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Abstract: Based on the hot compression test data of as-cast AZ80 magnesium alloy under the conditions of deformation temperature
of 250~400 ° C and strain rate of 0.001~1 s−1, a physical-based constitutive model based on the stress dislocation correlation and
dynamic recrystallization dynamics and an artificial neural network (ANN) model based on feedforward backpropagation algorithm
were established to predict the thermal deformation behavior of AZ80 magnesium alloy. Three statistical indicators, correlation
coefficient (R), mean absolute relative error (AARE), and relative error (RE), were used to verify the prediction accuracy of these two
models. The results show that both the models can accurately predict the thermal deformation behavior of AZ80 magnesium alloy.
The stress value predicted by ANN model shows better agreement with the experimental data, and the value of R and AARE of ANN
model is 0.9991 and 2.02%, respectively. While the R and AARE predicted by the physical-based constitutive model are 0.9936 and
4.52%, respectively. The better predictive ability of ANN model is attributed to its ability to deal with complex nonlinear
relationships, while the predictive ability of the physical-based constitutive model is attributed to the fact that the model has certain
physical meaning. The thermodynamic mechanism of work hardening (WH), dynamic recovery (DRV), and dynamic recrystallization
(DRX) during thermal deformation are fully considered in the model parameters. Finally, the advantages and disadvantages of these
two models are compared and discussed.
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Magnesium alloy is the lightest structural material which is
widely used in modern industry due to its high strength,
specific stiffness, good casting performance, good heat
conduction, excellent electromagnetic shielding performance,
and easy recycling. It is an ideal material for realizing
lightweight component and resource reuse. According to the
forming process, it can be divided into cast magnesium alloy
and wrought magnesium alloy. The development of wrought
magnesium alloy is an important part of magnesium alloy
industry. Among all the wrought magnesium alloys,
Mg-Al-Zn alloy is widely used due to its low price. AZ80
magnesium alloy is a high-strength alloy in the traditional Mg-
Al-Zn series of wrought magnesium alloy, and has quite high
ductility, good corrosion resistance, good oxidation resistance,
and good welding performance, which can be manufactured
into sheets, strips, profiles, bars, pipes, forgings, die forgings,

and other mechanical parts under the medium load. In
addition, the AZ80 alloy sheet can also be used as the skin,
wall panel, and internal components of aircraft and missiles,
and has broad application prospects in industry[1].

The room temperature deformation mechanism of AZ80
magnesium alloy is dominated by the basal slip and twinning
which are easy to produce deformation texture, resulting in
poor ductility of magnesium alloy and difficult plastic
processing[2]. During high temperature deformation, AZ80
alloy with low stacking fault energy undergoes work
hardening (WH) and dynamic softening, including dynamic
recovery (DRV) and dynamic recrystallization (DRX), which
makes the flow stress change with varying the deformation
temperature, strain rate, and deformation degree. Therefore,
the investigation of hot deformation laws of magnesium alloys
is of great significance for the forming design and perfor-
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mance research of materials[3].
A constitutive model is the basis for describing the high-

temperature flow characteristics of materials. It reveals the
relationship between the flow stress and thermodynamic
parameters of deformed materials, and can effectively reflect
the dynamic response of materials during deformation.
Generally, the flow behavior of materials under high
temperature condition is the result of the combined effects of
three thermodynamic mechanisms: WH, DRV, and DRX.
Therefore, the establishment of an appropriate constitutive
model is the prerequisite for accurately predicting the flow
characteristics of materials. Lin et al[4] summarized the
constitutive models established for metals or alloys in recent
years, and classified them into three categories: phenome-
nological models[5,6], physical-based models[7-9], and artificial
neural network (ANN) models[10-13].

Among the constitutive models, the phenomenological
model is widely used to predict the high-temperature flow
stress of materials due to its relatively simple calculation
process without considering the physical mechanism in the
process of thermal deformation. In order to further improve
the prediction accuracy of the model, it is necessary to
consider the physical meaning during the thermal
deformation. Based on the classic stress-dislocation
correlation and DRX kinetics, researchers established the two-
stage constitutive models of firstly considering WH-DRV
mechanism and then considering DRX mechanism for
42CrMo steel, 7050 aluminum alloy, and nickel-based
alloy[7-9], which comprehensively contained the mechanism
and thermal deformation behavior of DRV and DRX
processes. These models have certain physical significance,
and the results show that they have a good predictive ability.
However, the application of the two-stage constitutive model
in magnesium alloys is rarely reported.

The ANN model does not need to assume a mathematical
model and determine its parameters in advance, which
provides a new way to predict the deformation behavior of
materials under different conditions. In general, the
deformation response of materials at high temperature is
highly nonlinear, and many factors affecting the flow
characteristics of materials are also nonlinear-related, which
reduces the accuracy of the regression method in predicting
the flow stress. Neural network models are good at solving the
difficult problems in traditional calculation methods, espe-
cially for the complex nonlinear relationships. Peng et al[10]

established a backpropagation (BP) neural network model for
as-cast Ti60 aluminum alloy with the mean absolute relative
error (AARE) of 2.41%. Haghdadi et al[11] established a BP
neural network model for A356 aluminum alloy, and its
AARE between the experiment results and predicted values
was 1.2%. Yan et al[12] established a BP neural network model
for Mg-5.9Zn-1.6Zr-1.6Nd-0.9Y alloy with AARE of 2.853%.
The results show that ANN model can predict the flow stress
of different materials effectively and accurately.

Based on the experiment data of hot compression tests, the
physical-based constitutive model and BP ANN model for

AZ80 magnesium alloy were established in this research. The
prediction accuracy of flow stress according to these two
models was compared quantitatively, and the advantages,
disadvantages, and applicability of these two models were
discussed, laying a foundation for simulation and process
optimization of thermal deformation process of as-cast AZ80
magnesium alloy.

11 ExperimentExperiment

As-cast AZ80 magnesium alloy was used in this research,
and its chemical composition is shown in Table 1. In order to
reduce the residual stress and non-uniform deformation, the as-
cast AZ80 magnesium alloy was homogenized before hot
compression tests. The specimens were kept at 400 ° C for
12 h to eliminate the second phase and dendritic structure. The
hot compression specimen was a cylinder with the dimension
of Ф8 mm×12 mm. The specimen surface was smooth. The
hot compression tests were conducted on Gleeble-3500D
thermal simulation test machine. The deformation temperature
was 250, 300, 350, and 400 °C, and the strain rate was 0.001,
0.01, 0.1, and 1 s−1. The maximum deformation of the
specimen was 60%. The hot compressed specimens were
heated to a specified temperature with a heating rate of 5 °C/s,
and then kept at the temperature for 180 s to make sure
that every part of the specimens was at the same temperature.
After the hot compression test, the specimens were
quenched immediately to retain the high temperature
structure.

22 Results and DiscussionResults and Discussion

The true stress-strain curves of AZ80 magnesium alloy
under thermal compression are shown in Fig.1. It can be seen
that the deformation temperature and strain rate have
significant effects on flow stress. At a specific strain rate, the
flow stress is increased with decreasing the deformation
temperature; at a specific temperature, the flow stress is
increased with increasing the strain rate. This is because the
thermal deformation of the material results from the
combination of WH and dynamic softening.

According to the dynamic softening mechanism of the
thermal deformation process, the flow stress-strain curve can
be divided into two categories: DRV and DRX, as shown in
Fig. 2. DRV is the main softening mechanism. At the
beginning of deformation, due to the leading role of WH and
DRV, the flow stress is increased rapidly until the peak stress
σp. When the equilibrium between WH and DRV is reached,
the saturation stress σsat occurs. However, for the DRX curve,
as the amount of deformation increases, when the strain is
greater than the critical strain, the material undergoes DRX
process. Thereafter, WH, DRV, and DRX jointly affect the
flow stress of the material. As the deformation continues, the

Table 1 Chemical composition of AZ80 magnesium alloy (wt%)

Al

8.360

Zn

0.524

Mn

0.385

Si

0.076

Fe

0.005

Ni

0.006

Cu

0.003

Mg

Bal.
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softening effect of DRX gradually becomes obvious, and the
flow stress firstly increases to the peak stress σp, and then
gradually decreases.

33 Establishment of Constitutive ModelsEstablishment of Constitutive Models

3.1 Establishment of physical-based constitutive model

According to the characteristics of hot compression
deformation behavior of AZ80 magnesium alloy, the
constitutive models of two-stages of WH-DRV and DRX were
established.
3.1.1 Constitutive model of WH-DRV stage

The evolution of dislocation density with strain is generally
controlled by the competition between dislocation storage and
dislocation disappearance. The relationship between dislo-
cation density and strain can be expressed as follows[7]:

dρ
dε

= U - Ωρ (1)

where dρ/dε is the increase rate of dislocation density with
strain, ρ is the dislocation density, U stands for WH and can
be regarded as a parameter of strain, Ω is the DRV coefficient,
and Ωρ is the DRV caused by dislocation disappearance and
rearrangement[14]. The integration of Eq. (1) can be expressed
as follows:

ρ =
U
Ω

- (U
Ω

- ρ0)e-Ωε (2)

where ρ0 is the initial dislocation density. The classic

relationship of flow stress-dislocation density[15] is σ=αμb ρ ,

where α is the material parameter, μ is the shear modulus, and
b is a Burgers vector mode. By substituting the expression
into Eq. (2), the flow stress in WH-DRV stage can be
expressed as follows:

σ = [σ 2
sat + (σ 2

0 - σ 2
sat)e-Ωε ]0.5

(3)

where σ is the flow stress; the saturation stress σsat and the

yield stress σ0 are equal to αμb U/Ω and αμb ρ0, respectively.

According to Eq.(3), it can be known that three parameters
(σsat, σ0, Ω) should be determined. The saturation flow
stress σsat is usually determined by the relationship between
WH rate θ=dσ/dε and the flow stress σ, as shown in Fig. 3.
Firstly, the inflection point of the θ -σ curve can be obtained
(represented by the rectangular symbol in Fig. 3). Then, the
saturated flow stress σsat is equal to the horizontal intercept of
the tangent line of the θ-σ curve passing through the inflection
point. When - |dθ/dσ| reaches the minimum value, it
corresponds to the inflection point of the θ-σ curves, which is
also the critical condition for DRX initiation[16]. The inflection
points of the θ - σ curves and the peak points of the true
stress-strain curves can reveal the occurrence of DRX. It can

Fig.1 True stress-true strain curves of AZ80 magnesium alloys at different strain rates: (a) ε̇=0.001 s−1, (b) ε̇=0.01 s−1, (c) ε̇=0.1 s−1,

and (d) ε̇=1 s−1

Fig.2 Typical stress-strain curves of AZ80 magnesium alloy
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be seen from Fig.3a~3d that all curves have inflection points,
which clearly shows that DRX occurs in the deformation
process.

The results show that the saturated flow stress σsat can be
expressed as a function of the peak stress σp by Eq. (4), as
follows:

σsat = -23.88 + 1.44σp (4)

Fig. 4 shows the experiment results and the fitting line
obtained according to Eq.(4).

In general, the effects of deformation temperature and strain
rate on flow stress can be characterized by Zener-Hollomon
parameter, namely Z parameter[17], and the expression of Z
parameter can be expressed as follows:

Z = ε̇ exp ( Q
RT ) (5)

where ε̇ is the strain rate (s−1), T is the absolute temperature

(K), R is the ideal gas constant (8.314 J ‧mol−1 ‧K−1), and Q is
the deformation activation energy (J‧mol−1). In order to obtain
the value of Z parameter, the deformation activation energy Q
should be calculated firstly, and the detailed calculation
procedure was reported in Ref. [18]. The Q value of AZ80
alloy is estimated as 177 332 J‧mol−1.

Based on the flow stress-strain curve, the yield stress σ0

at different deformation temperatures and strain rates can
be directly obtained. Fig. 5 shows the relationship between
the yield stress σ0 and the Z parameter. It is clear that
there is a good linear relationship, so the yield stress σ0

can be expressed as a function of the Z parameter, as
follows:
σ0 = 0.40lnZ + 1.43 (6)
According to Eq. (3), the DRV coefficient Ω can be

calculated by Eq.(7), as follows:

Fig.3 Relationships between WH rate θ and stress σ at different strain rates: (a) ε̇=0.001 s−1, (b) ε̇=0.01 s−1, (c) ε̇=0.1 s−1, and (d) ε̇=1 s−1

Fig.4 Relationship between saturation stress σsat and peak stress σp Fig.5 Relationship between yield stress σ0 and lnZ
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Ωε = ln ( σ 2
sat - σ

2
0

σ 2
sat - σ

2 ) (7)

Based on the flow stress-strain curves before reaching the
critical strain, the Ω values can be calculated. Fig.6 shows the
relationship between Ω and Z parameter. It can be found that
the DRV coefficient is increased with decreasing the Z
parameter, and Ω can be expressed as an exponential function
of the Z parameter, as follows:
Ω = 68.8851Z 0.064 51 (8)
Therefore, the constitutive equations for the as-cast AZ80

magnesium alloy during the WH-DRV stage can be expressed
as follows:

ì

í

î

ï

ï
ïï

ï

ï
ïï

σDRV = [ ]σ 2
sat + ( )σ 2

0 - σ 2
sat e-Ω ε

0.5

σsat = -23.88 + 1.44σp

σ0 = 0.40lnZ + 1.43

Ω = 68.8851Z 0.064 51

Z = ε̇ exp ( )177 332 RT

(9)

3.1.2 Constitutive model of DRX stage

When the deformation degree is greater than the critical
strain εc, the DRX grains nucleate and grow near the grain
boundaries, twin boundaries, and deformation bands. At
higher deformation temperature and lower strain rate, DRX
occurs more obviously.

In this research, the classic Avrami equation was used to
describe the DRX behavior of as-cast AZ80 magnesium alloy,
i.e., the DRX volume fraction (XDRX) can be expressed as the
function of the strain ε[19], as follows:

XDRX = 1 - exp
é

ë

ê
ê - Kd ( ε - εc

εp
)

ndù

û

ú
ú ( ε⩾εc) (10)

where Kd and nd are undetermined parameters. There are three
assumptions about the undetermined parameters Kd and nd:
(1) Kd is a function of Z parameter[9]; (2) both Kd and nd are the
function of Z parameter[20]; (3) Kd and nd are constants under
different deformation conditions[21].

It can be seen from Fig.2 that Δσ of the curve σDRX deviating
from the curve σDRV represents the softening degree of DRX,
and the maximum value is (σsat- σss). Therefore, the DRX
volume fraction can be expressed as follows:

XDRX =
Δσ

σsat - σss

=
σDRV - σDRX

σsat - σss

(11)

where σDRV is the flow stress when DRV is the main softening
mechanism; σDRX is the flow stress in the DRX stage; σsat is the
saturation stress resulting from the balance between WH and
DRV; σss is the steady-state stress due to DRX. σDRV can be
calculated by Eq.(9). By combining Eq.(10) with Eq.(11), the
expression of flow stress in DRX stage can be obtained, as
follows:

σDRX = σDRV - (σsat - σss) ×

{1 - exp
é

ë

ê
ê - Kd ( ε - εc

εp
)

ndù

û

ú
ú} ( ε⩾εc)

(12)

Acoording to Eq. (12), there are five unknown parameters,
including εc, εp, σss, Kd, and nd. Peak strain can be easily
obtained from the flow stress curves. Fig. 7 shows the
relationship between εp and Z parameter, so εp can be
expressed as a function of Z parameter:
εp = 0.0058Z 0.0970 (13)
Fig.8 shows the relationship between critical strain εc and Z

parameter. Similarly, the critical strain εc can be expressed as a
function of the Z parameter, as follows:
εc = 0.0040Z 0.0877 (14)
Fig. 9 shows the dependence of the steady-state stress σss

on the peak stress σp. Through the linear fitting method,
the relationship between σss and σp can be obtained, as
follows:
σss = 0.7346σp - 12.0531 (15)

Substituting the experiment data after the critical strain into
Eq.(12), and the relationship between ln[(ε−εc)/εp] and ln[−ln(1
− XDRX)] can be obtained. As shown in Fig. 10, under the
condition of 250 ° C/0.001 s−1, the parameter nd can be
obtained from the slope of the fitting curve, and the parameter
Kd can be obtained from the intercept of the fitting curve. The
calculated nd value ranges from 1.08 to 1.65, and its average
value is 1.34. The relationship between Kd and Z parameter is
shown in Fig. 11. It is obvious that Kd can be expressed as a
function of the Z parameter, as follows:

Kd = 0.0040Z 0.1295 (16)

Therefore, the constitutive equations for the AZ80

Fig.6 Relationship between lnΩ and lnZ Fig.7 Relationship between lnεp and lnZ

3928



Li Quan et al. / Rare Metal Materials and Engineering, 2021, 50(11):3924-3933

magnesium alloy during the DRX stage (ε⩾εc) can be
expressed by Eq.(17), as follows:
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εp
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σDRV = [ ]σ2
sat + ( )σ2

0 - σ2
sat e-Ωε

0.5

σsat = -23.8786 + 1.4420σp

σ0 = 0.1465 ln Z - 22.104

Ω = 68.8851Z -0.064 51

σss = 0.7346σp - 12.0531

εp = 0.0058Z 0.0970

εc = 0.0040Z 0.0877

Kd = 0.0040Z 0.1295

nd = 1.34

Z = ε̇exp ( )177 332/RT

(17)

3.2 Establishment of BP ANN model

Using Matlab neural network platform, the feed-forward BP
ANN model based on L-M training algorithm was used to study
the flow behavior of AZ80 magnesium alloy. The network
model consisted of an input layer, a hidden layer, and an
output layer. Among the layers, the input layer has three nodes,
which are deformation temperature T, strain rate ε̇, and strain ε;
the output layer has one node, which is the flow stress σ.

The operating mechanism of BP neural network model is to

calculate the error by comparing the calculated results of feed-

forward network with the experiment values, and adjust the
mass of each neuron through BP of error for obtaining the
desired output. The process to iteratively minimize the mean
square error is called network training. The masses of the
trained network are stored and can be used to predict the
output of a given set of different inputs later.

In the ANN model, the selection of hidden layer nodes is
usually a complicated problem. If the number of hidden layer
nodes is small, the model cannot achieve the effective training
or accurately predict the specimens which are not involved in
training. If the number of hidden layer nodes is large, it will
lead to a longer learning time, even overfitting, and the error
may not reach the optimization. Therefore, there should be an
optimal number of hidden layer nodes. The formula for
selecting the number of hidden layer nodes is expressed by
Eq.(18), as follows:

k = m + n + a (18)

where k is the number of nodes of the hidden layer, m is the

number of neurons in the input layer, n is the number of

neurons in the output layer, and a is a constant between 1 and

10. The number of hidden layer neurons is determined by

repeated trials and error comparisons. It is found that a

network structure with 2 hidden layers of 5 and 3 neuron

nodes separately has the best prediction performance. Its

structure is 3×5×3×1, as shown in Fig.12.

Fig.8 Relationship between lnεc and lnZ

Fig.9 Relationship between steady-state strain σss and peak strain σp

Fig.10 Relationship between ln[−ln(1−XDRX)] and ln[(ε−εc)/εp]

Fig.11 Relationship between lnKd and lnZ
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Among 16 groups of true stress-true strain curves, 80% data
were randomly selected as training specimens, i.e., 12 groups
of true stress-true strain curves were selected. The remaining 4
groups were used as test specimens. The training specimens of
91 were selected for each flow stress curve, and the total
number of training specimens was 1092, as shown in Table 2.
And from the 16 curves, 288 points were selected from the
true strain from 0.05 to 0.9 with strain interval of 0.05 as test
data to test the prediction ability of the BP ANN model.

According to the requirements of the network for input and
output data, if the data of different sizes act on the input nodes
of the network at the same time, the effect of small data on the
function is inevitably annihilated, resulting in the difficulties
in adjusting the masses between the hidden layer and the input
layer, and thereby affecting the convergence speed and
accuracy of the network. In order to overcome this
shortcoming, the input data should be normalized firstly, so
the input value is between − 1 and 1. Then the output data
should be denormalized. The input and output data are nor-
malized and denormalized according to Eq. (19) and Eq. (20),
as follows:

Xn = (X - Xmin) / (Xmax - Xmin) (19)

X = Xmin + Xn (Xmax - Xmin) (20)

where X is the original experimental data; Xmin and Xmax are the
minimum and maximum values of specimen data,
respectively; Xn is the normalized data.

In this research, the training goal of the ANN model was set
as 10−5, and the learning rate was 0.03. Since the neural
network may not always find the appropriate mass of the
optimal solution, re-training of 30 times of the ANN model
was conducted to find the solution[22]. After 156 iterations, the

system converges and the system error reaches the training
goal.

44 Prediction ResultsPrediction Results

The prediction results of the flow stress of two models are
shown in Fig. 13. It can be found that both models can well
predict the high temperature flow stress of the alloy. However,
the prediction accuracy of BP ANN model is obviously better
than that of the physical-based constitutive model, according
to the fact that the prediction results of ANN model are the
closer to the experiment data.

In order to evaluate the prediction accuracy of the two
models systematically, three statistical indexes, correlation
coefficient (R), AARE, and relative error (RE), were used as
the evaluation criteria for the model accuracy in this research.
R reflects the linear correlation strength between the
experiment value and the predicted value; AARE is an
unbiased statistical parameter to verify the predictability of
the constitutive model. The expressions of R, AARE, and RE
are as follows:

ì

í

î

ï

ï

ï

ï
ïïï
ï

ï

ï

ï

ï
ïïï
ï

R =
∑i = 1

N ( )Xi - X̄ ( )Yi - Ȳ

∑i = 1

N ( )Xi - X̄
2 ∑i = 1

N ( )Yi - Ȳ
2

AARE =
1
N∑i = 1

N
|

|
||

|

|
||
Xi - Yi

Xi

× 100%

RE =
Xi - Yi

Xi

× 100%

(21)

where Xi and Yi are the experiment stress and the predicted
stress, respectively;

-
X and

-
Y are the averages of Xi and Yi,

respectively; N is the number of data points used for fitting.
Fig. 14 shows the correlation between the predicted values

and the experiment values of two models. R and AARE of the
physical-based constitutive model are 0.9936 and 4.52%,
respectively; while those of the BP ANN model are 0.9991
and 2.02%, respectively.

As shown in Fig.15, the statistical analysis of RE of the two
models shows that the range of RE between the predicted
value and the experiment value of the physical-based model is
−14%~18%, which is wider than that of the BP ANN model
(−5.5%~5.5%). Meanwhile, the number of experiment points
of RE range between − 4%~4% of the physical-based
constitutive model is 181, which is less than that of BP ANN
model (279). In summary, the prediction accuracy of the BP
ANN model is higher than the physical-based constitutive
model. The comparison results of prediction accuracy of the
two models are shown in Table 3.

55 Comparison and Discussion of ConstitutiveComparison and Discussion of Constitutive
ModelsModels

The fair prediction ability of the physical-based model is
attributed to the clear physical meaning. However, there are
many physical parameters in this model which need to be
considered, resulting in many independent parameters in the
model and the fact that the calculation process is relatively

 

Temperature 

Strain rate 

Strain 

Stress 

Input layer Hidden layers Output layer 

Fig.12 Structure of feed-forward ANN model for AZ80 magnesium

alloy

Table 2 Selection status of training specimens and test specimens

Temperature/°C

250

300

350

400

Strain rate/s−1

0.001

Train

Train

Test

Train

0.01

Train

Test

Train

Train

0.1

Train

Train

Test

Train

1

Train

Test

Train

Train
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Fig.13 Comparison between experiment results and predicted flow stresses of physical-based constitutive model and ANN model at different

strain rates: (a) ε̇=0.001 s−1, (b) ε̇=0.01 s−1, (c) ε̇=0.1 s−1, and (d) ε̇=1 s−1

Fig.14 Correlations between predicted values and experiment results of physical-based constitutive model (a) and ANN model (b)

Fig.15 Relative error RE between predicted values and experiment results of physical-based constitutive model (a) and ANN model (b)
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complicated. In addition, there is a problem of smoothness at
the critical strain, i. e., when the values of the parameters Kd

and nd are inappropriate, the flow stress curve tends to have a

sharp angle, which reduces the accuracy and practicability of

the physical-based constitutive model.

In contrast, the better prediction ability of ANN model is

attributed to its ability to deal with complex nonlinear

relationships. It can effectively and accurately predict the flow

stress of different materials without considering the

calculation process of parameters. However, it should also be

found that the neural network model cannot provide an

accurately defined mathematical formula for subsequent finite

element simulation, and the determination of the number of

hidden layers and the number of neurons in the model is
relatively complicated. Therefore, it is necessary to determine

the optimal hidden layer structure through repeated trials and

error calculations in order to obtain the desired output.

66 ConclusionsConclusions

1) The prediction ability of backpropagation (BP) artificial

neural network (ANN) model is better than that of physical-

based constitutive model.

2) The fair predictive ability of the physical-based

constitutive model is attributed to the clear physical meaning.

However, many physical parameters need to be considered in

the model, and the calculation process is relatively

complicated. Particularly, when the values of undetermined

parameters Kd and nd are inappropriate, sharp angles are prone
to appear at the critical strain in the model, thus reducing the

accuracy and practicability of the model.

3) The better prediction ability of ANN model is attributed

to its ability to deal with complex nonlinear relationships.

However, this model cannot provide an accurately defined

mathematical formula for subsequent finite element

simulation, and the determination of the number of hidden

layers and the number of neurons in the model is relatively

complicated.
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Table 3 Comparison of predicted and experiment values by physical-based constitutive model and BP ANN model

Model

Physical-based constitutive model

BP ANN model

R

0.9936

0.9991

AARE/%

4.52

2.02

RE/%

−14~18

−5.5~5.5

Number of data points in RE range

of −4%~4%

181

279
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物理基本构模型和BP人工人工神经网络模型预测AZ80镁合金高温流动应力的比较研究

李 全，金朝阳

(扬州大学 机械工程学院，江苏 扬州 225127)

摘 要：基于变形温度250~400 ℃和应变速率0.001~1 s−1条件下的铸态AZ80镁合金的热压缩试验数据，建立了基于应力位错关系和动

态再结晶动力学的物理基本构模型以及前馈反向传播算法的人工神经网络（ANN）模型来预测AZ80镁合金的热变形行为。采用相关系

数（R）、平均绝对相对误差（AARE）、相对误差（RE）3种统计学指标来验证2种模型的预测精度。结果表明，2种模型均可以准确预

测AZ80镁合金的热变形行为。其中，ANN模型预测的应力值与实验数据更为吻合，其R和AARE分别为0.9991和2.02%，而物理基本

构模型预测的R和AARE分别为0.9936和4.52%。ANN模型较好的预测能力归功于它擅长处理复杂的非线性关系，而物理基本构模型的

预测能力是基于模型具有一定的物理意义，模型参数的确定充分考虑了热变形过程中的加工硬化（WH）、动态回复（DRV）和动态再

结晶（DRX）的热动力学机制。最后，对这2种本构模型的优缺点及适用范围进行了比较讨论。

关键词：AZ80镁合金；物理基本构模型；人工神经网络模型
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