金属铀氧化的显微拉曼光谱和原子力显微镜 原位研究

褚明福,蒙大桥,邹乐西,肖 洒,仲敬荣,任清波

(表面物理与化学国家重点实验室,四川 绵阳 621907)

摘 要:通过光学金相、拉曼光谱和原子力显微镜分析,原位研究金属铀在大气环境、干燥空气和饱和水汽下,20~400 ℃的温度范围内样品显微形貌和氧化产物的变化情况,鉴定夹杂物、不同微区的腐蚀产物。铀在大气环境条件下吸附 O₂、H₂O 和 CO₂反应生成二氧化铀、铀酰化合物和碳酸铀等,干燥空气中加热后首先出现活性腐蚀亮斑,逐渐积累长 大发生点蚀,并由 UO₂转变为 U₃O₈。在饱和水汽中缓慢升温,UO₂在 260~280 ℃转化为 U₃O₈。

关键词: 铀; 腐蚀; 拉曼光谱; 原子力显微镜

中图法分类号: O614.62 文献标识码: A 文章编号: 1002-185X(2009)04-0627-05

钳具有良好的金属特性和独特的核性能,在国防、 核能利用上都有着重要用途。但是,铀的化学性质非 常活泼,很容易同环境气氛如 O₂、H₂和水汽发生反应, 在其表面发生氧化、腐蚀等物理化学过程,导致材料 逐渐老化。环境气氛下铀部件上发生的腐蚀极大地影 响着核武器的贮存可靠性。核禁试条约的签署,对现 有核武器的库存寿命提出了更高的要求。金属铀在库 存环境中总会有少量 O₂和水汽,因此开展氧气和水汽 气氛下铀的化学反应研究,可以深入了解贮存环境下 核部件的变化,从而为铀部件的防腐蚀工艺提供可借 鉴的信息。

铀的氧化主要包括反应气体分子在金属表面上的 吸附、离解成原子以及与表面铀原子化合生成氧化物。 吸附的气体原子还会扩散穿过氧化层进一步发生氧 化。国内外专家通过俄歇电子谱(AES)、X 射线光 电子谱(XPS)、热解吸谱(TDS)、二次离子质谱 (SIMS)、低能电子衍射(EELS)和氧同位素法等 进行了较多的研究^[1~3]。另外通过热重(TG)法、膜 厚法、压强体积温度法(PVT)等手段对铀的宏观氧 化腐蚀动力学的研究也有较多报道,计算出不同温湿 度或氧分压下的反应速率^[4,5]。

在有关反应机制和速率研究中,普遍把铀看作理 想状态,很少考察显微形貌变化、材料夹杂及结构缺 陷等因素对腐蚀速率的影响。但由于大多数材料表面 不同位置的微观金相或状态并不完全相同,而在一定 条件下的氧化腐蚀主要从点蚀开始。所以利用表面形 貌显微成像和氧化物分子光谱识别联用技术,恰好可 以在微观上捕捉材料表面不同点位的氧化腐蚀状况, 并分析出各点的氧化产物变化情况^[6]。

从分子结构的角度认识铀在环境气氛中的氧化腐 蚀规律,是研究铀部件贮存性能的重要内容。分子光 谱技术的优点是仪器检测系统与样品反应系统通过光 学窗口采样分析,能够在关注的环境中原位检测材料 表面的反应过程,并提供分子结构变化信息。 Melendres 等^[7-9]报道了采用激光拉曼、红外光谱实时 研究铁、铜、银、锌、镍、铬、钛、铌等金属及其合金 在空气和水溶液中的腐蚀反应,分析了腐蚀产物及氧 化膜的形成过程, 表征了多种在离位条件下无法检测 到的中间腐蚀产物。Hamilton等^[10]应用拉曼光谱在高 温高真空环境中实时研究了 Fe-18Cr-3Mo 单晶表面的 氧化膜化学组分生成过程。Maslar等^[11]运用拉曼光谱 在 22~407 ℃内对锆铌合金进行了实时空气饱和水腐 蚀试验。Palacios 等^[12]用共焦显微拉曼实时研究了硝 酸铀热分解为氧化铀的转变过程。可见,显微拉曼光 谱技术正越来越广泛地应用于实时腐蚀研究中,提供 材料表面的重要氧化反应结果和组成结构变化信息。

本实验采用激光显微拉曼光谱及原子力显微镜, 分别研究铀在大气环境、干燥空气和饱和水汽下, 20~400 ℃的温度范围内样品显微形貌和氧化产物的 变化情况。

基金项目:中国工程物理研究科学技术基金(20060863)

收到初稿日期: 2008-03-31; 收到修改稿日期: 2009-02-07

作者简介: 褚明福, 男, 1976年生, 博士生, 助理研究员, 表面物理与化学国家重点实验室, 四川 绵阳 621907, 电话: 0816-3369776, E-mail: chumingfu@hotmail.com

1 实 验

1.1 实验样品

实验用金属铀样品尺寸为 Φ10 mm×2 mm,把样 品用砂纸逐级打磨,经 2.5 μm 金刚砂金相研磨剂机械 抛光,暂存于丙酮中。实验前将其置于 1:1 硝酸水溶 液中用超声波清洗以除去氧化层,使样品表面呈银白 色光亮镜面,最后依次用蒸馏水、丙酮清洗,置于反 应器中。其它试剂皆为分析纯以上。

1.2 实验仪器

显微激光拉曼光谱仪 LMS:美国热电公司 Nicolet Almega XR型, BX51 奥林巴斯显微镜, 532nm Nd: YAG 半导体激光器,扫描拉曼光谱范围: 100~4000 cm⁻¹, 光谱分辨率:最大半峰宽 2 cm⁻¹。Linkam 公司的高低 温气固反应系统。日本精工 SPA 300HV 型原子力显微 镜,间歇接触式 DFM 和表面电位势 KFM 测量模式。

1.3 实验方法和内容

建立冷热台气固相实时反应系统,用干燥空气或 氩气(含饱和水汽)吹扫,在不同温度下进行金属铀 及铀铌合金表面的热氧化实验。用显微激光拉曼光谱 仪从透明晶体视窗采集反应器内样品表面的信息变 化,设置仪器自动控制程序,实时跟踪扫描分析,连续 检测样品随时间或温度发生变化的动态过程。结合原 子力显微镜,观测合金表面气体吸附化合反应过程。

2 结果与讨论

2.1 铀氧化物的拉曼光谱表征

铀的氧化物结构复杂,并且存在多种氧化态,目 前文献报道的有 UO、UO₂,UO₃、U₃O₈、U₄O₉等。虽 然已有较多文献报道了实验或理论计算的各种铀氧化 物的拉曼和红外光谱^[13],但由于样品制备、实验条件、 仪器灵敏度等原因,结果并不完全一致。Allen 等首次 使用低功率激光显微拉曼光谱对 UO₂,U₄O₉,β-U₃O₇, γ-UO₃和 α-U₃O₈进行了表征^[14,15],并检测到 UO₂中的 固溶氧,鉴别出一些未知的铀氧化物组分及其晶体结 构。表 1 为已有文献报道的铀氧化物的拉曼光谱及对 应的振动峰归属。

2.2 铀的初始形貌及大气环境腐蚀

将新打磨的铀样品快速置于拉曼显微镜下分析观测,暗场成像见图 1a(120 μm×160 μm,以下金相照 片大小均相同)。图像基体的拉曼谱峰分别为 445,576, 1156 cm⁻¹,对应为 UO₂特征峰,说明铀与氧气反应活 性很高,很快生成 UO₂氧化膜。

图 1a 中多数成方形或三角规则形状的区域无拉 曼特征光谱峰,为 UC 夹杂物^[16],黑色不规则形状的

表 1 已有文献报道的铀氧化物的拉曼位移及对应解析 Table 1 Raman Shift and assignments of uranium oxides formerly reported

iormerry reported		
Raman shift/cm ⁻¹	Uranium oxides	Assignments ^[14]
445	UO_2	T _{2g} U-O stretching
576, 1156		Electronic transition
≈335, ≈410	U_3O_8	A1g U-O stretching
≈475		Eg U-O stretching
≈750		Combination of two
		U-O stretching
840	$UO_2(H_2O)_n$	A _{1g} U-O stretching

夹杂主要为 U_3O_8 ,还有少部分黑色夹杂颗粒测得拉曼 谱(图1b),Schoonover等认为该化合物为 $USiO_4^{[17]}$ 。

图 1 新打磨铀样品的金相照片和拉曼光谱

Fig.1 Metallograph and Raman spectra of freshly polished uranium: (a) OM image, (b) Raman spectrum of USiO₄, and (c) Raman spectrum of U(CO₃)₂

用显微拉曼分析图 1a 中大小明暗不同的圆形亮 斑,测得拉曼谱图 1c,分别在 1086,713 和 280 cm⁻¹ 出现强特征散射峰,与碳酸盐类标准样品谱图吻合, 证明该区域金属铀与 CO₂ 反应生成 U(CO₃)₂。Winer 等人^[1]用俄歇电子谱和阴极电子激发光(EIL)研究认 为,铀表面物理吸附氧分子物质会引起强发光,而化 学吸附物质引起弱发光。由此可推断暗场下该亮点为 铀表面局部吸附 CO₂,快速生成络合物发出荧光所 致,当 CO₂逐渐反应,转化为碳酸盐后,荧光减弱甚 至消失。

在 25 ℃相对湿度为 55%的环境大气中,对铀进行 氧化实验,放置样品 10 d 后表面形貌如图 2a 所示。 对其进行拉曼光谱微区分析,测得大部分区域仍然有 UO₂和 U(CO₃)₂的特征拉曼光谱峰。其中在腐蚀较快 的黑色区域检测到 840 cm⁻¹的强峰,如图 2b。这是由 于 UO₂进一步与空气中的水汽反应,生成了铀酰化合 物 UO₂(H₂O)_n。另外还有部分区域未检测到任何特征 拉曼信号,可能是由于 UO₂转化为非化学计量的 UO_{2±x},从而其拉曼光谱消失。

图 2 空气中放置 10 d 后铀样品的金相照片和拉曼光谱

用原子力显微镜对新打磨的铀表面进行环境条件 下的原位扫描观测,反应初期获得的形貌和电势分布 如图 3a、3b 所示。反应初始样品表面生成薄氧化膜后, 在形貌图中表面颗粒间存在凹痕,而对应的开尔文表 面电势图显示凹痕处的氧化电位较高。

由于金属铀及表面铀氧化物为多晶体,氧化膜内 存在大量的晶界,而粒子在晶界扩散的激活能远小于 晶格内扩散的激活能,和晶格扩散相比,晶界可看作 是氧原子的短途快速扩散通道,容易发生吸附氧化, 从而在晶界的氧化电势升高,晶界处铀原子的氧化还 原电位差较晶粒内的大,因此更容易被氧化。在大气 环境条件下氧化温度较低,生成的氧化物晶粒尺寸小, 晶界占氧化物总体积的百分比高,晶界加速氧化通常 在低温下更为突出。

对室温下放置14d的样品进行观测,从形貌图可

明显观测到突起的腐蚀点(图 3c),对应的电势图可 说明电位更高的氧化产物形成,有的已连接成片(图 3d)。由于在空气氧化过程中铀表面颜色逐渐变化, 故分别对黄色、蓝色和黑色氧化膜进行原子力图像分 析,样品表面状态明显不同:黄色相对致密均匀,蓝 色有许多梅花状氧化物颗粒出现,而黑色表面氧化物 基本为球形颗粒分布,相对较为疏松,容易粉化。

图 3 金属铀大气环境条件下的腐蚀形貌和电势扫描图

Fig.3 AFM photos of corrosion morphologies and surface potential distribution of uranium under ambient conditions: (a) initial morphology of metallic uranium, (b) initial reaction potential distribution of uranium, (c) environment corrosion morphology, and (d) environment corrosion potential distribution

2.3 不同温度下金属铀的干燥空气腐蚀

干燥空气中加热铀至 100 ℃,样品表面白色亮斑 更加明显,如图 4a 所示。样品亮斑与其它区域拉曼光 谱无明显区别,均在 576 cm⁻¹和 1156 cm⁻¹有一弱 UO₂ 峰,信噪比较差(图 4b)。经过 3 h 恒温加热,光谱 强度略有增加,并逐渐趋于稳定不变。

快速升温到 200 ℃后,随着反应时间的延长观测 到表面白色斑点慢慢变为钉状灰色突起物,该处生成 物为 U₃O₈。突起氧化物逐渐长大,并连接成片如图 4c 所示。其中光滑的低平处仍为 UO₂,而不断生成的桔 皮式粗糙氧化物为 U₃O₈,降温后拉曼谱峰略有减弱(图 4d)。

拉曼分析显示,100 ℃下出现的白色斑点主要为 UO₂。根据 Winer 等^[1]的理论,这些亮点是由于吸附了 高浓度的活性氧激发出荧光所致,因而这些区域会快速氧化成 UO₂颗粒。由于 UO₂与金属铀的摩尔体积比为 1.98,随着反应温度升高和反应时间延长,UO₂腐蚀点体积快速增大,但是由于产物与铀基体的晶体结构、膨胀系数等热力学性质不同,新的氧化物/铀相界形成,使得氧容易直接侵入,氧化速度加快,并沿着UO₂腐蚀点纵向形成内氧化层。内氧化层体积不断膨

胀向外扩散,被进一步氧化为U₃O₈,堆积在腐蚀点外 表面周围,形成"钉扎效应"。

若以2℃/min的速率从100℃缓慢升温到300℃, 在230~250℃的温度范围内,基体表面UO₂才逐渐转 变为U₃O₈。继续升高温度至500℃,拉曼光谱无明显 变化,证明U₃O₈为稳定的氧化产物^[5],而并未像文献 [12]分析到有UO₃光谱峰出现。

图 4 干燥空气中金属铀的表面形貌和拉曼谱变化

2.4 铀的水汽腐蚀

用含有饱和水蒸气的氩气通入反应器,在室温下 可很快观测到有 UO₂生成。以 30 ℃/min 的速率快速 升温至 100 ℃,仍为 UO₂薄膜,氧化膜变黑,粗糙度 和膜厚不断增大,样品表面各区域的氧化速率相近。 而在干燥空气中 100 ℃时,基本形成土黄色致密氧化 膜,表面光滑。由表面形貌变化对比可知,水汽对铀 的腐蚀比干燥氧气快得多。升温至 200 ℃时有氧化膜 破裂,而完全不同于在干燥空气中 200 ℃时形成的钉 式氧化物颗粒。在 260 ℃时 UO₂ 的拉曼峰消失,280 ℃ 时检测到 750 cm⁻¹的拉曼特征峰,UO₂在该温度范围 内被水汽进一步氧化为 U₃O₈。

3 结 论

1) 金属铀中含有 U₃O₈和 USiO₄等夹杂,在大气 环境条件下会吸附 O₂、H₂O 和 CO₂,在不同微区反应 生成二氧化铀、铀酰化合物和碳酸铀。 2) 晶界处氧化电位增加,铀表面颜色在由黄变蓝 到变黑的过程中,氧化膜的致密性变差,逐步形成梅 花状和球形氧化物颗粒。

3) 干燥空气中加热后首先出现活性腐蚀亮斑,逐渐积累长大形成点蚀,在 200 ℃以上腐蚀点 UO2 会转 变为 U3O8。在饱和水汽中缓慢升温,UO2 在 260~280 ℃转化为 U3O8。

参考文献 References

- Winer K A. Initial Stages of Uranium Oxidation: A Surface Study UCRL-53655[R]. Livermore, CA: Lawrence Livermore Laboratory, 1985
- [2] William L M, Jane A L, Robert J. Applied Surface Science[J], 1999, 150: 73
- [3] Kelly D, Jennifer A L, William L M et al. Surface Characterization of Oxidative Corrosion of Uranium-Niobium Alloys LA-UR-00-4808[R]. Los Alamos, NM: Los Alamos National

Laboratory, 2000

- [4] John M H. Journal of Alloys and Compounds[J], 1998, 278: 149
- [5] Rousseau G, Desgranges L, Charlot F et al. J Nucl Mater[J], 2006, 355: 10
- [6] Chu Mingfu(褚明福), Zou Lexi(邹乐西), Zhong Jingrong(仲 敬荣). Rare Metal(稀有金属)[J], 2005, 29(1): 106
- [7] Yan Chuanwei(严川伟), Yu Jiakang(余家康), Lin Haichao(林海潮) et al. Corros Sci Protec Technol(腐蚀科学与防护技术)[J], 1998, 10(3): 163
- [8] Melendres C A. Laser Raman Spectroscopy for "IN SITU" Analysis of Corrosion Films on Metals, AGUC-37905[R]. Argonne: Argonne National Laboratory, 1990
- [9] Fu Guangyan(付广艳), Liu Qun(刘 群), Men Bingjie(门冰洁) et al. Rare Metal Materials and Engineering(稀有金属材料与

工程)[J], 2007, 36(4): 695

- [10] Hamilton J C, Anderson R J. High Temperature Science[J], 1985, 19: 307
- [11] Maslar J E, Hurst W S, Bowers W J et al. J Nucl Mater[J], 2001, 298: 239
- [12] Palacios M L, Taylor S H. Appl Spectrosc[J], 2000, 54(9): 1372
- [13] Dario M, Burkhard R. J Nucl Mater[J], 2003, 321: 233
- [14] Allen G C, Butler I S, Tuan N A. J Nucl Mater[J], 1987, 144:
- [15] Butler I S, Allen G C, Tuan N A. Appl Spectrosc[J], 1988, 42(5): 901
- [16] Eckelmeyer H K. J Nucl Mater[J], 1977, 68: 92
- [17] Amme S M, Renker B, Schmid B *et al. J Nucl Mater*[J], 2002, 306: 202

In-Situ Studies of Uranium Oxidation by Micro-Raman Spectroscopy and Atomic Force Microscopy

Chu Mingfu, Meng Daqiao, Zou Lexi, Xiao Sa, Zhong Jingrong, Ren Qingbo (National Key Laboratory for Surface Physics and Chemistry, Mianyang 621907, China)

Abstract: The variations of the microscopic morphology and oxides of metal uranium were in-situ investigated in the range of 20~400 °C by optical metalloscopy (OM), Raman spectroscopy(RS) and atomic force microscopy(AFM). Experiments were performed in ambient air, dry air and saturated vapor, respectively. The corrosion products and some inclusions were identified. In ambient air, uranium adsorbed oxygen, water and carbon dioxide, and subsequently reacted with them resulting in forming uranium dioxide, uranyl compounds, uranium carbonate etc. Contrastively in dry air, reactive corroded spots appeared at the beginning of heating and cumulated gradually, and generated pitting, with a simultaneous constituent transformation from uranium dioxde to triuranium octoxide. Meanwhile, uranium dioxde was heated at a low rate in saturated vapor, resulting in a conversion to triuranium octoxide at the temperature of 260~280 °C. Key words: uranium; corrosion; Raman spectroscopy; atomic force microscopy

Biography: Chu Mingfu, Candidate for Ph. D., Assistant Researcher, National Key Laboratory for Surface Physics and Chemistry, Mianyang 621907, P. R. China, Tel: 0086-816-3369776, E-mail: chumingfu@hotmail.com