La₂O₃掺杂氧化铝气凝胶的制备与耐温性能

邹文兵,沈军,邹丽萍,吴宇,祖国庆,王晓栋

(同济大学 上海市特殊人工微结构材料与技术重点实验室, 上海 200092)

摘 要:以仲丁醇铝为前驱体,采用溶胶-凝胶法结合丙酮-苯胺原位生成水技术,通过乙醇超临界干燥,制备出不同含 量(1.5%~12%,摩尔分数)La₂O₃掺杂的氧化铝气凝胶。采用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD) 仪、N₂吸附分析仪等仪器表征了La₂O₃掺杂对氧化铝气凝胶的微结构和耐温性能的影响。结果表明:La₂O₃的引入使氧化铝气凝胶的形貌由球状颗粒向大的片状结构转变。适量的La₂O₃掺杂能提高氧化铝气凝胶的比表面积,9%La₂O₃掺杂的氧化铝气凝胶比表面积最大。通过La₂O₃掺杂,能够抑制氧化铝晶粒在高温下的生长和 α-Al₂O₃的相变,提高氧化 铝气凝胶的耐温性能。1200 ℃热处理后,La₂O₃掺杂的氧化铝气凝胶仍维持在 θ-Al₂O₃,比表面积为 86.5 m²/g,高于未 掺杂的氧化铝气凝胶(46 m²/g)。

关键词: La₂O₃掺杂; Al₂O₃气凝胶; 热处理; 相变; 耐高温 中图法分类号: TQ427 文献标识码: A 文章编号: 1002-185X(2018)S2-099-05

Al₂O₃ 气凝胶是由氧化铝纳米颗粒相互聚集而成 的纳米多孔材料,具有高的孔隙率,高的比表面积, 低的热导率和高的催化活性,在保温隔热和催化领域 应用广泛^[1-5]。但是,Al₂O₃ 气凝胶在高温热处理过程 中容易开裂和烧结,比表面积大量丧失,限制了其在 高温领域的应用。

据文献报道,添加氧化硅、磷酐、氧化镧、氧化 钡或 SiC 晶须等添加剂能够提高氧化铝的高温热稳定 性^[6]。目前,大部分研究是将 Al₂O₃气凝胶与 SiO₂复 合^[7-11]。例如, T. Horiuchi 等^[7]以异丙醇铝和正硅酸 四乙酯为源,经超临界干燥制备出了硅铝复合气凝胶, 1300 ℃处理后, SiO₂有效抑制了 Al₂O₃ 晶粒的生长和 α -Al₂O₃的相变。G. Q. Zu 等^[8]以仲丁醇铝为源,通过 丙酮-苯胺原位生成水法结合表面修饰技术,制备出具 有核-壳结构的铝硅复合气凝胶,1300 ℃处理后,线 收缩仅为4%,比表面积为139m²/g。冯坚等^[9]研究了 Si 含量对硅铝复合气凝胶的结构和性能影响发现, Si 元素的加入改变了 Al₂O₃ 气凝胶的结构和形貌,适量 的硅抑制了 Al₂O₃ 气凝胶的相变,提高了其耐温性能。 此外,也有一部分工作是往 Al₂O₃ 气凝胶中添加稀土 元素,以提高其高温热稳定性^[6,12-14]。例如,Y. Mizushima 等^[6]分别往 Al₂O₃ 气凝胶中添加氧化镧、氧 化钡或 SiC 晶须,发现都能改善 Al₂O₃气凝胶的高温 稳定性。J. F. Yang 等^[12]以仲丁醇铝为前驱体, LaCl₃ 为添加剂,制备了 La₂O₃ 掺杂氧化铝气凝胶,发现 La⁺ 的掺杂在氧化铝颗粒表面形成 LaAl₁₁O₁₈,抑制了高温 下 α -Al₂O₃ 的产生。在 La₂O₃ 热稳定机制方面,K. Kumar 等^[15]指出稀土阳离子直接插入氧化铝过渡晶相 (γ -, θ -, δ -Al₂O₃等)的晶体间隙位置中,降低了氧离 子空位的浓度,从而减少了 α -Al₂O₃的形核点。

本研究以仲丁醇铝为前驱体,直接以 La₂O₃ 粉末 为热稳定添加剂,通过溶胶-凝胶法结合丙酮-苯胺原 位生成水技术制备不同含量的 La₂O₃ 掺杂的氧化铝气 凝胶。通过 SEM、TEM、XRD、BET 等手段,对制备 的 La₂O₃ 掺杂的氧化铝气凝胶的微观结构进行表征。 研究 La₂O₃ 对氧化铝气凝胶的微观结构和耐温性能的 影响。

1 实 验

主要原料:仲丁醇铝(ASB,97%)、无水乙醇(分析纯)、去离子水、浓硝酸(HNO₃,68%)、丙酮(分析纯)、苯胺(分析纯)、氧化镧粉末。

样品制备:首先,将乙醇和去离子水的混合溶液 加热至 70 ℃,加入仲丁醇铝,恒温搅拌至澄清后, 加入不同量的氧化镧粉末,继续搅拌 5 min,冷却至室 温得到氧化铝溶胶。然后,加入用乙醇稀释的硝酸溶 液,继续搅拌。最后,加入丙酮、苯胺的混合溶液, 继续搅拌。其中,仲丁醇铝、乙醇、去离子水、氧化

收稿日期: 2017-08-15

基金项目:国家重点研发计划"纳米科技"重点专项(2017YFA0204600)

作者简介: 邹文兵, 男, 1992年生, 博士生, 同济大学, 上海 200092, 电话: 021-65986071, E-mail: zouwenbing@tongji.edu.cn

镧、硝酸、丙酮、苯胺的物质的量的比为: 1:12:0.6: (0.0075~0.06):0.039:1.4:0.6。待搅拌均匀后,将溶胶倒 入模具中静置凝胶。凝胶后,老化1d,用无水乙醇替 换3d,再进行乙醇超临界干燥,即可获得 La₂O₃掺杂 的 Al₂O₃ 气凝胶。La₂O₃在 Al₂O₃ 气凝胶中所占的摩尔 分数分别为 0%、1.5%、6%、9%和 12%,依次标记为 AL0、AL1.5、AL6、AL9 和 AL12。为了研究 La₂O₃ 掺杂氧化铝气凝胶的耐温性能,将样品分别在 800、 1200 ℃下热处理 2 h。

样品表征:采用扫描电子显微镜(SEM, XL30FEG, Netherland)和透射电子显微镜(TEM, JEOL-1230)测试样品的微观形貌;利用 X 射线衍射 仪(D/MAX2550)测定样品的晶相;通过 N₂ 吸附分 析仪(Tri-Star 3000,美国)和 BET N₂吸附/脱附技术 测试样品比表面积和孔径分布。

2 结果与讨论

2.1 La₂O₃掺杂对氧化铝气凝胶微观形貌的影响

图 1 为不同含量 La₂O₃ 掺杂氧化铝气凝胶的 SEM 照片。可以看出,未掺杂的 Al₂O₃ 气凝胶由小的球状 纳米颗粒相互聚集形成。随着 La₂O₃ 掺杂量的增加, 出现大的片状结构,颗粒堆积更加松散。这说明,La₂O₃ 的引入有助于 Al₂O₃ 纳米颗粒形成更大的片叶状结 构,大孔(>100 nm)增多。

图 2 是未掺杂的 Al₂O₃ 气凝胶和 La₂O₃ 掺杂 Al₂O₃ 气凝胶热处理前后的 TEM 照片。由 TEM 照片可知, 未掺杂的 Al₂O₃ 气凝胶由片状的 Al₂O₃ 组成,颗粒长 度为 10~80 nm,厚度约为 10 nm。La₂O₃ 掺杂的 Al₂O₃ 气凝胶的片状结构更大,长度为 10~180 nm,厚度约 为 5 nm。800 ℃处理后,未掺杂的 Al₂O₃ 气凝胶的颗 粒变化不明显,La₂O₃ 掺杂的氧化铝气凝胶变为由薄 片状和针状的颗粒组成。1200 ℃处理后,未掺杂的 Al₂O₃ 气凝胶烧结明显,La₂O₃ 掺杂的氧化铝气凝胶仍 保持较松散的网络结构,由尺寸 50~250 nm 的棒状颗 粒组成。从电子衍射图可知,未掺杂的氧化铝气凝胶 1200 ℃处理后结晶度更高。这表明,La₂O₃ 掺杂能形 成更大、更薄的 Al₂O₃ 片状结构,具有更好的耐温性 能。这与文献中报道的,大的氧化铝片状结构更有利 于氧化铝的耐热性的结论是一致的^[8]。

2.2 La₂O₃掺杂对氧化铝气凝胶比表面积的影响

表 1 列出了不同含量 La₂O₃掺杂氧化铝气凝胶的 比表面积和平均孔径。图 3 为不同含量 La₂O₃掺杂氧 化铝气凝胶的比表面积和孔径分布。通过图 3a 可以看 到:随着 La₂O₃掺杂量的增加,Al₂O₃ 气凝胶的比表面 积整体呈现先上升再下降趋势,在掺杂量为 9%时比表 面积达到最大,为 365.4 m²/g。由图 3b 可知,La₂O₃ 掺入后,氧化铝气凝胶的孔径向小孔方向移动,平均 孔径由未掺杂的 25.1 nm 减小到 9.7~17.2 nm。这说明 适量的 La₂O₃ 掺杂能提高 Al₂O₃ 气凝胶的比表面积, 并产生更小的介孔。这与前文中的 SEM 照片(图 1) 是符合的,La₂O₃的掺杂有助于形成更大的片状结构, 初级粒子之间连结得更加紧密,大的介孔减少,小的 介孔增多。

图 1 不同含量 La₂O₃ 掺杂氧化铝气凝胶的 SEM 照片

Fig.1 SEM images of Al₂O₃ aerogels doped with different La₂O₃ contents: (a) 0%, (b) 1.5%, (c) 6%, (d) 9%, and (e) 12%

图 2 未掺杂和 9% La₂O₃掺杂氧化铝气凝胶 800 和 1200 ℃热处理前后的 TEM 照片

Fig.2 TEM images of undoped and 9 mol% La₂O₃ doped Al₂O₃ aerogels before and after heat treatment at 800 and 1200 °C: (a) undoped;
(b) undoped, 800 °C; (c) undoped, 1200 °C; (d) 9% La₂O₃ doped; (e) 9% La₂O₃ doped, 800 °C; (f) 9% La₂O₃ doped, 1200 °C

contents		
Sample	Specific surface/m ² g ⁻¹	Average pore size/nm
AL0	226.4	25.1
AL1.5	212.5	17.2
AL6	312.3	9.7
AL9	365.4	10.2
AL12	224.3	12.1
AL0-800	337.6	26
AL9-800	355.5	19.5
AL 0-1200	46	17
AL9-1200	86.5	15

表 1 La₂O₃ 掺杂氧化铝气凝胶的比表面积和平均孔径 Table 1 Specific surface areas and pore size distributions of La₂O₃ doped Al₂O₃ aerogels with different La₂O₃

图 4 为未掺杂和 La₂O₃ 掺杂 Al₂O₃ 气凝胶高温处 理后的比表面积变化和孔径分布。可以看出,800 ℃ 处理后,未掺杂的 Al₂O₃ 气凝胶比表面积上升,9% La₂O₃ 掺杂 Al₂O₃ 气凝胶的比表面积无明显变化。气凝 胶比表面积在热处理后上升,主要是由于热处理去除 掉干燥后气凝胶中的一些有机物残留,释放出一些孔 洞。这一点可以通过未掺杂的 Al₂O₃ 气凝胶热处理后 的孔径分布(图 4b)可以看出:800 ℃热处理后,未 掺杂的 Al₂O₃ 气凝胶的小孔明显增多。1200 ℃处理后, 未掺杂的 Al₂O₃ 气凝胶的比表面积急剧下降至 46 m²/g,而9% La₂O₃掺杂化是高 Al₂O₃ 气凝胶

图 3 不同含量 La₂O₃ 掺杂氧化铝气凝胶的比表面积和 孔径分布

图 4 未掺杂和 9% La₂O₃掺杂氧化铝气凝胶在高温热处理后的比表面积和孔径分布

Fig.4 Specific surface areas (a) and pore size distributions (b) of undoped and 9% La₂O₃ doped Al₂O₃ aerogels after heat treatment at high temperature

在高温热处理后的比表面积,提高其耐温性。 2.3 La₂O₃掺杂对氧化铝气凝胶晶相转变的影响

图 5 为未掺杂和 La₂O₃掺杂氧化铝气凝胶在不同 温度下的 XRD 图谱。从图中可以看出,未掺杂氧化 铝气凝胶为 γ-Al₂O₃相 (PDF 10-0425),800 ℃热处理 后晶相无明显变化,1200 ℃处理后,转变为 α-Al₂O₃ 相 (PDF 46-1212)。9% La₂O₃掺杂的氧化铝气凝胶为 勃姆石相,在800 ℃处理后转变为 γ-Al₂O₃相,1200 ℃ 处理后为 θ-Al₂O₃ 相 (PDF 35-0121),并且有少量 LaAlO₃相(PDF 31-0022)产生。这说明,通过 La₂O₃的掺杂,抑制了氧化铝在高温下的相变。原因主要有 以下 2 个方面:其一,通过 La₂O₃掺杂能获得结晶度 好的勃姆石相,而结晶度好的勃姆石能有效阻止氧化 铝在高温下的烧结,提高气凝胶的强度和耐热性^[16]。 其二,La₂O₃掺杂能够在氧化铝表面产生 LaAlO₃,有 助于抑制 α-Al₂O₃的相变,提高 Al₂O₃气凝胶高温热处 理后的比表面积^[14]。

图 5 未掺杂和 9% La₂O₃ 掺杂氧化铝气凝胶的 XRD 图谱 Fig.5 XRD patterns of undoped (a) and 9% La₂O₃ doped Al₂O₃ aerogels (b)

3 结 论

1) 以仲丁醇铝为前驱体,La₂O₃ 粉末作为热稳定剂,通过苯胺-丙酮原位生成水溶胶-凝胶法制备出不同含量 La₂O₃ 掺杂的氧化铝气凝胶。研究了 La₂O₃ 掺杂对氧化铝气凝胶微结构和耐高温性能的影响。

2) La₂O₃ 掺杂能使氧化铝气凝胶形成更大的片叶 状 Al₂O₃ 纳米颗粒,并使其孔径分布往小孔方向移动。 适量的 La₂O₃ 掺杂能提高氧化铝气凝胶的比表面积, 9% La₂O₃ 掺杂的氧化铝气凝胶比表面积最大。

3) 通过 La₂O₃ 的掺杂,能够抑制氧化铝晶粒在高 温下的生长和 α -Al₂O₃ 的相变,提高氧化铝气凝胶的 耐温性能。1200 ℃热处理后,9%La₂O₃掺杂的氧化铝 气凝胶仍维持在 θ -Al₂O₃,比表面积为 86.5 m²/g,高 于未掺杂的氧化铝气凝胶 (46 m²/g)。

参考文献 References

[1] Yoldas B E. Journal of Materials Science[J], 1975, 10(11):

1856

- [2] Arai H, Machida M. Applied Catalysis A: General[J], 1996, 138(2): 161
- [3] Zu G Q, Shen J, Wei X Q et al. Journal of Non-crystalline Solids[J], 2011, 357(15): 2903
- [4] Bang Y J, Han S J, Yoo J et al. International Journal of Hydrogen Energy[J], 2014, 39(10): 4909
- [5] Mardkhe M K, Huang B, Bartholomew C H et al. Journal of Porous Materials[J], 2016, 23(2): 475
- [6] Mizushima Y, Hori M. Journal of Materials Research[J], 1993, 8(11): 2993
- [7] Horiuchi T, Osaki T, Sugiyama T et al. Journal of Non-crystalline Solids[J], 2001, 291(3): 187
- [8] Zu G Q, Shen J, Wang W Q et al. Chemistry of Materials[J], 2014, 26(19): 5761
- [9] Feng Jian(冯 坚), Gao Qingfu(高庆福), Wu Wei(武 纬) et al.

Chinese Journal of Inorganic Chemistry(无机化学学报)[J], 2009, 25(10): 1758

- [10] Osaki T, Nagashima K, Watari K et al. Journal of Noncrystalline Solids[J], 2007, 353(24): 2436
- [11] Aravind P R, Mukundan P, Pillai P K et al. Microporous and Mesoporous Materials[J], 2006, 96(1): 14
- [12] Yang J F, Wang Q H, Wang T M et al. RSC Advances[J], 2016, 6(31): 26 271
- [13] Kobayashi H, Tadanaga K, Minami T. Journal of Materials Chemistry[J], 1998, 8(5): 1241
- [14] Ozawa M, Nishio Y. Journal of Alloys and Compounds[J], 2004, 374(1): 397
- [15] Kumar K, Tranto J, Kumar J et al. Journal of Materials Science Letters[J], 1996, 15(3): 266
- [16] Zu G Q, Shen J, Zou L P et al. Chemistry of Materials[J], 2013, 25(23): 4757

Fabrication and Thermal Stability of La₂O₃ Doped Alumina Aerogel

Zou Wenbing, Shen Jun, Zou Liping, Wu Yu, Zu Guoqing, Wang Xiaodong

(Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, China)

Abstract: La₂O₃ doped alumina aerogels with different La₂O₃ contents were prepared using aluminum tri-sec-butoxide as precursor via a sol-gel route combined with acetone-aniline in situ water formation (ISWF) method, followed by supercritical fluid drying. The effect of La₂O₃ on microstructure and thermal stability of alumina aerogels were investigated by SEM, TEM, XRD and N₂ adsorption. The results show that the morphology of alumina aerogels changes from sphere like accumulated to notably sheet like stacked with the doping of La₂O₃. An appropriate amount of La₂O₃ doping can enhance the specific surface area of alumina aerogels, and the 9 mol% La₂O₃ doped aerogel has the largest specific surface area. In addition, the alumina crystal growth and phase transition of the aerogels upon heat treatment are effectively inhibited by La₂O₃ doped alumina aerogel is still the θ -Al₂O₃ while that of undoped one is α -Al₂O₃, and the specific surface area of 9 mol% La₂O₃ doped alumina aerogel is 86.5 m²/g which is higher than the undoped one (46 m²/g). Key words: La₂O₃ doping; Al₂O₃ aerogel; heat treatment; phase transformation; high temperature resistance

Corresponding author: Shen Jun, Ph. D., Professor, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, P. R. China, Tel: 0086-21-65986071, E-mail: shenjun67@tongji.edu.cn