Rare Metal Materials and Engineering Volume 52, Issue 11, November 2023 Available online at www.rmme.ac.cn

Cite this article as: Sha Minghong, Wang Shuang, Li Shengli, et al. Effect of Mo on Microstructure and Properties of AlCoCrFeNiMo_x High Entropy Alloy Coatings Prepared by Laser Cladding[J]. Rare Metal Materials and Engineering, 2023, 52(11): 3685-3690. DOI: 10.12442/j.issn.1002-185X.E20230007.

Effect of Mo on Microstructure and Properties of AlCoCrFeNiMo_x High Entropy Alloy Coatings Prepared by Laser Cladding

Sha Minghong^{1,2}, Wang Shuang^{2,3}, Li Shengli¹, Jia Chuntang^{2,3}, Huang Tiandang¹, Zhu Xiaolei^{2,3}, Ai Xingang¹, Liao Xiangwei^{2,3}

¹ School of Materials and Metallurgy, University of Science and Technology LiaoNing, Anshan 114051, China; ² State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan 114009, China; ³ Steel Research Institute, Angang Group, Anshan 114009, China

Abstract: AlCoCrFeNiMo_x (x=0, 0.5, 1.0, 1.5, 2.0) high entropy alloy (HEA) coatings were prepared by laser cladding method. The effect of Mo content on the microstructure, hardness, and corrosion resistance of the coatings was studied. Results show that with increasing the Mo content, the microstructure is changed from (Al, Ni)-rich body-centered cubic (bcc) phase+(Mo-Cr-Fe)-rich σ phase into (Fe, Ni)-rich bcc phase+(Mo-Cr-Fe)-rich σ phase+(Al-Fe-Mo)-rich σ phase+a little AlN (aluminum nitride). Additionally, the coating hardness (HV₁) is increased from 6514.4 MPa to 10652.6 MPa. With increasing the Mo addition, the self-corrosion potential of the coating in 3.5wt% NaCl solution is also increased. The coating presents the optimal corrosion resistance at x=1.0.

Key words: HEA; laser cladding; corrosion resistance; hardness; microstructure

High entropy alloys (HEAs) are initially defined as the alloys with high configuration entropy in a regular liquid state^[1-2]. HEAs tend to form simple solid solution structures, such as face-centered cubic (fcc) phase, body-centered cubic (bcc) phase, or close-packed hexagonal (hcp) phase, owing to the influence of high configuration entropy. Besides, intermetallic compounds may exist in some HEAs^[3-6]. HEAs possess the characteristics of high strength, good phase stability, fine wear resistance, and excellent corrosion resistance because of their special composition and structures^[7-9]. The phase structure of AlCoCrFeNi HEAs is usually affected by the element content and heat treatment process. It is reported that Co and Ni are beneficial to form fcc phase and Al is beneficial to form bcc and b2 phases^[10-13]. Mo has high temperature strength, high hardness, and strong corrosion resistance^[14-15]. It is discussed that the Mo addition promotes the formation of passive films, increases the corrosion potential of stainless steel^[5,16-17], and improves the strength of AlCrFeNiMo, and CoCrFeNiMo, HEAs due to the formation of σ phase^[18-19]. The resultant multi-elemental phase is a solution phase consisting of NiMo, FeMo, Fe-Cr-Mo, Cr-Mo-Ni, and Al-Mo-Ni intermediate phases^[6,20-21]. It is demonstrated that the formation of σ phase is directly related to the valence electron concentration (VEC), which is a parameter used to predict σ phase formation in HEAs^[22]. Mechanical properties and corrosion resistance are important criteria for the performance evaluation of coatings. However, the corrosion resistance of HEAs containing σ phase is rarely reported. In this research, the effects of Mo content on the microstructure, hardness, and corrosion resistance of AlCoCrFeNiMo_x HEA coatings prepared by laser cladding were investigated.

1 Experiment

The AlCoCrFeNiMo_x HEA coatings were prepared by laser cladding through the Laserline LDF-4350 laser equipment. The Al, Cr, Fe, Ni, Mo, and Co element powders (purity of 99.9wt%) were used as cladding materials. The composition, VEC, and melting point T_m of the coatings are shown in Table

Received date: March 24, 2023

Foundation item: National Natural Science Foundation of China (51774179); Natural Science Foundation of Liaoning Province (20180550546); Joint Fund of State Key Laboratory of Metal Material for Marine Equipment and Application (HGSKL-USTLN(2021)03)

Corresponding author: Zhu Xiaolei, Ph. D., Senior Engineer, Steel Research Institute, Angang Group, Anshan 114009, P. R. China, E-mail: zxlzxl2005@126.com

Copyright © 2023, Northwest Institute for Nonferrous Metal Research. Published by Science Press. All rights reserved.

1. When the Mo content of AlCoCrFeNiMo, HEAs is 0at%, 9.09at%, 16.67at%, 23.08at%, and 28.57at%, i.e., x=0, 0.5, 1.0, 1.5, 2.0, the corresponding specimens were named as Mo₀, Mo_{1.0}, Mo_{1.0}, Mo_{1.5}, and Mo_{2.0}, respectively. Pure iron (99.5wt% purity) was used as the matrix material in this experiment, which could accurately analyze and characterize the structure and properties of HEAs. The size of the pure iron specimen was 170 mm×140 mm×10 mm. The surface of pure iron specimens was polished, cleaned with absolute ethanol, and dried by hairdryer. The as-prepared pure iron specimens were preheated in a vacuum furnace at 100 °C for 24 h. The laser cladding experiments were conducted under argon atmosphere, and a layer of mixed powders with thickness of 1 mm was placed on the specimen. The processing parameters were as follows: laser power of 1350 W, scanning speed of 20 mm/s, and spot diameter of 3 mm. To eliminate the stress, the specimens were annealed at 900 °C for 5 h.

Analyses of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical performance of specimens were conducted. The specimens were cut by wire electrical discharge machining (WEDM) into the ones with size of 15 mm×5 mm×1 mm. Then, the coating surface was polished by sandpaper to obtain a smooth surface. The structural features of the specimens were examined by XRD system (PANalytical X-pert Power) under the conditions of Cu K α radiation, $2\theta = 10^{\circ} - 90^{\circ}$, scanning speed of 4° /min, and step length of 0.065°. The electrochemical performance was measured by an electrochemical workstation (AUTOLAB PGSTAT302N, China) in 3.5wt% NaCl solution with test potential of -1.2-1.2 V and test speed of 1.0 mV/s. A platinum electrode was served as the auxiliary electrode, and a saturated AgCl electrode was served as the reference electrode. XPS system (Escalab 250Xi, USA) with monochromatic Al Ka excitation was used to detect the chemical valence states of metal elements in the film formed on the coating surface of specimens after immersion in 3.5wt% NaCl solution for 120 h. XPS results were analyzed by Avantage software. The specimens were cut by WEDM method into the ones with 5 mm×5 mm×2 mm in size for the scanning electron microscope (SEM) observation, and a conductive metallographic inlay was applied. The specimens were corroded in aqua regia for 5 s after milling and polishing. The cross-section morphology and microstructure of HEA coatings were analyzed by SEM (HITACHI-3400N, Japan) coupled with an energy dispersive spectroscope (EDS, TEAM PEGASUS2040, USA). The hardness was measured by Vickers Hardness Tester (Qness Q10A) with the load of 1000 g for 15 s, and five sets

of data were measured every 0.2 mm in distance. Transmission electron microscope (TEM, FEI Talos F200) coupled with EDS (FEI Super X, USA) was used for TEM observation. TEM specimens were thinned into the ones of approximately 30 μ m in thickness by SiC paper, and the ion milling was used to obtain the electron-transparency area.

2 Results and Discussion

2.1 Constituent phases and microstructure

Table 1 shows VEC values of AlCoCrFeNiMo_x alloys, which are calculated through Eq.(1), as follows:

$$VEC = \sum_{i=1}^{n} c_i (VEC)_i$$
(1)

where c_i is the atomic percentage of the *i*th element, (VEC)_i is VEC value of *i*th element, and *n* is the number of components. It can be seen that VEC values are between 6.88 and 7.84, which satisfies the σ phase formation conditions^[22]. Fig. 1 shows XRD patterns of the AlCoCrFeNiMo_x (*x*=0.5, 1.0, 1.5, 2.0) coatings. Only bcc and σ phases (Fe-Al-Mo and Mo-Cr-Fe) can be identified in the AlCoCrFeNiMo_x coatings, which is attributed to the high chemical compatibility of the constituent elements and the contribution of high mixing entropy to the phase stability of HEAs^[1-2,7]. With increasing the Mo content, the diffraction peaks gradually shift to the left side, indicating the gradual increase in lattice constant. The diffraction peak of the σ phase (Mo-Cr-Fe) is slightly enhanced when *x*>1.0.

SEM images at secondary-electron (SE) mode of the AlCoCrFeNiMo, HEA coatings are shown in Fig. 2. The chemical composition of different regions and phases was obtained by EDS, as listed in Table 2. There is an error in the characterization of chemical composition of Mo1.0, Mo1.5, and Mo₂₀ specimens due to slight differences in element and phase contents. However, the characterization of Al enrichment can still be clearly identified. The light and dark phases in Mo_{0.5} specimen are indicated by ID and DR, respectively. XRD and EDS results show that the microstructure of Mo_{0.5} specimen is mainly composed of (Al, Ni)-rich bcc phase (ID region) and (Mo-Cr-Fe) -rich σ phase (DR region), as shown in Fig. 2a. With increasing the Mo content to 16.67at%, DR and IR regions have the same phases, as shown in Fig. 2b. However, these two phases are more refined, compared with those in Mo_{0.5} specimen, indicating the microstructure refinement with more Mo addition. The solid solution in AlCoCrFeNiMo, alloys is no longer the primary phase with further increasing

Table 1 Composition, VEC, and T_m of AlCoCrFeNiMo_x HEAs

HEAs	Al content/at%	Co content/at%	Cr content/at%	Fe content/at%	Ni content/at%	Mo content/at%	VEC	$T_{\rm m}/^{\rm o}{\rm C}$
Mo ₀	20	20	20	20	20	0	7.20	1400.7
Mo _{0.5}	18.18	18.18	18.18	18.18	18.18	9.09	7.10	1511.5
Mo _{1.0}	16.67	16.67	16.67	16.67	16.67	16.67	7.00	1603.9
Mo _{1.5}	15.38	15.38	15.38	15.38	15.38	23.08	6.90	1682.1
Mo _{2.0}	14.29	14.29	14.29	14.29	14.29	28.57	6.88	1749.1

T

Fig.1 XRD patterns of AlCoCrFeNiMo, HEA coatings

the Mo content, thereby promoting the Mo-rich phase formation when x>1.0. Fig. 2c shows three characteristic regions in Mo₁₅ specimen, and they are identified as α , β , and γ regions. Both the amount and the size of the precipitates are increased when Mo content increases to 23.08at%, and a large number of α regions appear in the bcc phase, as indicated in Fig. 2c. According to Fig. 2d, the microstructure of Mo₂₀ specimen is similar to that of Mo_{15} specimen, but the α and β regions grow significantly. Since XRD patterns and SEM images of Mo_{0.5} and Mo_{1.0} specimens are similar, these two specimens are further analyzed by TEM, and the corresponding selected area electron diffraction (SAED) patterns are also shown in Fig. 3. TEM and EDS analysis results show that the α region is the AlN phase, β region is the strip (Fe, Ni)-rich bcc phase, and γ region is a composite phase consisting of (Mo-Cr-Fe) -rich σ phase (γ_1) and fine (Fe, Ni) -rich bcc phase. The theoretical melting point of AlCoCrFeNiMo, HEAs can be calculated by Eq. (2)^[23], as follows:

$$m_{\rm m} = \sum_{i=1}^{n} c_i (T_{\rm m})_i$$
 (2)

where $(T_m)_i$ is the melting point of *i*th element in the alloy. The calculation results are presented in Table 1. It can be seen that the melting point of AlCoCrFeNiMo, HEAs is increased with increasing the Mo content. Owing to the higher melting point, faster solidification rate of Mo15 and Mo20 specimens can prevent the escape of nitrogen from the powder. Thus, the nitrogen atoms in the Al solution are trapped during the solidification process to form the common secondary phase particles (AlN), which have high melting point of 2227 °C, and they usually solidify in the first place. It is reported that the secondary phase particles can easily form in various alloys^[24-25]. Since AlN has high melting point and low surface energy, other atoms usually nucleate on the surfaces^[26]. Hence, some (Fe, Ni)-rich bcc phases nucleate preferentially around the AlN phase in Mo1.5 and Mo2.0 specimens, and they gradually grow into strip bcc structures during solidification. Therefore, bcc and σ phases nucleate on the AlN phase, forming a fine phase structure. The iron content in the coating is higher than its theoretical value, which can be attributed to the diffusion of iron atoms from matrix to coating. This phenomenon is inevitable in the manufacture process and it is also the main difference between HEA coatings and as-cast HEAs.

2.2 Hardness

Fig.4 shows the hardness of different AlCoCrFeNiMo_x HEA coatings. The average hardness (HV₁) of the cladding layer of Mo_{0.5}, Mo_{1.0}, Mo_{1.5}, and Mo_{2.0} specimens is 6154.4, 9819.6, 9966.6, and 10652.6 MPa, respectively, indicating that the coating hardness is gradually improved with increasing the Mo content. When x=0.5 and x=1.0, the microstructure is refined and a large number of grain boundaries appear, therefore hindering the dislocation movement. With further increasing the Mo content to 23.08at% and 28.57at%, the

Fig.2 SEM microstructures of different AlCoCrFeNiMo_x HEA coatings: (a) $Mo_{0.5}$ specimen; (b) $Mo_{1.0}$ specimen; (c) $Mo_{1.5}$ specimen; (d) $Mo_{2.0}$ specimen

Sha Minghong et al. / Rare Metal Materials and Engineering, 2023, 52(11):3685-3690

Table 2 Composition of different regions in AlCoCrFeNiMo _x HEA coatings (at%)							
Specimen	Region and phase	Al	Со	Cr	Fe	Ni	Mo
Ма	DR	8.89	7.28	15.23	42.59	3.42	22.59
1VIO _{0.5}	ID	13.75	14.99	14.60	30.99	16.14	9.52
Mo _{1.0}	All regions	12.27	11.72	12.83	40.60	11.94	10.64
	α	20.29	5.93	13.70	32.83	2.71	24.53
Mo _{1.5}	β	0	7.72	17.95	41.51	3.15	29.66
	γ	0	7.37	17.24	42.61	3.35	29.43
	α	24.56	5.35	8.93	33.24	3.72	24.20
Mo _{2.0}	β	1.28	7.14	11.73	44.96	4.18	30.71
	γ	1.37	7.28	11.04	44.29	4.55	31.47

Fig.3 TEM images (a, d) and corresponding SAED patterns (b-c, e-g) of Mo_{1.0} specimen (a-c) and Mo_{1.5} specimen (d-g)

Fig.4 Hardness of AlCoCrFeNiMo, HEA coatings

hardness is still increased but with a small increment. This is because growth of (Fe, Ni) -rich bcc phases is normally associated with the AlN phase, resulting in coarse structure and less grain boundaries, and thereby reducing the dislocation blocking effect. The coating hardness is less uniform when x>1.5.

2.3 Corrosion resistance

The potentiodynamic polarization curves of AlCoCrFeNiMo. HEA coatings in 3.5wt% NaCl solution are shown in Fig. 5. The self-corrosive potential (E_{corr}) and self-corrosive current density $(I_{\rm corr})$ of the alloys can be obtained by Tafel linear extrapolation, as listed in Table 3. The self-corrosive current density is firstly decreased and then increased with increasing the Mo content. When x=0.5 and x=1.0, the microstructure refinement promotes the uniform element distribution and reduces the local potential difference, therefore enhancing the corrosion resistance. With increasing the Mo content, the AlN phase precipitates appear in the cladding layer and the local potential difference is increased, thus reducing the corrosion resistance. The Mo_{1.0} specimen has the smallest self-corrosive current density, $I_{corr}=1.355 \ \mu A \cdot cm^{-2}$ (at $E_{corr}=0.357 \ V$), presenting the optimal corrosion resistance. The corrosion resistance is closely associated with the oxide film on the coating surface, which efficiently inhibits the penetration of electrolytes into the coating and reduces the dissolution rate.

Fig.5 Potentiodynamic polarization curves of AlCoCrFeNiMo_x HEA coatings in 3.5wt% NaCl solution

The passive film formed on the $Mo_{1.0}$ specimen coating in 3.5wt% NaCl solution was analyzed by XPS, and the results are shown in Fig. 6. It can be seen that the passive film consists of Ni, Co, Fe, Al, Cr, Mo, and O, indicating that the passive film consists of the oxides of these metal elements. Fig.6b and 6d show that Al and Cr primarily exist in the form

Table 3Self-corrosive potentials (E_{corr}) and self-corrosive
current densities (I_{corr}) of AlCoCrFeNiMo_x HEA
coatings in 3.5wt% NaCl solution

S	Self-corrosive	Self-corrosive current		
Specimen	potential, $E_{\rm corr}/V$	density, $I_{\rm corr}/\mu {\rm A} \cdot {\rm cm}^{-2}$		
Mo _{0.5}	0.114	2.250		
Mo _{1.0}	0.357	1.355		
Mo _{1.5}	-0.052	1.979		
Mo _{2.0}	-0.042	2.288		

of Al_2O_3 and Cr_2O_3 . The Co 2p peak is located at the binding energy of 781.3 and 787.6 eV, as shown in Fig.6c, suggesting that Co exists in the form of CoO. Fe exists in the forms of FeO and Fe₂O₃, according to Fig. 6e. Two strong peaks of MoO₃ at 235.6 and 232.4 eV can be clearly observed in Fig.6f. According to Fig.6g, NiO exists in the alloy.

Several dissolution reactions of the oxides may occur during the treatment process, as follows:

$$Al_2O_3 + 6Cl^{-} = 2AlCl_3 + 3O^{2-}$$
(3)

Fig.6 XPS results of passive film on Mo_{1.0} coating surface: (a) overall; (b) Al 2p; (c) Co 2p; (d) Cr 2p; (e) Fe 2p; (f) Mo 3d; (g) Ni 2p

$$C_{0}O + 2CI = C_{0}CI_{2} + O^{2}$$
(4)
$$C_{T}O + 6CI^{-} - 2C_{T}CI_{1} + 2O^{2}$$
(5)

$$Cr_2O_3 + 6Cl^{-} = 2CrCl_3 + 3O^{2-}$$
 (5)
 $FeO_3 + 2Cl^{-} = 2FeO_1 + O^{2-}$ (6)

$$Fe_2O_3+6Cl^{-}=2FeCl_3+3O^{2-}$$
 (7)

$$MoO_3 + 6CI = MoCl_3 + 3O^{2-}$$
 (8)

$$NiO+2CI = NiCl_{2}+O^{2}$$
(9)

Fig. 7 shows the standard Gibbs free energy ΔG^{θ} of the abovementioned reactions with increasing the temperature, which is calculated by HSC Chemistry 9.0 software. The main failure of the passive film is caused by the replacement of oxygen by soluble Cl⁻ ions. Thermodynamic calculation results show that all reactions are non-spontaneous at room temperature, indicating that the passive film effectively resists the Cl⁻

Fig.7 Standard Gibbs free energies of different dissolution reactions of AlCoCrFeNiMo, HEA coatings

ion erosion and protects the coating matrix in a neutral solution. The ΔG^{θ} values of Eq. (3), Eq. (5), and Eq. (8) are higher than those of other reactions, inferring that Al₂O₃, MoO₃, and Cr₂O₃ in the passive film have better resistance against the Cl⁻ ion erosion in the neutral solution. Additionally, the iron oxide does not participate in the corrosion protection owing to its loose structure.

3 Conclusions

1) The microstructure of AlCoCrFeNiMo_x high entropy alloy (HEA) coating is changed from the (Al, Ni)-rich bodycentered cubic (bcc) phase+(Mo-Cr-Fe)-rich σ phase into the (Fe, Ni)-rich bcc phase+(Mo-Cr-Fe)-rich σ phase+(Al-Fe-Mo)rich σ phase+a little AlN with increasing the Mo content.

2) The hardness of AlCoCrFeNiMo_x HEA coating is gradually increased with increasing the Mo addition. Excess Mo addition results in the brittle coatings. The optimal hardness (HV₁) of AlCoCrFeNiMo_x HEA coating is 9819.6 MPa when x=1.0.

3) The self-corrosion potential of the AlCoCrFeNiMo_x HEA coating is increased with increasing the Mo addition. The AlCoCrFeNiMo_{1.0} coating with corrosion potential $E_{\rm corr}$ =0.357 V and corrosion current density $I_{\rm corr}$ =1.355 µA·cm⁻² shows the optimal corrosion resistance in 3.5wt% NaCl solution.

References

- 1 Yeh J W, Chen S K, Lin S J et al. Advanced Engineering Materials[J], 2004, 6(5): 299
- 2 Senkov O N, Wilks G B, Miracle D B et al. Intermetallics[J], 2010, 18(9): 1758
- 3 Li X C, Dou D, Zheng Z Y et al. Journal of Materials Engineering and Performance[J], 2016, 25(6): 2164
- 4 Jiang L, Cao Z Q, Jie J C et al. Journal of Alloys and Compounds[J], 2015, 649: 585
- 5 Tian H C, Cheng X Q, Wang Y et al. Electrochimica Acta[J], 2018, 267: 255
- 6 Wu W, Jiang L, Jiang H et al. Journal of Thermal Spray Technology[J], 2015, 24(7): 1333
- 7 Li K Y, Liang J, Zhou J S. Surface and Coatings Technology[J],

2022, 449: 128 978

- 8 Liu H, Gao Q, Hao J B et al. Rare Metal Materials and Engineering[J], 2022, 51(6): 2199
- 9 Kao Y F, Chen S K, Chen T J et al. Journal of Alloys and Compounds[J], 2011, 509(5): 1607
- Butler T M, Weaver M L. Journal of Alloys and Compounds[J], 2017, 691: 119
- 11 Li X F, Feng Y H, Wang X et al. Journal of Alloys and Compounds[J], 2022, 926: 166 778
- 12 Wang W R, Wang W L, Yen J W. Journal of Alloys and Compounds[J], 2014, 589: 143
- 13 Zhang C, Zhang F, Diao H Y et al. Materials & Design[J], 2016, 109: 425
- 14 Ma X F, Sun Y N, Cheng W J et al. Journal of Central South University[J], 2022, 29(10): 3436
- 15 Zhou Z J, Jiang F L, Yang F Z et al. Materials Letters[J], 2023, 335: 133 714
- 16 An L C, Cao J, Wu L C et al. Journal of Iron & Steel Research International[J], 2016, 23(12): 1333
- 17 Saidi D, Zaid B, Souami N et al. Journal of Alloys and Compounds[J], 2015, 645: 45
- 18 Dong Y, Lu Y P, Kong J R et al. Journal of Alloys and Compounds[J], 2013, 573: 96
- 19 Shun T T, Chang L Y, Shiu M H. Materials Science and Engineering A[J], 2012, 556: 170
- 20 Hsu C Y, Wang W R, Tang W Y et al. Advanced Engineering Materials[J], 2010, 12(1–2): 44
- 21 Praveen S, Murty B S, Kottada R S. *Journal of Nanoscience and Nanotechnology*[J], 2014, 14(10): 8106
- 22 Tsai M H, Tsai K Y, Tsai C W et al. Materials Research Letters[J], 2013, 1(4): 207
- 23 Yang X, Zhang Y. Materials Chemistry and Physics[J], 2012, 132(2–3): 233
- 24 Martinavicius A, Van Landeghem H P, Danoix R et al. Materials Letters[J], 2017, 189: 25
- 25 Shelton R K, Dunand D C. MRS Online Proceedings Library[J], 1995, 398(1): 457
- 26 Liang T, Zhang B, Sun Y X et al. Materials Today Communications[J], 2023, 34: 105 277

Mo元素对激光熔覆 AlCoCrFeNiMox高熵合金涂层组织性能的影响

沙明红^{1,2},王 爽^{2,3},李胜利¹,贾春堂^{2,3},黄天荡¹,朱晓雷^{2,3},艾新港¹,廖湘巍^{2,3}
(1. 辽宁科技大学 材料与冶金学院,辽宁 鞍山 114051)
(2. 海洋装备用金属材料及其应用国家重点实验室,辽宁 鞍山 114009)
(3. 鞍钢集团 钢铁研究院,辽宁 鞍山 114009)

摘 要:采用激光熔覆的方法制备 AlCoCrFeNiMo_x高熵合金涂层。研究 Mo元素含量对涂层微观结构、硬度及耐腐蚀性的影响。结果表明,随着 Mo含量的增加,微观组织从富(Al, Ni)的体心立方(bcc)相和富(Mo-Cr-Fe)的σ相,转变为富(Fe, Ni)的bcc 相、富(Mo-Cr-Fe)的σ相、富(Al-Fe-Mo)的σ相与少量 AlN 相。此外,涂层的显微硬度(HV₁)从6154.4 MPa增加到10652.6 MPa。随着 Mo含量的添加,涂层在 3.5%(质量分数)氯化钠溶液中的自腐蚀电位升高,当Mo含量为*x*=1.0时,涂层的耐腐蚀性能最好。 关键词:高熵合金;激光熔覆;耐腐蚀性能;硬度;微观组织

作者简介: 沙明红, 女, 1976年生, 博士, 副教授, 辽宁科技大学材料与冶金学院, 辽宁 鞍山 114051, 电话: 0412-5929535, E-mail: 320003200040@ustl.edu.cn