Mo 含量对 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4)合金 的微观结构,热性能和磁性能的影响

华中,左斌,王晓楠,孙亚明,董丽荣

(吉林师范大学 功能材料物理与化学教育部重点实验室, 吉林 四平 136000)

摘 要:采用单辊快淬法制备 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4)系非晶合金,并对 3 种合金进行不同温度热处理。利用 X 射线衍射仪(XRD)、透射电镜(TEM)、差热分析仪(DTA)和振动样品磁强计(VSM)对合金的微观结构、热性能 和磁性能进行测试分析。结果表明: Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4) 3 种合金第 1 个晶化峰的激活能随 Mo 含量的增 加而减小, Mo 的添加不利于合金的热稳定性。Mo 含量的增加抑制了 ZrCo₃B₂等化合物的析出,细化了结晶相的晶粒 尺寸。Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4) 3 种非晶合金的矫顽力 H_c均随退火温度的升高而逐渐增大。Mo 的添加明显降 低了合金的矫顽力。

关键词:非晶合金; Mo含量; 微观结构; 热性能; 矫顽力
中图法分类号: TG132.2⁺7
文献标识码: A

文章编号: 1002-185X(2016)02-0358-05

Fe-*M*-B (*M*=Zr, Hf, Nb)系列合金因具有高磁导 率、高饱和磁通、低矫顽力、低铁损、频散特性好等 优点,被世界公认为是目前综合性能最好的软磁材料 之一^[1-5]。该软磁合金的制备工艺相对简单,生产周期 短,具有优良的性价比,从工业生产角度看,该材料 能够迅速发展服务于经济建设,并在科学研究和实际应 用方面受到广泛重视,因而成为近年来的研究热点^[6-11]。 对于 Fe-M-B 系列中合金成分 *M* 的选择,已扩展到 IVB、VB 和VIB 族金属元素,如 Zr、Hf、Nb、Ti、 Ta、Mo和W等^[12]。而合理地选择合金系成分,对Fe*M*B 软磁材料性能的改善起到至关重要的作用。

马瑞娜^[13]研究发现在铁硼中加入 Mo 元素,提高了 铁硼试样的烧结密度和硬度,也提高了材料的强韧性。 姜超平^[14]研究发现适量 Mo 合金粉末加入能提高 Fe 基非晶涂层抗腐蚀性能。贺自强等人^[15]研究发现 Mo 的加入提高了(Fe_{0.5}Ni_{0.5})_{80-x}Mo_xB₂₀(x=0, 2, 4, 6, 8)系非 晶态合金的玻璃形成能力与热稳定性。本实验在 Fe₄₀Co₄₀Zr₁₀B₉Cu₁合金基础上添加 Mo 元素,研究 Mo 含量对 Fe₄₀Co₄₀Zr_{(10-x})Mo_xB₉Cu₁(x=0, 2, 4)合金的微观 结构,热性能和磁性能的影响。

1 实 验

实验选用高纯度(纯度均大于 99.9 %)的 Fe、Co、

2 结果与分析

图 1 为 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4)非晶合 金快淬态及不同温度退火后的 XRD 图谱,插入图为 该合金在升温速率为 30 K/min 的 DTA 曲线。从图 1 中可以看出,3 种合金淬态的 XRD 图谱均显示明显的 漫散射包特征,表明 3 种合金淬态时均处于非晶态。

从图 1a 可以看出, Fe₄₀Co₄₀Zr₁₀B₉Cu₁合金在 773 K 退火,有晶化物从非晶基态中析出。798 K 退火可以 确定晶化物为 α-Fe(Co)相,848 K 以上退火,α-Fe(Co)

Zr、B、Cu、Mo 为初始原料,在Ar 气氛下,用高温 电弧炉熔炼名义成分为 $Fe_{40}Co_{40}Zr_{(10-x)}Mo_xB_9Cu_1(x=0, 2, 4)$ 的铸态母合金,然后采用单辊快淬法制备合金条 带,快淬速率为 38 m/s。在氩气保护下,对 3 种非晶 合金条带分别在 773,823,848,873,898,923,948,973 和 1023 K 下进行 60 min 等温退火处理。利用差热分 析仪(DTA,TG/DTA 6300)测量样品的热性能,升温速 率 β 为 15,20,25,30 和 35 K/min。采用 Kissinger 方法 计算合金的晶化激活能。利用 X 射线衍射仪(XRD, D/max 2500/PC,Cu 靶 Ka 辐射, $\lambda=0.154$ 06 nm)和透 射电镜(TEM,JEM-2100E)测试分析样品的结构。 利用振动样品磁强计(VSM,Lake shore M-7407)测量 样品的磁性能。

收稿日期: 2015-01-10

基金项目:吉林省科技发展计划资助项目(201105083);教育厅"十二五"科学技术研究项目(2014-485);吉林师范大学研究生创新科研 计划项目(201103)

作者简介:华中,男,1961年生,博士,教授,吉林师范大学,吉林四平136000,电话:0434-3293501, E-mail: huazhong196110@163.com

图 1 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁ (x=0, 2, 4)非晶合金快淬态及不 同温度退火后的 XRD 图谱

Fig.1 XRD patterns of Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4) amorphous alloys as-quenched and annealed at different annealing temperatures: (a) Fe₄₀Co₄₀Zr₁₀B₉Cu₁, (b) Fe₄₀Co₄₀Zr₈Mo₂B₉Cu₁, and (c) Fe₄₀Co₄₀Zr₆Mo₄B₉Cu₁

衍射峰峰形逐渐变锐,同时伴有 $ZrCo_3B_2$ 和 $Fe(Co)_3Zr$ 化合物的析出。 $Fe_{40}Co_{40}Zr_{10}B_9Cu_1$ 合金的晶化过程为: 非晶→非晶+ α -Fe(Co)→ α -Fe(Co)+ $ZrCo_3B_2$ +Fe(Co)₃Zr。 DTA 曲线的第1个晶化放热峰对应着 α -Fe(Co)相的析 出,第2个晶化放热峰对应着 $ZrCo_3B_2$ 和 Fe(Co)₃Zr 化合物的析出。

由图 1b 可以看出, $Fe_{40}Co_{40}Zr_8Mo_2B_9Cu_1$ 合金的 晶化过程与 $Fe_{40}Co_{40}Zr_{10}B_9Cu_1$ 合金的晶化过程相似。 $Fe_{40}Co_{40}Zr_8Mo_2B_9Cu_1$ 合金在 773 K 退火,有 α -Fe(Co) 相析出,随热处理温度的升高, α -Fe(Co)相衍射峰强 度增强,923 K 退火有 ZrCo_3B_2 化合物析出,1023 K 退火又析出 Fe(Co)₃Zr 相,与 $Fe_{40}Co_{40}Zr_{10}B_9Cu_1$ 合金 相比,添加 2at%的 Mo 延迟了 ZrCo_3B_2 相和 Fe(Co)_3Zr 相的析出。DTA 曲线的第 1 个晶化放热峰对应着 α -Fe(Co)相的析出,第 2 个和第 3 个晶化放热峰分别 对应着 ZrCo_3B_2 和 Fe(Co)_3Zr 化合物的析出。

由图 1c 可以看出, $Fe_{40}Co_{40}Zr_6Mo_4B_9Cu_1$ 合金在 773 K 退火,在非晶基体中有 α -Fe(Co)晶体相析出。 随着退火温度的不断升高, α -Fe(Co)衍射峰的强度增 强,晶化程度越来越高。973 K 以上退火, α -Fe(Co) 衍射峰峰形逐渐变锐,同时伴有 Fe₃B、ZrCo₃B₂ 以及 Fe(Co)₃Zr 化合物的析出。Fe₄₀Co₄₀Zr₆Mo₄B₉Cu₁合金 的晶化过程为:非晶→非晶+ α -Fe(Co)→ α -Fe(Co) +Fe₃B +ZrCo₃B₂ + Fe(Co)₃Zr。DTA 曲线的第 1 个晶化 放热峰对应着 α -Fe(Co)相的析出,第 2 个晶化放热峰 对应着 Fe₃B、ZrCo₃B₂ 以及 Fe(Co)₃Zr 化合物的析出。 可以更加确定 Mo 含量的增加抑制了 ZrCo₃B₂ 等化合 物的析出。

图 2 为 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁ (x=0, 2, 4)非晶合 金分别在 848 K 退火的 TEM 像及选区电子衍射照片。

从图 2a 电子衍射照片中可以观察到 α-Fe(Co)和 ZrCo₃B₂相,从 TEM 像中可看出 Fe₄₀Co₄₀Zr₁₀B₉Cu₁晶 粒尺寸较大;图 2b 和 2c 电子衍射照片中仅观察到有 α-Fe(Co)相, Fe₄₀Co₄₀Zr₈Mo₂B₉Cu₁ 合金的晶粒尺寸较 小,Fe₄₀Co₄₀Zr₆Mo₄B₉Cu₁合金的晶粒尺寸最小。可见, 随着 Mo 含量的增加,结晶相的晶粒尺寸得到细化。

图 3 为 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁ (x=0, 2, 4)非晶合 金在升温速率分别为 15, 20, 25, 30 和 35 K/min 的 DTA 曲线。表 1 为 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁ (x=0, 2, 4) 3 种非晶合金在不同升温速率下第一个晶化峰(T_{p1}) 的峰值温度。

从表 1 中可看出,随着 Mo 含量的增加,同一升 温速率下 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4)合金的 T_{p1} 值随着 Mo 含量的增加而降低。

根据表 1 数值采用 Kissinger 法^[16]计算晶化激活 能。Kissinger 公式:

$$\ln\left(\frac{\beta}{T^2}\right) = -\frac{E}{RT} + C \tag{1}$$

其中, β 为升温速率,T为晶化峰的峰值温度,E为晶 化激活能,R为普适气体常量,C为常数。利用

图 2 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4)非晶合金分别在 848 K 退火的 TEM 像及选区电子衍射花样

Fig.2 TEM images and the corresponding selected area diffraction patterns of $Fe_{40}Co_{40}Zr_{(10-x)}Mo_xB_9Cu_1$ (x=0, 2, 4) alloys annealed at 848 K: (a) $Fe_{40}Co_{40}Zr_{10}B_9Cu_1$, (b) $Fe_{40}Co_{40}Zr_8Mo_2B_9Cu_1$, and (c) $Fe_{40}Co_{40}Zr_6Mo_4B_9Cu_1$

图 3 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4)非晶合金在不同升温速率的 DTA 曲线

Fig.3 DTA curves of $Fe_{40}Co_{40}Zr_{(10-x)}Mo_xB_9Cu_1$ (x=0, 2, 4) amorphous alloys at different heating rates: (a) $Fe_{40}Co_{40}Zr_{10}B_9Cu_1$, (b) $Fe_{40}Co_{40}Zr_8Mo_2B_9Cu_1$, and (c) $Fe_{40}Co_{40}Zr_6Mo_4B_9Cu$

表 1 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁ (x=0, 2, 4)合金在升温速率分别为 15, 20, 25, 30 和 35 K/min 时的第 1 个晶化峰 (T_{p1}) 的峰值温度 Table 1 T_{p1} of the Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁ (x=0, 2, 4) amorphous alloys at heating rates of 15, 20, 25, 30 and 35 K/min (K)

$\beta/\mathrm{K} \mathrm{min}^{-1}$	15	20	25	30	35
$Fe_{40}Co_{40}Zr_{10}B_9Cu_1$	843.26	848.27	853.18	856.15	859.23
$Fe_{40}Co_{40}Zr_8Mo_2B_9Cu_1$	814.42	823.72	826.18	829.04	833.46
$Fe_{40}Co_{40}Zr_6Mo_4B_9Cu_1$	783.56	789.49	792.45	797.93	800.44

 $\ln(\beta/T^2)$ 对 1/T 做图,将得到一条斜率为 E/R 的直线, 进而可以得到晶化激活能 E。

图 4 所示分别为 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4) 非晶合金第 1 个晶化峰 *T*_{p1}的 Kissinger 曲线,求得的 3 个晶化峰的激活能分别为 303.76, 247.27 和 244.05 kJ/mol,合金的晶化激活能随着 Mo 含量的增加而减 小,说明 Mo 元素的添加降低了合金的热稳定性。

图 5 为 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4)非晶合

金的矫顽力(H_c)与退火温度(T_a)的关系曲线。结 合 XRD 图谱, 3种合金低于 848 K 退火, H_c 均未发 生明显变化。Fe₄₀Co₄₀Zr₁₀B₉Cu₁合金在 848 K 退火, 有 ZrCo₃B₂和 Fe(Co)₃Zr 化合物析出, 898 K 退火 H_c 迅速增大,磁性能恶化。与 Fe₄₀Co₄₀Zr₁₀B₉Cu₁合金相 比,添加 2at%的 Mo 延迟了 ZrCo₃B₂相和 Fe(Co)₃Zr 相的析出,Fe₄₀Co₄₀Zr₈Mo₂B₉Cu₁合金高于 923 K 退火 有化合物析出, H_c 迅速增大。添加 4at%的 Mo 延迟

- 图 4 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4)非晶合金第1个晶化峰 T_{p1}的 Kissinger 曲线
- Fig.4 Kissinger plots of T_{p1} for $Fe_{40}Co_{40}Mo_xZr_{(10-x)}B_9Cu_1$ (x=0, 2, 4) amorphous alloys: (a) $Fe_{40}Co_{40}Zr_{10}B_9Cu_1$, (b) $Fe_{40}Co_{40}Zr_8-Mo_2B_9Cu_1$, and (c) $Fe_{40}Co_{40}Zr_6Mo_4B_9Cu_1$

- 图 5 Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4) 非晶合金的矫顽力 (H_c) 与退火温度(T_a) 的关系曲线
- Fig.5 Variations of coercivity (H_c) of Fe₄₀Co₄₀Zr_(10-x) Mo_xB₉Cu₁ (x=0, 2, 4) amorphous alloys as a function of annealing temperature (T_a)

ZrCo₃B₂ 相和 Fe(Co)₃Zr 相的现象更加明显, Fe₄₀Co₄₀Zr₆Mo₄B₉Cu₁ 合金在 973 K 退火,才伴有 Fe₃B、ZrCo₃B₂以及 Fe(Co)₃Zr 化合物的析出,1023 K 退火化合物含量明显增加, H_c 迅速增大。说明 Mo 含 量的增加明显降低了合金的矫顽力,改善了合金的软 磁性。

3 结 论

1) Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4) 3 种非晶合 金分别在 848, 923, 973 K 时有 ZrCo₃B₂和 Fe(Co)₃Zr 化合物的析出,说明 Mo 含量的增加抑制了 ZrCo₃B₂ 等化合物的析出。透射图像表明 Mo 含量的添加减小 了结晶相的晶粒尺寸。

2) Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4) 3 种非晶合 金激活能分别为 303.76, 247.27 和 244.05 kJ/mol,合金 的晶化激活能随着 Mo 含量的增加而减小, Mo 元素的 添加降低了合金的热稳定性。

3) Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4) 3 种非晶合 金的矫顽力 H_c均随退火温度的升高而逐渐增大,但程 度有所不同,这与合金的晶化过程有关。Mo 含量的 1.28增加抑制了 ZrCo₃B₂等化合物的析出,降低了合金的 矫顽力。

参考文献 References

- Mu Danning(穆丹宁), Yang Changlin(杨长林), Wei Xiaowei(魏晓伟) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2013, 42(6): 1316
- [2] Sun Y M, Zuo B, Wang D et al. Acta Physica Polonica A[J], 2013, 124(4): 685
- [3] Kernion S J, Miller K J, Shen S et al. IEEE Transactions on Magnetics [J], 2011, 47 (10): 3452
- [4] Folly W S D, Caffarena V R, Sommer R L et al. J Magn Magn Mater [J], 2008, 320(14): 358
- [5] Zhang K, Han B, Xiao L et al. Journal of Physics D, Applied Physics [J], 2007, 40(21): 6507
- [6] Garcia C, Zhukov A, Gonzalez J et al. Journal of Alloys and Compounds[J], 2006, 423(1): 116
- [7] Gona M N, Yanase S, Hashi S et al. Journal of Magnetism and Magnetic Materials[J], 2003, 254(1): 466
- [8] Babu Arvindha D, Majumdar B, Sarkar R et al. Journal of Materials Research[J], 2011, 16(26): 2065
- [9] Shen Kun(申 坤), Wang Mingpu(汪明朴), Cao Lingfei (曹玲 飞) et al. The Chinese Journal of Nonferrous Metals(中国有 色金属学报)[J], 2007, 17(10): 1661
- [10] Xiong X Y, Finlayson T R, Muddle B C. Journal of Materials Science[J], 2003, 38(6): 1161
- [11] Huang H, Shao G, Tsakiropoulos P. Journal of Alloys and Compounds[J], 2008, 459(1-2): 185
- [12] Cao Lingfei(曹玲飞), Wang Mingpu(汪明朴), Xie Dan(谢 丹) et al. Materials Review(材料导报)[J], 2005, 5(19): 20
- [13] Ma Ruina(马瑞娜), Cao Xiaoming(曹晓明), Wen Ming(温鸣). Journal of Hebei University of Technology(河北工业大学学报)[J], 2003, 32(5): 12
- [14] Jiang Chaoping(姜超平), Xing Yazhe(邢亚哲), Hao Jianmin(郝建民). Hot Working Technology(热加工工艺)[J],

2011, 40(8): 144

2007(9): 14

[15] He Ziqiang(贺自强), Wang Xinlin(王新林), Quan Baiyun(全 白云) et al. Journal of Materials Engineering (材料工程)[J], [16] Kissinger H E. Journal of Research of the National Bureau of Standards[J], 1956, 57(4): 217

Effect of Mo Content on Microstructures, Thermal Properties and Magnetic Properties of Fe₄₀Co₄₀Zr_(10-x)Mo_xB₉Cu₁(x=0, 2, 4) Alloys

Hua Zhong, Zuo Bin, Wang Xiaonan, Sun Yaming, Dong Lirong

(Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education,

Jilin Normal University, Siping 136000, China)

Abstract: $Fe_{40}Co_{40}Zr_{(10-x)}Mo_xB_9Cu_1$ (*x*=0, 2, 4) amorphous alloys were prepared by single roller melt-spinning and then they were isothermally annealed at different temperatures. Microstructures, thermal properties and magnetic properties of the samples were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), differential thermal analysis (DTA) and vibrating sample magnetometer (VSM). The results show that the apparent activation energies of $Fe_{40}Co_{40}Zr_{(10-x)}Mo_xB_9Cu_1$ (*x*=0, 2 ,4) alloys decrease with the increase of the Mo content. Mo addition reduces the thermal property of the alloys. The increase of Mo content inhibits the precipitation of $ZrCo_3B_2$ compounds and refines the grain size of the crystallization phase. Coercivity (H_c) of $Fe_{40}Co_{40}Zr_{(10-x)}Mo_xB_9Cu_1$ (*x*=0, 2 ,4) alloys increases with the increasing of annealing temperature gradually. Mo addition reduces the H_c obviously. **Key words:** amorphous alloy; Mo content; microstructure; thermal property; coercivity

Corresponding author: Hua Zhong, Ph. D., Professor, Jilin Normal University, Siping 136000, P. R. China, Tel: 0086-434-3293501, E-mail: huazhong196110@163.com