属植	Vol.XX, No.XX	
202X年	XX 月	RARE METAL MATER	IALS AND ENGINEERING	November 202X
2.3 显微码	更度		EA4T 基体显微硬度为 197~210 HV _{0.2} ,	平均硬度 206
对 IN6	25 激光熔	覆试样进行显微硬度测试,其结果	HV _{0.2} 。图 8(b)(c)所示为基体 EA4T	和热影响区微
如图 8(a)	所示,从	图中可以看出显微硬度分为三个不	观组织图,基体组织由索氏体和块状铁素	长体组成, 其塑
同的区域,	从左到右	分别对应熔覆层(Cladding layer)、	性、韧性好而硬度相对较低; 而基体顶部	3区域由于受到
热影响区((HAZ) 和	基体(Substrate)。在 IN625 熔覆	激光热作用,在随后的快速冷却过程中发	生了马氏体相
层中沿沉积	了方向上显	微硬度分布相对均匀,主要集中为	变,形成了热影响区,从图中可以观察到	」热影响区组织
281~313 H	IV _{0.2} ,平	匀硬度 295 HV0.2;激光熔覆界面处	由板条状马氏体以及残余索氏体组成, 板	沃 条状马氏体内
显微硬度有	「所提高为	335 HV _{0.2} ,在热影响区内达到最高	存在高密度位错,强度以及塑韧性均较好	[19],因而在热
值 393 HV ₀	。2后显微硕	更度迅速下降,最终稳定分布,测得	影响区内显微硬度达到了最高值。	
	45		b	
	40	Cladding layer HAZ	Substrate	
	0.2			
	AH/35			
	30		<u>20 μm</u>	

1.5

图 8 激光熔覆 IN625 合金试样显微硬度 Fig.8 Microhardness of laser cladding IN625 alloy sample(a) and microstructure of substrate(b) and HAZ (c)

Interface

Distance for interface/mm

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

2.4 拉伸性能

Microhardn 520

200

对 EA4T 基体材料和 IN625 激光熔覆试样进行室温 拉伸实验,测试结果如下表 3 所示,拉伸应力应变曲线 如图 9 所示。激光熔覆 IN625-X 试样为平行于扫描方向 取样,IN625-Y 为垂直于扫描方向取样。结果显示 IN625 激光熔覆试样平均抗拉强度达到 888 MPa,屈服强度达 到 617 MPa,延伸率达到 38.0 %,IN625-X 试样抗拉强 度和屈服强度略高于 IN625-Y 试样,但延伸率略低于 IN625-Y 拉伸试样;与 EA4T 基体材料相比,IN625 激 光熔覆试样具有更高的强度和韧性。

图 10 (a) (d) 显示了激光熔覆 IN625-X 和 IN625-Y 拉伸断口宏观形貌,从图中可以看出两种试样断口形貌 基本相似,断口边缘处较为干净,内部较为平整且没有 金属光泽。图 10 (b) (e)激光熔覆 IN625 低倍断口形 貌图表现出典型的韧性穿晶断裂方式,裂纹的扩展沿着 柱状晶的晶界定向延伸;断口处还可见少量孔洞的存在, 在外力作用下,这些缺陷演化为裂纹萌生源,当所受拉 应力大于成形件的抗拉强度时,裂纹通过迅速扩展释放 能量,最终造成韧性断裂。图 10 (c) (f)高倍的形貌 图可以看出断口韧窝多为等轴韧窝,且在韧窝或空洞处 存在少量形状各异颗粒物如图中黑色箭头所示,分析认 为这些颗粒为 Laves 相和碳化物颗粒^[20],这些颗粒物的 存在为材料断裂时微孔的产生以及裂纹的起源和扩展提 供了有利的条件。相比之下, IN625-Y 拉伸试样的断口 韧窝虽然浅, 但更加均匀且等轴化, 因此呈现出比 IN625-X 拉伸试样更优异的延展性。

表 3 EA4T 基体材料和 IN625 激光熔覆试样拉伸性能

Table 3 Tensile properties of EA4T and IN625 laser cladding specimens

0 1		Tensile	Yield	Elongation/%	
Sample	strength/MPa	strength/MPa			
	IN625-X	905	636	35.5	
	IN625-Y	871	598	40.0	
	EA4T	711	550	20.0	

图 9 IN625 激光熔覆试样应力应变曲线

Fig.9 Stress-strain curve of IN625-X and IN625-Y

基金项目:中车重大科研项目资助(项目号 2023CTA016)

作者简介:孙晓光,男,1984年生,博士,正高级工程师,中车青岛四方机车车辆股份有限公司,山东,青岛,266111,电话:0532-87808925, E-mail:sunx_sf@126.com

图 10 IN625 激光熔覆试样断口形貌 Fig.10 Fracture morphology of IN625-X(a) (b) (c) and IN625-Y (d) (e) (f)

3 结论

1) IN625 激光熔覆试样底部区域和中部区域为柱状 晶组织,且底部区域柱状晶组织表现出多种生长方向, 而中部区域表现为平行于最大温度梯度单一的生长方 向,试样顶部出现以等轴晶为主的杂晶区域;试样顶部、 中部以及底部平均晶粒尺寸分别为 26.1 μm、49.9 μm 和 31.2 μm,顶部晶粒尺寸最小,而中部晶粒尺寸最大;试 样中部和底部区域晶粒分布有 Z0//[001]择优取向,织构 强度由熔覆层底部的 5.07 增加到熔覆层中部的 6.65。

2) IN625 激光熔覆层和 EA4T 基体结合界面分明、 呈曲线状分布,且发生了 Ni、Cr 和 Fe 元素的互扩散作 用,Ni、Cr 元素由熔覆层向基体扩散,Fe 元素由基体向 熔覆层扩散,三种元素含量发生变化的范围大约为 9 μm。

3) 熔覆层、热影响区及基体层三个区域硬度分布不同, 熔覆层平均硬度为 295 HV_{0.2}, EA4T 基体层显微硬度为 206 HV_{0.2}, 热影响区由于马氏体相变引起硬度值的提高,达到了硬度最高值 393 HV_{0.2}。

4) IN625 激光熔覆试样抗拉强度达到 888 MPa,屈服强度达到 617 MPa,延伸率达到 38.0%,与 EA4T 基体材料相比,IN625 激光熔覆试样具有更高的强度和韧性。

参考文献 References

[1] Zhou Suxia(周素霞),Xie Jilong(谢基龙),Song Zhanxun(宋占

[2] Zhang Haonan(张浩楠), Zhang Jiwang(张继旺), Li Xing(李行) et al. <u>Surface Technology</u>(表面技术) [J], 2021, 50(10): 279-285

勋). Machinery Manufacturing(机械制造)[J], 2008, 46(1): 65-67

- [3] Zhang Jie(张杰).Microstructure and Properties of Inconel 718 Alloy Repaired by Laser Additive Remanufacturing (激光增材再 制造 Inconel 718 合金的组织与性能研究)[D].Zhejiang: Zhejiang University of Technology,2024
- [4] Ansari M,Jabari E,Toyserkani E. <u>Journal of Materials Processing</u> <u>Technology</u>[J],2021,294:117117
- [5] ChenWenjing, Cai Qing, Luo Zhaoyang et al. <u>Materials Letters</u>[J], 2023,335:133733
- [6] Huang Qi(黄琪),Gao Xu(高旭),Liu Dong(刘栋) et al.<u>Rare Metal</u> <u>Materials and Engineering</u>(稀有金属材料与工程)[J],2024, 53(4):1058
- [7] Xiao Peng(肖棚),Gao Jiewei(高杰维),Liu Ligen(刘里根) et al.<u>Materials Reports(</u>材料导报)[J],2022,36(7):21070180
- [8] ChenWenjing, Chen Hui, Li Congchen et al. <u>Engineering Failure</u> <u>Analysis</u>[J], 2017, 79:120-129
- [9] Xie Yujiang.International Journal of <u>Electrochemical Science</u>[J], 2020,15(11):11584-11593
- [10] Li Congchen(李丛辰), Chen Wenjing(陈文静), Xiang Chao(向超) et al. Electric Welding Machine(电焊机)[J], 2016, 46(5):73-77
- [11] Wang W J,Fu Z K,Cao X et al.<u>Tribology International</u>[J],2016, 94:470-478
- [12] He Guangzhong(何广忠), Zheng Chenggong(郑成功), Liu Weiliang(刘伟亮). <u>Welding Machine(</u>电焊机)[J], 2022, 52(10): 37-44

基金项目:中车重大科研项目资助(项目号 2023CTA016)

作者简介:孙晓光,男,1984年生,博士,正高级工程师,中车青岛四方机车车辆股份有限公司,山东,青岛,266111,电话:0532-87808925, E-mail:sunx_sf@126.com

- [13] Nehem T,Mayuri B,Shashi B P et al. <u>Rapid prototyping journal</u>[J] 2023,4(29):818-827
- [14] Xu Qingdong(徐庆东), Wang Shugang(王述钢), Le Guomin(乐国 敏) et al. <u>Rare Metal Materials and Engineering</u>(稀有金属材料 与工程)[J], 2019, 48(5):1598
- [15] Nayak S K,Mishra S K,Jinoop A N et al.<u>Journal of Materials</u> <u>Engineering and Performance</u>[J],2020,29(11):7636-7647
- [16] Reichardt A,Dillon R P,Borgonia J P et al.<u>Materials & Design[J]</u>, 2016,104(aug.15):404-413
- [17] Dinda G P,Dasgupta A K,Mazumder J.<u>Materials Science &</u> <u>Engineering A</u>,2009,509(1-2):98-104

- [18] Yadav S,Jinoop A N,Sinha N,et al. <u>International Journal of</u> <u>Advanced Manufacturing Technology</u>[J],2020,108(11/12): 3779-3791
- [19] Tsay L W,Liu Y C,Lin D Y et al.<u>Materials Science &</u> <u>Engineering A</u>,2004,384(1/2):177-183
- [20] Qin Lanlan(秦兰兰), Study on the Microstructure and Mechanical Properties of Deposited-IN625 Nickel-based Super-alloy by Laser Additive Manufacturing(激光增材制造 IN625 镍基高温合金组织及性能研究)[D]. Anhui, Anhui University of Technology, 2017

Microstructure and mechanical properties of EA4T steel repaired by laser cladding IN625 alloy

Fang Xifeng¹, Wang Rui¹, Huo Huibin², Yang Qian², Sun Xiaoguang¹

(1. CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, China)

(2. National Institute Corporation of Additive Manufacturing, Xi'an, Xi'an 710117, China)

Abstract: IN625 superalloy was used to repair the surface of EA4T axle steel by laser. The phase composition, microstructure, grain size and mechanical properties of different areas of IN625 laser cladding samples were analyzed by X-ray diffractometer, scanning electron microscope, Vickers hardness tester and universal experimental machine. The results show that the bottom of the IN625 laser cladding layer is the columnar crystal structure with multiple growth directions, the middle is the columnar crystal structure with single growth direction and the grain size is the largest, and the top is the mixed crystal region dominated by equiaxial crystal; The interdiffusion of Ni, Cr and Fe occurs between the cladding layer and the substrate, and the diffusion region is about 9 µm. The microhardness is 295HV_{0.2}, the tensile strength is 888 MPa and the elongation is 38.0%.

Key words: Laser cladding repair; IN625 alloy; EA4T steel; microstructure; mechanical properties

Corresponding author: Sun Xiaoguang, Ph. D., Professor, CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, P. R. China, Tel: 0532-87808925, E-mail:sunx_sf@126.com