直流电沉积 Ni-W-P 镀层研究

刘殿龙,杨志刚,刘 璐,张 弛

(清华大学 先进材料教育部重点实验室,北京 100084)

摘 要:采用直流电沉积法,在低碳钢表面成功沉积 Ni-W-P 镀层。应用 X 射线荧光(XRF) 扫描电子显微镜(SEM) 俄歇电子能谱(AES) X 射线衍射(XRD)仪等方法,研究电流密度、镀液 pH 值和镀液温度对 Ni-W-P 镀层成分、表面形貌和结构的影响。结果表明,电流密度和镀液 pH 值的变化对 Ni-W-P 镀层成分的影响很大,而电流密度、镀液 pH 值和温度对镀层厚度的影响较小。电流效率随着电流密度和镀液温度的增大分别降低和升高,而随着镀液 pH 值的变化,在 pH=7.0 时有极大值。镀液 pH 值对 Ni-W-P 镀层结构有较大影响,在 pH=8.0 时,镀层呈现明显的 Ni(111)峰,此时镀层硬度达到极大值7130 MPa。在此基础上,对 Ni-W-P 镀层的电沉积机制做了进一步探讨。

关键词:Ni-W-P 镀层;电流密度;pH 值;镀液温度 中图法分类号:TG146.1⁺⁵ 文献标识码:A

由于 Ni-W-P 合金具有优异的耐腐蚀、耐磨损性能 以及较高的硬度,因而受到广大研究者的关注。自从 1963 年开始, F.Pearlstein 等^[1]就开始了电沉积 W 合金 的研究。工业生产的发展要求材料具有更高的耐腐蚀、 耐磨损、高硬度等性能,性能优异的 Ni 基合金也由二 元合金逐渐向三元或多元复合材料方向发展^[2-4]。

此前,已有很多学者对化学镀 Ni-W-P 合金进行 过研究报道^[5-9],也有一些学者在电沉积 Ni-W-P 合金 方面展开研究^[10-12]。本研究利用电沉积法制备 Ni-W -P 合金,并讨论电流密度、镀液 pH 值、镀液温度对 电沉积 Ni-W-P 镀层质量的影响。在此基础上,进一 步讨论 Ni-W-P 合金的电沉积过程。

1 实 验

电沉积基体为 10 mm×10 mm 低碳钢片,厚度为 (1.0±0.05) mm;用镍板作为阳极。低碳钢表面依次经 过去离子水和自配碱性除油剂的超声清洗后,再经过 10%稀硫酸活化,然后进行电沉积 Ni-W-P 合金。通过 正交实验优化,电沉积 Ni-W-P 合金的镀液配方为: NiSO4·6H₂O 36.80 g/L、Na₃C₆H₅O7·2H₂O 50.00 g/L、 Na₂WO4·2H₂O 46.18 g/L、NaH₂PO₂·H₂O 15.90 g/L、 (NH₄)₂SO₄ 13.21 g/L、H₃BO₃ 30.92 g/L。在正交实验过 程中发现,电流密度、镀液 pH 值、镀液温度的变化 对镀层质量影响很大。因此,选定电流密度、镀液 pH 值、镀液温度 3 个参量,分别做 A、B、C 三组单因素 文章编号:1002-185X(2010)01-0060-05

实验,其结果如表1所示。电沉积时间都设定为1h, 用 DK-98-型恒温水浴槽控制镀液温度。对以上单因 素实验获得的样品,用场发射扫描电子显微镜 JSM-6301F 观测镀层表面和截面形貌,用 XRF-1800 X 射线荧光光谱仪分析镀层厚度及表面成分。 ULVAC-PHI700 俄歇电子能谱仪用于镀层成分的深度 分布分析。XRD 实验在 D/max-2500 型高功率多晶 X 射线衍射仪上进行,Cu K α 射线,管电压 40 kV,管 电流 30 mA,扫描范围 10°-90°,扫描速度 8°/min。 HVS-1000 显微硬度计用于镀层的显微硬度测试,荷载 100 g,保持 20 s。

2 结果与讨论

2.1 不同沉积条件下 Ni-W-P 镀层的厚度、成分及表面形貌

不同沉积条件下 Ni-W-P 镀层的厚度及成分如表 1 所示。计算出各组实验的电流效率^[13],如图 1 所示。 由表 1 可见,对于 A 组实验,随着电流密度的不断增 加,镀层中 W 元素的含量一直增加,而 Ni 元素和 P 元素的含量基本不变。Ni-W-P 镀层厚度变化不大。从 图 1a 可以看出,随着电流密度的增加,电流效率不断 降低,因此导致在电流密度不断增大的情况下镀层厚 度基本不变。对于 B 组实验,随着镀液 pH 值的升高, W 元素的含量一直增加,Ni 元素和 P 元素的含量分别 呈增加和减少趋势,而且,Ni-W-P 镀层厚度变化不大

收稿日期:2009-06-15

作者简介:刘殿龙,男,1982 年生,硕士生,清华大学材料科学与工程学院,北京 100084,电话:010-62795031,E-mail: zgyang@tsinghua.edu.cn

	表 1 不同电沉积条件下的镀层厚度及成分							
Table 1 Thickness and composition of plating layer under different electroplating conditions								
No.	Current density/mA·cm ⁻²	pH value	Bath temperature/	Thickness/um	Composition, at%			
				T mekness/µm	W	Ni	Р	
A1	33.3	6.5	70	14.0	0.95	84.45	14.60	
A2	50.0	6.5	70	13.0	1.55	83.38	15.07	
A3	66.7	6.5	70	14.8	1.81	83.03	15.16	
A4	83.3	6.5	70	14.2	2.03	82.82	15.15	
B1	22.9	5.0	70	11.2	0.32	86.26	13.42	
B2	22.9	6.0	70	12.1	0.39	85.31	14.30	
B3	22.9	7.0	70	11.8	1.36	89.16	9.48	
B4	22.9	8.0	70	10.8	1.38	94.35	4.27	
C1	22.9	6.5	56	9.0	0.78	85.29	13.93	
C2	22.9	6.5	60	9.6	0.92	84.87	14.21	
C3	22.9	6.5	70	11.4	0.56	85.57	13.87	
C4	22.9	6.5	83	12.2	0.65	86.40	12.95	

图 1 不同沉积条件下的电流效率

Fig.1 Current efficiency under different depositing conditions: (a) group A, (b) group B, and (c) group C

(如表 1 所示)。从图 1b 可以看出,当镀液 pH=7.0 左右时,电流效率有最大值,因为当镀液 pH 值较小 时,镀液中的[H⁺]较高,析氢反应剧烈;当镀液 pH 值 较大时,镀液中的[OH⁻]较高,Ni²⁺发生水解使镀液稳 定性降低,Ni-W-P 镀层的沉积受到阻碍。对于 C 组实 验,随着镀液温度的升高,镀层成分含量变化不大, 镀层厚度一直增加(如表 1 所示)。由图 1c 可以看出, 随着镀液温度的升高,电流效率也不断提高。这是因 为镀液温度的升高使阴极/溶液界面上离子扩散速度 加快,使得沉积速率增大。

图 2 分别为表 1 中 A4, B3, B4, C4 条件下获得 的 Ni-W-P 镀层表面的 SEM 照片。如图 2a 所示, 镀 层表面由平均尺寸为 7~10 μm 的"胞状物"覆盖,"胞 状物"之间有明显的界限,而其内部由许多 0.5 μm 左 右的小颗粒紧密排列组成。图 2a 是在电流密度为 83.3 mA/cm² 的条件下获得的,根据过电位原理^[14],在电 流密度较大的情况下会产生高过电位,有利于晶核的 形成,而晶核的生长相对地受到限制,导致晶粒尺寸 减小。如图 2b 所示,镀层表面由较均匀的颗粒组成, 颗粒平均尺寸约为 1.5 μm。由图 2c 可知, 镀层表面主 要由尺寸为 2 μm 左右的颗粒组成, 表面有少量大的 球状颗粒和小孔, 镀层呈现明显的择优取向, 这是因 为此时镀层中 W 和 P 的含量分别为 1.38%和 4.27%, 而 Ni 的含量高达 94.35%(表 1),从而表现出 Ni(111)

图 2 Ni-W-P 镀层的 SEM 照片 Fig.2 SEM images of as-deposited Ni-W-P layers: (a) A4, (b) B3, (c) B4, and (d) C4

择优取向。从图 2b 和 2c 来看,在其它沉积条件不变 的情况下,镀液 pH 值从 7.0 增加到 8.0 时,pH 值变 化对镀层表面形貌有较大影响。在图 2d 中,颗粒尺寸 差异较大,表面颗粒平均尺寸为 10 μm 左右,与图 2a 相比,大颗粒并不是"胞状物"。和 A4 相比,C4 的 电流密度较低,有利于晶核的生长,而 C4 较高的镀 液温度,使颗粒的生长速度更快,从而使得颗粒尺寸 变大。从图 2 中镀层表面形貌的差异可以看出,在其 它沉积条件不变的情况下,较高的电流密度有利于晶 核的形成,较高的镀液温度促进了晶核的生长,而较 高的镀液 pH 值促进了 Ni (111)择优取向的形成。

图 3 为 Ni-W-P/低碳钢样品截面的 SEM 照片。可 见, Ni-W-P 镀层截面较为致密,与低碳钢基体结合良 好。为进一步研究镀层质量,采用俄歇电子能谱研究 镀层沿厚度方向的成分分布,如图 4 所示。横轴表示 溅射时间,纵轴表示原子浓度。从图 4 中可以看出, Ni 为 Ni-W-P 镀层截面的主要成分,在厚度方向上, Ni 的原子浓度变化不大。P 的原子浓度为 8%左右, 虽然沿厚度方向浓度变化不大,但是,从镀层表面到 与基体的界面之间,P 的原子浓度有逐渐减小的趋势,这说明在 Ni-W-P 镀层沉积的初期阶段,P 的沉积 速率较低,随着沉积时间的延长,P 的沉积速率有增 加的趋势。W 的原子浓度较低,接近仪器的检测极限。 镀层中出现的少量 C 元素和 O 元素,在仪器的检测误 差范围内,这可能是由于实验环境引入所致。

2.2 不同沉积条件下 Ni-W-P 镀层的结构和显微硬度
图 5 为 A、B、C 组实验所获得的 Ni-W-P 镀层的

XRD 图谱。如图 5a 所示,在 44.62°~44.72°附近出现 镀层的衍射峰,衍射峰强度均较小,半峰宽的宽化程 度较大,呈现明显的非晶态特征。在图 5b 中,在 44.46°~44.64°附近出现镀层的衍射峰,随着镀液 pH 值的变化,衍射峰的强度变化较大:当镀液 pH 值为

图 4 Ni-W-P/低碳钢基体的纵向成分分布

Fig.4 Component distribution of Ni-W-P/low carbon steel substrate along thickness

5.0 和 6.0 时,衍射峰强度均较小,半峰宽的宽化程度 较大;当镀液 pH 值为 7.0 时,衍射峰的强度明显增加, 峰形变得尖锐;当镀液 pH 值为 8.0 时,衍射峰的强度 增加显著,峰形尖锐,呈现明显的 Ni (111)峰,而 且,在 51.3°附近出现 Ni (200)偏峰。如图 5c 所示, 在 44.64°附近出现镀层的衍射峰,衍射峰强度均较小, 半峰宽的宽化程度较大,和图 5a 相比,图 5c 中衍射 峰有微小"尖峰"。对于图 5a 和 5c,镀层呈现明显的 非晶态,因为镀层的主要成分为 Ni 和 P,且 P 的含量 高达 14at%左右,高 P 量促进了镀层的非晶化^[15]。从 图 5a 和 5c 来看,除了在 44.5°左右存在矮化、宽化的 衍射峰外,没有发现 Ni (200)(220)的衍射峰。

根据谢乐公式^[16], 计算 Ni-W-P 镀层的微晶尺寸 D, 如表 2 所示。对于 A 组实验 (见表 1 和表 2), 随 着电流密度的不断增加,获得的 Ni-W-P 镀层的微晶 尺寸从 2.1 nm 递减到 1.6 nm,这与过电位原理^[14]是一 致的;而其显微硬度随电流密度增加呈增加趋势,这 是因为电流密度的增加更有利于形核,使微晶尺寸较 小,导致颗粒集聚的密度增大(如图 2a),从而提高 了显微硬度。对于 B 组实验(见表 1 和表 2), 随着镀 液 pH 值从 6.0 增加到 8.0, 镀层的微晶尺寸持续增加, 从 1.7 nm 骤增到 7.4 nm, 镀层相应的显微硬度随 pH 值增加呈增加趋势,虽然 pH 值增加使得微晶尺寸呈 增加趋势,而镀层硬度的提高主要是因为镀层结晶程 度的提高(如图 2c),图 5b 也说明了这一点。对于 C 组实验(见表1和表2),随着镀液温度的升高,镀层 的微晶尺寸呈下降趋势,这是因为,为了降低界面能, 大晶粒将进一步长大,小晶粒将变小甚至消失,当温 度升高到一定程度时,大晶粒经过充分生长后不再是 微晶,而小晶粒尺寸变得更小或消失;镀层的显微硬 度随镀液温度的升高呈增加趋势,这是因为镀液温度

Fig.5 XRD patterns of Ni-W-P layers: (a) group A, (b) group B, and (c) group C

(1)

的升高使晶粒进一步长大(如图 2d),使镀层密度增大,导致镀层显微硬度增加。在本研究的沉积条件变 化范围内,Ni-W-P 镀层显微硬度在 3360-7130 MPa 变 化,而镀层结构的变化对镀层的显微硬度有较大影响。

目前,人们对金属的共沉积研究较少,而共沉积 的条件是两种金属的析出电位要十分接近。从热力学 角度考虑,W不能单独从水溶液中沉积出来,只有在 铁族金属的诱导下,才能实现共沉积^[17]。对于 Ni-W 合金,在电沉积过程中,只有当镀液中有 Ni²⁺存在时, WO4²⁻才能被诱导还原到 W 金属态形成 Ni-W 合金, Ni-W 合金电结晶过程遵从扩散控制瞬时成核三维生 长模式进行^[18-20]。与 Ni-W 合金类似,Ni-W-P 合金也 是发生诱导共沉积^[21],在沉积过程中,也发生了成核 过程^[22]。在本工作所使用的镀液条件下,Ni²⁺、Cit³⁻ 与 WO4²会形成一种复杂的络合物,如下式表示^[23]:

 $[(Ni)(HWO_4)(Cit)]^{2-}+8e^{-}+3H_2O \rightarrow$

NiW+7(OH)⁻+Cit³⁻

根据镀液组成, Ni-W-P 镀层中的 P 完全来自于 $H_2PO_2^-$, 根据下式^[17]:

表 2 Ni-W-P 镀层的结构参数和显微硬度 Table 2 Structure parameters and microhardness of Ni-W-P layer

	of the trayer						
No.	2θ(111)/(°)	Intensity/cps	D/nm	Hardness, HV/MPa			
A1	44.72	1804	2.1	4600			
A2	44.72	1408	1.8	4960			
A3	44.62	1604	1.6	5040			
A4	44.66	1668	1.6	5550			
B1	44.64	2343	2.9	4500			
B2	44.60	1542	1.7	5620			
В3	44.58	3236	3.0	5590			
B4	44.46	14505	7.4	7130			
C1	44.64	1604	2.0	3360			
C2	44.64	1555	2.0	3360			
C3	44.64	1637	1.8	4210			
C4	44.64	1496	1.7	4570			

 $H_2PO_2^{-}+2H^{+}+e=P+2H_2O$ (2)

E=-0.391-0.1182pH+0.05911g[H₂PO₂⁻] 可以看出,当活度为1时,*E*=-0.391-0.1182pH,而在 电镀溶液的 pH 范围(5.0~8.0)内,*E*=-0.982~-1.337 V, 大大低于 H₂析出电位。因此,P 单独沉积出来是不可 能的。而当水溶液中有 Ni²⁺时,P 能以金属间化合物 Ni₃P 的形态在阴极析出^[17]:

 $H_2PO_2^{-}+3Ni^{2+}+2H^{+}+7e \rightarrow Ni_3P+2H_2O$ (3)

由(1)(3)两式可以看出,当电流密度不断提 高时,镀层中W的含量变化最大,因为W元素在还 原前为+6价,而Ni、P分别为+2和+1价,这与表1 中A组实验结果是一致的;当镀液pH值不断升高时, 由(1)(3)两式可知,W和P的沉积将受到抑制, 从表1中B组实验结果来看,P的沉积受到pH值的 极大影响,而W的沉积没有受到抑制反而增加,这可 能是因为,镀液pH值不够高,没有抑制W的沉积; 当镀液温度升高时,阴极/溶液界面上离子扩散速度加 快,镀液导电性好,镀层成分变化不大。

在金属(或合金)的电结晶过程中,存在着离子 在界面上放电形成吸附原子,吸附原子扩散进入晶格 位置聚集成核和生长等过程,而电沉积层的晶粒尺寸 大小取决于成核和生长的相对速度^[21]。若不考虑沉积 电流效率等因素的影响,在相同的沉积电流密度下, 金属(或合金)电沉积过电位提高,则有利于晶核的 形成,结果镀层晶粒尺寸减小。

3 结 论

 1) 电流密度和镀液 pH 值的变化对 Ni-W-P 镀层 成分的影响很大,而电流密度、镀液 pH 值和温度对 镀层厚度的影响不大。

 2) 电流效率随着电流密度和镀液温度的增大分 别降低和升高,而随着镀液 pH 值的变化,在 pH=7.0 时有极大值。 3) 镀液 pH 值对 Ni-W-P 镀层结构有较大影响, 在 pH=8.0 时,镀层呈现明显的 Ni (111)峰,此时镀 层维氏硬度达到极大值 7130 MPa。

4) 电沉积 Ni-W-P 镀层属于诱导共沉积,而镀层的晶粒尺寸取决于成核和生长的相对速度。

参考文献 References

- [1] Pearlstein F et al. The Electrochemical Society[J], 1963: 110(7): 843
- [2] Zhang W X et al. Applied Surface Science[J], 2007, 253: 5116
- [3] Balaraju J N et al. Electrochimica Acta [J], 2006, 52:1064
- [4] Aly I H M et al. Metal Fishing[J], 2003(4): 37
- [5] Zhang Bangwei *et al. Materials Characterization*[J], 1996, 37: 119
- [6] Hu Yongjun et al. Surface & Coatings Technology[J], 2006, 201: 988
- [7] Balaraju J N et al. Surface & Coatings Technology[J], 2006, 201: 507
- [8] Balaraju J N et al. Surface & Coatings Technology[J], 2006, 200: 4885
- [9] Yiying Tsai et al. Surface & Coatings Technology[J], 2001 (146-147): 502
- [10] Niu Libin(牛立斌). Plating and Finishing(电镀与精饰)[J], 2006, 28(3): 41
- [11] Li Jieqiong(李洁琼) et al. Journal of Henan University of Science and Technology(Natural Science)(河南科技大学学

报(自然科学版))[J], 2003, 24(4): 8

- [12] Jia Shuguo(贾淑果) et al. Surface Technology(表面技术)[J], 1999, 28(1): 6
- [13] Eliaz N et al. Electrochimica Acta[J], 2005, (50): 2893
- [14] Ohru Watanabe. Translated by Chen Zhuping(陈祝平), Yang Guang(杨光). Nano-Plating(纳米电镀)[M]. Beijing: Chemical Industry Press, 2007: 5
- [15] Paunovic M et al. Fundamentals of Electrochemical Deposition[M]. New York: Wiley, 1998
- [16] Budevski E et al. Electrochemical Phase Formation and Growth[M]. New York: VCH Publishers, 1996
- [17] Niu Libin(牛立斌). Study on the Alloy Coating of Ni-W-P Electrodeposition(Ni-W-P 镀层合金的电化学沉积研究)[D]. Xi'an: Xi'an University of Architecture and Technology, 2006
- [18] Li Zhenliang(李振良) et al. Journal of Xiamen University (Natural Science)(厦门大学学报(自然科学版))[J], 1999, 38(2): 230.
- [19] Huang Ling(黄 令) et al. Electroplating & Finishing(电镀与 涂饰)[J], 1999, 18(1): 1
- [20] Huang Ling(黃 令) et al. Electrochemistry(电化学)[J], 1997, 3(2): 174
- [21] Yang Fangzu(杨防祖) et al. Acta Physico-Chimica Sinica(物 理化学学报)[J], 2000, 16(11): 1022
- [22] Fletcher et al. Electrochimica Acta[J], 1983, 28(7): 917
- [23] Eliaz N et al. Electrochimica Acta[J], 2005(50): 2893

Study on Direct-Current Electroplated Ni-W-P Layer

Liu Dianlong, Yang Zhigang, Liu Lu, Zhang Chi

(Key Laboratory for Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China)

Abstract: Ni-W-P layers were formed on a low-carbon steel substrate by direct-current electroplating method. The effects of current density, pH value and bath temperature on the composition, surface morphology, and microstructure of Ni-W-P layers were studied by X-ray fluorescence (XRF), scanning electron microscope (SEM), auger electron spectroscopy (AES) and X-ray diffraction (XRD). The results indicate that the change of current density and pH value influenced the composition of Ni-W-P layer greatly, but the change of current density, pH value and bath temperature hardly influenced the thickness of Ni-W-P layer. As current density and bath temperature increased, current efficiency decreased and increased, respectively, and current efficiency reached the maximum value when pH value is 7.0. The structure of Ni-W-P layer was greatly influenced by pH value, and a well-preferred orientation along Ni (111) direction was shown when pH value was 8.0. Synchronously, the microhardness of Ni-W-P layer reached the maximum value of 7130 MPa. At last, electroplating mechanism of Ni-W-P layer was discussed further.

Key words: Ni-W-P layer; current density; pH value; bath temperature

Corresponding author: Liu Dianlong, Candidate for Master, Department of Material Science and Engineering, Tsinghua University, Beijing 100084, P. R. China, Tel: 0086-10-62795031, E-mail: zgyang@tsinghua.edu.cn