700°C超超临界锅炉管用 617B 合金时效组织演变

江 河,董建新,张麦仓,姚志浩

(北京科技大学,北京 100083)

摘 要:研究了 700 ℃超超临界锅炉管用 617B 合金在 720 ℃/10 000 h、800 ℃/2000 h 和 850 ℃/100 h 时效和不同温 度 50 h 时效过程中组织稳定性及力学性能变化。结果表明: 617B 合金在 10 000 h 长期时效末期组织稳定性较差, y'相 粗化且晶界上有有害相析出; 温度对 617B 合金的组织稳定性影响较大,随着温度升高 y'相急剧粗化,晶内析出相发生 转变;合金的硬度主要受 y'相析出规律的影响;720 ℃时效过程中晶内有拉链状析出相,其种类、结构有待进一步研究。 关键词:超超临界;时效;组织稳定性

中图法分类号: TG146.1⁺5

文献标识码: A 5

文章编号: 1002-185X(2016)04-0982-08

随着现代工业的发展,能源和环境问题在现代人类 社会中日益凸显,为解决这两大问题、实现可持续发展, 提高火电发电机组热效率,降低 CO₂ 排放量成为首选 方案。世界范围内发展的新一代先进超超临界电站的蒸 气温度可提高到 620 ℃,正在研究中的先进超超临界 电站计划将燃煤效率提高到 60%,蒸气温度提高到 760 ℃^[1]。部分国家已经把 21 世纪的蒸气参数目标制 定为 700 ℃以上,从而使热效率突破 50%^[2,3],新一代 的超超临界电站需在 760 ℃/35 MPa 的条件下服役^[2], 传统的铁素体钢无法满足如此严苛的条件^[4,5]。镍基高 温合金因其优良的性能和组织稳定性,有望取代传统的 铁素体不锈钢^[2,4]。

Inconel617 合金是固溶强化型的 Ni-Cr-Co 基高温 合金,因其具有良好的抗氧化性能、机械性能和高温稳 定性而被广泛用于高温环境^[6]。随着 20 世纪 90 年代超 超临界蒸气锅炉技术在欧洲和美国的兴起,超超临界用 锅炉管材的研究受到人们的重视。617 成为用于 750 ℃ 锅炉构件的首选材料之一^[7-9]。617B 是 617 合金的硼改 进型,是在 617 合金基础上严格控制主要元素成分,并 添加了 B 元素而得来,从而提高了合金的抗蠕变性能^[10]。 已有研究表明,617B 合金具有很高的抗疲劳强度和良 好的焊接性能^[2]。617B 合金在 700 ℃/100 000 h 时效后 比传统的 617 合金的蠕变断裂强度高 25%^[8],表明 B 的添加使材料的蠕变性能有显著的提高。

因 617B 合金需在严苛的服役条件下经受高温高压 环境的考验,因而其组织稳定性的考察结果对合金能否 最终作为 700 ℃超超临界电站材料至关重要,为此本 工作对617B合金720 ℃/10 000h长期时效实验进行详 细研究,并辅以800、850 ℃时效条件下组织演变情况, 对合金的组织演变规律、硬度变化进行比对、综合分析, 以期为700 ℃超超临界电站选材提供参考。

1 实 验

实验用 617B 合金是通过真空感应熔炼(VIM) 加保护气氛电渣重熔(ESR)的双联工艺冶炼后经过 均匀化处理、开坯锻造、热挤压、冷轧、固溶处理后 得到的合金成品管,其成分如表1所示。617B 成品管 显微组织如图1所示。由图可知,经过固溶处理所得 的成品管晶粒为等轴晶;由于合金成品管经过多道次 冷轧及退火处理晶粒存在一定的不均匀性,晶粒尺寸 在 100~200 μm。成品管晶界有不连续的碳化物,EDS 能谱显示晶界碳化物主要含有 Cr、Mo,结合已有报 道^[11,12],该碳化物主要为(Cr, Mo)₂₃C₆。成品管中晶粒 内部存在弥散的析出相,主要分为 2 类:黑色的块状 相为富 Ti、C、N 的 Ti(C, N),白色的细小颗粒为富 Cr、Mo 的(Cr, Mo)₂₃C₆,组织观察结果表明 617B 合金 成品管中无 γ'相存在。

为全面研究 617B 合金在时效过程中组织和性能 演变,对其进行了 50 h 不同温度(640、700、760、

表 1 617B 合金化学成分

Ta	ble 1	Chemica	l com	positio	ns of 6	17B allo	y (ω/%	ó)
С	Cr	Co	Mo	Ti	Al	В	Si	Ni
0.057	22.05	11.72	9.0	0.46	1.44	0.001	0.02	Bal.

收稿日期: 2015-04-20

基金项目:国家高技术研究发展计划("863"计划)(2012AA03A501)

作者简介: 江 河, 女, 1988 年生, 博士生, 北京科技大学材料科学与工程学院, 北京 100083, 电话: 010-62332884, E-mail: jianghe17@sina.cn

10 µm

<u>200 µ</u>m

Fig.1 Microstructures of a finished tube of alloy 617B: (a) OM image, (b) SEM image of grain boundary, and (c) SEM image of intragranular precipitations

820、880 ℃)时效和 720、800、850 ℃不同时间时 效,对时效后的试样进行 SEM 观察和硬度测试。SEM 观察试样采用金相砂纸逐级打磨至 2000#后抛光,使 用 170 mL H₃PO₄ + 10 mL H₂SO₄ + 15 g Cr₂O₃混合溶 液电解侵蚀。

2 实验结果

2.1 时效温度对合金影响

为研究时效温度对合金组织和性能的影响,对 617B 合金成品管进行不同温度的 50 h 时效,时效温 度分别为 640、700、760、820、880 °C,时效后的显 微组织如图 2 所示。由图可知,640 °C时效后合金组 织无明显变化;700 和 760 °C时效后在晶界附近出现 网格状组织。对比 617 合金时效的报道可知,一般认 为 617 合金的晶内析出相为碳化物,但近来有文献[11, 12]报道该组织为 δ 相。研究^[11,12]发现,在 617 合金 700 °C蠕变实验中应力加载区和无应力加载区在实验 后均有 δ 相析出; δ 相从晶界开始形成并呈拉链状向 晶内延伸,其周围的位错缠结表明该相是一种强化相; 但在 800 °C蠕变实验中未发现 δ 相; TEM 分析显示 617 合金中的 δ 相结构为 δ -Ni₃Mo。Cabibbo 等 ^[11,12] 经过进一步研究发现 y'相在晶界和 δ 相附近数量减少, y'相和 δ 相的形成相互影响:δ 相的形成造成局部贫 Ni 使 y'相的数量减少; y'相的形成则导致基体中贫 Ni 富 Mo,当 Mo 的含量富集到一个临界值时δ相开始形 成。借鉴 617 合金的此种机制经分析认为 617B 合金 在 800 ℃长期时效过程中无δ相形成可能是因为该温 度下扩散系数提高使 Mo 的偏析程度降低且该温度下 y'相数量较少,该条件不利于δ 相的析出。由图 2 可 知在 820 和 880 ℃时效后的试样中无网格状组织, 820 ℃时效后有大量的碳化物析出,880 ℃时效后的 晶内碳化物数量减少,但析出相明显长大。研究表明 617 合金中碳化物在 871 ℃时析出最快^[13],当温度低 于 871 ℃时碳化物快速析出,当高于此温度时,碳化 物以长大为主。

10 µm

617B 合金 50 h 时效后的 y'相形貌如图 3 所示。
由图可知,640 ℃时效时基体中有细小弥散的 y'相析出;当温度升高到 700 ℃时, y'相有所长大,820、
880 ℃经 50 h 时效后未观察到 y'相。617B 合金的相图见文献[14],617 合金的 TTT 曲线如图见文献[15]。
结合 617 合金的 TTT 曲线可以看出,700 ℃处于 y'相析出的鼻尖温度,时效 50 h 后基体中有大量弥散细小

图 2 617B 合金不同温度时效 50 h 后的 SEM 照片

Fig.2 SEM images of alloy 617B after aging for 50 h at 640 °C (a), 700 °C (b), 760 °C (c), 820 °C (d), and 880 °C (e)

图 3 617B 合金不同温度时效 50 h 后的 y'形貌 Fig.3 Microstructures of y' precipitation for alloy 617B after aging for 50 h at 640 ℃ (a), 700 ℃ (b), and 760 ℃ (c)

y'相存在。合金中相的析出是热力学和动力学相结合的结果,617B 合金中 y'相的回溶温度为 857 ℃,因此 880 ℃时效过程中未观察到 y'相。

通过以上分析可知,617B 合金时效过程中的组织 变化是热力学和动力学相结合的结果,50h 时效过程 中当时效温度较低(低于 820 ℃)时合金主要析出相 为γ'相和δ相,当时效温度过高(升高至 820 ℃)时 合金中无γ'相析出,晶内主要析出相为粗化的碳化物。 2.2 720 ℃时效组织演变

由以上分析可知, 617B 合金中相的析出受温度的 影响很大,超超临界锅炉电站用高温合金需在高温高 压下长期服役,因此时效时间对合金组织和性能的影 响具有重要的研究意义。为研究时效时间对合金组织 和性能的影响,对 617B 合金进行了 720 ℃时效。 720 ℃时效实验分为 30 h 短期时效和 10 000 h 长期时 效 2 组。短期时效主要为观察时效初期相的析出情况。 617B 合金在 720 ℃短期时效过程中的 SEM 形貌和 γ' 相形貌分别如图 4、图 5 (图中黑色侵蚀坑为晶内碳化 物脱落所致)所示。由图可知,在 720 ℃短期时效开 始阶段,晶内存在弥散的碳化物强化相,当时效时间 延长到 3 h 时,晶界附近开始出现拉链状的 δ 相向晶 内延伸,8h后其形貌保持稳定。γ′相在时效初期即开 始析出,但是体积较小对基体的强化效果有限,当时 效时间延长到8h时,γ′相有所长大,强化作用增强。

为考察合金在长期时效过程中的组织稳定性,对 617B 合金进行了 720 ℃的长期时效实验,时效后的 显微组织如图 6 所示。在长期时效初期,合金的晶界 碳化物和晶内析出相无明显变化,晶内主要为拉链状 向晶内延伸的析出相,当时效时间延长至 10 000 h 时 晶内析出相由规则排布的拉链状转变为杂乱无章的亮 白色析出相。时效 4 000 h (图 6b)后,在晶界附近出 现块状相,在 SEM 下观察呈灰色,与亮白色的晶界碳 化物存在明显差异。对其进行 EDS 能谱分析,结果表 明该相主要由 Cr、Co、Ni、Mo 4 种元素组成,且元 素比例与相图计算结果中 μ 相相符 (如表 2 所示)。随 着时效时间的延长,该相的数量增多,均集中在晶界 附近,在晶内未发现该相。由于灰色析出相的出现, 原有晶界碳化物的连续性降低,在亮白色晶界碳化物 中掺杂有灰色析出相。

617B 合金 720 ℃长期时效过程中 y'相形貌如图 7 所示。由图可知 y'相随着时效时间的延长逐渐长大, 时效初期 y'相呈规则的球状析出,时效至 7000 h 时,

b

图 4 617B 合金 720 ℃短期时效后 SEM 照片

Fig.4 SEM images of alloy 617B after aging at 720 $\,^\circ\!C$ for 1 h (a), 3 h (b), and 8 h (c)

图 5 617B 合金 720 ℃短期时效后 y'形貌

Fig.5 Microstructures of γ' precipitation of alloy 617B after aging at 720 °C for 0.5 h (a), 1 h (b), and 8 h (c)

Fig.6 SEM images of alloy 617B after aging at 720 $\,\,^\circ\!\!\mathbb{C}\,$ for 100 h (a), 4000 h (b), and 10 000 h (c)

y'相向不规则形状转化,其长大趋势明显。在 720 ℃ 长期时效过程中 617B 合金 y'相的析出长大趋势明显, 与己有的研究^[16]有所不同,这主要是由于本研究中 617B 合金的 Al、Ti 2 种 y'相形成元素含量较高。高的 Al、Ti 含量对时效初期 y'相的析出有利,但随着时效 时间延长, y'相的稳定性下降。因此,在 617B 合金中 需严格控制 Al、Ti 元素含量和比例,使 y'相的析出长 大控制在较稳定范围内。

表 2 晶界析出相成分

 Table 2
 Chemical components of precipitations on grain

bou	undary ($\omega/%$			
Element	Cr	Со	Мо	Ni
Calculation result of thermo-scale	17.0	18.7	44.8	19.5
Result of EDS	14.65	17.02	41.62	26.72

图 7 617B 合金 720 ℃时效后 y'相形貌

Fig.7 Microstructures of γ' precipitation of alloy 617B after aging at 720 °C for 30 h (a), 2000 h (b), and 7000 h (c)

720 ℃时效实验表明,在时效初期合金组织稳定, 在长期时效后期 617B 合金的组织稳定性下降,主要 体现在 y'相稳定性下降,晶界上有害相析出。

2.3 800 和 850 ℃高温时效组织演变

根据前文所述,当时效温度较高时,617B 合金中 相演变规律与低温时明显不同,因此选取 2 个高温段对 合金进行 800 ℃/2000 h 和 850 ℃/100 h 时效,以研究 高温对组织演变的影响。800 ℃时效后的显微组织和 y' 相形貌如图 8、图 9 所示。由图可知,时效至 500 h 时 晶界附近仍有条带状的析出物,但其规律性较 720 ℃ 时效时弱;当时效时间延长到 1000 h 后晶界附近析出 相变成杂乱状分布。由图 9 可知,时效 500 h 时 y'相形 状已经有所变化,617B 合金中 y'相的耐高温性能较差, 随着温度升高 γ'相的长大趋势增加,稳定性减弱。

850 ℃短期时效过程中未观察到γ相析出,结合 617B 合金相图可知, γ'相的回溶温度是 857 ℃,在 850 ℃时 γ'相可能发生了回溶。时效后的显微组织如 图 10 所示。由图可知时效初期晶界附近仍有大量条带 状析出相,但时效 17 h 后转变为杂乱状析出,结合已 有文献及以上分析可知,该析出相有别于传统观点中 的碳化物,该相的鉴定及其具体性质有待进一步研究。

617B 合金高温时效结果表明,合金在高温时效过 程中 γ'相快速粗化,当温度升高至 850 ℃,时效至 100 h 仍未观察到 γ'相;晶内拉链状析出相随着时效时间 的延长和温度的升高转变为杂乱的颗粒状析出。

图 8 617B 合金 800 ℃时效后显微组织

Fig.8 SEM images of alloy 617B after aging at 800 °C for 30 h (a), 500 h (b), 1000 h (c), and 2000 h (d)

图 9 617B 合金 800 ℃时效后 y'相形貌

Fig.9 Microstructures of γ' precipitation of alloy 617B after aging at 800 °C for 2 h (a), 30 h (b), and 500 h (c)

图 10 617B 合金 850 ℃时效后显微组织

3 结果与讨论

3.1 时效过程硬度变化规律

合金时效过程中在组织发生变化的同时其性能也 有所改变,合金的性能是其组织变化情况的直观反映。 617B 合金在不同温度下时效 50 h 后的硬度如图 11 所 示。合金硬度在 700 ℃时出现峰值,之后下降。合金 硬度下降是由 γ'相和晶内析出相的演变共同决定的。 结合 γ'相形貌(图 3)和 617 合金的 TTT 曲线可以看 出,700 ℃时 γ'相大量弥散析出,起到很好的强化作 用,合金硬度上升。随着温度的升高,γ'相的稳定性 下降,形状不规则,排列的规整度下降。此外,820、 880 ℃时无 δ 相,强化作用减弱;且碳化物在 880 ℃ 时数量减少,尺寸增加。因此 880 ℃时合金硬度低于 820 ℃。

617B 合金 720 ℃短期时效后的硬度变化如图 12 所示。由图可知,时效初期合金硬度迅速上升,在时 效 8 h 后保持稳定。结合前文分析可知,短期时效过 程中晶内析出相基本保持稳定,y'相在时效初期快速 析出,8h 后尺寸保持稳定。由此可见合金时效过程中 硬度变化是由其组织演变规律所决定的。合金中各析 出相的综合作用,使 617B 合金硬度在 720 ℃短期时 效过程中逐渐保持稳定。

合金的性能与组织密切相关,不同时效条件下的 617B 合金硬度变化如图 13 所示。由图可知,合金硬 度主要受到时效温度和时效时间的影响,其中时效温 度的影响最大。720 ℃时合金硬度最高,当时效温度 升高到 800 ℃时合金硬度迅速下降,850 ℃时合金硬 度继续下降,但下降幅度较小。结合时效组织分析可 知,不同时效温度下,γ'相的变化最大:720 ℃下有 较多的γ'相呈规则态析出,起到了较好的强化作用;

图 11 617B 合金不同温度下时效 50 h 后的硬度变化 Fig.11 Variation of hardness for alloy 617B after aging at

different temperatures for 50 h

图 12 617B 合金 720 ℃短期时效硬度变化

800 ℃虽然也有 y'相的析出,但是组织均匀性下降, 强化作用减弱; 850 ℃下基本无 y'相析出,硬度继续 下降。因此,在 617B 合金中硬度的变化主要受到 y' 相析出规律的影响。

由于 617B 合金时效硬度变化的主要影响因素是 y'相的析出长大,因此绘制 720 ℃时效过程中 y'相尺 寸变化与合金硬度变化规律如图 14 所示。由图可知, 时效初期,由于元素的扩散系数较大,y'相的尺寸迅 速增大,初期 y'相与基体保持着较好的共格关系,对 合金起到了强化作用。之后随着 y'相尺寸的稳定,合 金的硬度也趋于稳定,硬度变化趋势与 y'相的尺寸变 化趋势大体相同。

由以上分析可知,617B 合金在时效过程中硬度变 化与组织演变规律密切相关, y'相和晶内析出相共同 决定了合金硬度变化规律,其中 y'相析出长大规律对 合金硬度的影响最为显著。

3.2 y'相粗化机制

图 14 617B 合金 720 ℃时效硬度和 y'相尺寸随时效时间变化 Fig.14 Variation of hardness and size of y' phase for alloy 617B with time when aging at 720 ℃

由于 617B 合金的硬度变化与 γ'相的粗化过程密 切相关,因此对 γ'相的粗化行为进行研究。目前,γ' 相的粗化行为主要可用 2 种粗化机制描述:(1) 扩散控 制的粗化机制,γ'相平均半径与时效时间满足立方关 系,即传统的 L-S-W 理论^[17];(2) 界面控制的粗化机 制,其粗化关系服从平方关系^[18]。将 720 和 800 ℃时 效过程中的 γ'相平均半径与时效时间的关系以 2 种粗

图 15 720 和 800 ℃时效温度下的 r²-t 与 r³-t 曲线

Fig.15 Curves of r^{2} -t (a) and r^{3} -t (b) for alloy 617B aged at different temperatures

化机制的形式表示于图 15 中。由图可知, y'相的粗化 用立方关系拟合的结果优于用平方关系拟合的结果。 因此,617B 合金中 y'相的粗化符合传统的 L-S-W 理论。

综上所述,对 617B 合金在不同时效温度、时效 时间下的组织、性能变化进行了详细阐述和比对,研 究表明:时效过程中 617B 合金析出相主要为 γ'相、 碳化物和晶内析出相,晶内析出相 720 ℃时效和高温 短期时效状态下呈现规则的拉链状分布并向晶内延 伸,但随着时效时间的延长和时效温度的升高其稳定 性下降,有关该相的种类及其对合金性能的影响有待 进一步研究;合金的性能变化与组织演变密切相关, 其硬度主要受 γ'析出规律的影响;617B 合金 10 000 h 长期时效末期组织稳定性下降;控制合金中 Al、Ti 含量对 γ'相的稳定性至关重要。

4 结 论

 617B 合金在 720 ℃长期时效过程中有 γ'相析 出,随着时效时间的延长和时效温度的升高,γ'相的 稳定性下降,其粗化符合传统的 L-S-W 粗化理论;高 Al、Ti 含量使 617B 合金长期时效后 γ'相稳定性下降, 因此需严格控制合金中 Al、Ti 含量。

2) 617B 合金的力学性能与组织密切相关, γ'相的 析出对硬度的影响效果明显, 720 ℃时效过程中由于 γ'相的析出,硬度随时效时间的延长而升高,当时效 温度过高时 γ'相的析出量减少合金硬度下降。

3) 617B 合金长期时效后晶界上有 μ 相析出,时效 过程中晶内出现大量拉链状向晶内延伸的析出相,其 结构、性能有待进一步研究。

参考文献 References

- [1] Holcomb G R, Moroz M Z, Bullard S J et al. Advances in Materials Technology for Fossil Power Plants: Proceedings of the Fourth International Conference[C]. Huston: NACE International, 2005
- [2] Viswanathan R, Henry J, Tanzosh J et al. J Mater Eng Perform[J], 2005, 14: 281
- [3] Fukuda M, Sone H, Saito E. Proceedings of the 5th Conference on Advances in Material Technology for Fossil Power Plants[C]. Florida, Ohio: ASM International, 2008
- [4] Bugge J, Kjær S, Blum R. Energy [J], 2006, 31(10): 1437
- [5] Ennis P, Czyrska-Filemonowicz A. Sadhana[J], 2003, 28(3-4): 709
- [6] Hosier J, Tillack D. Met Eng Q[J], 1972, 12(3): 51

- [7] Viswanathan R, Coleman K, Rao U. Int J Pres Ves Pip[J], 2006, 83 (1): 778
- [8] Viswanathan R, Sarver J, Tanzosh J. J Mater Eng Perform[J], 2006, 15: 255
- [9] Starr F, Shibli I. Parsons Advanced Materials for 21st Century Turbines and Power Plant [C]. London: IOM Communications, 2000
- [10] Klöwer J, Husemann R, Bader M. Procedia Engineering[J], 2013, 55: 226
- [11] Cabibbo M, Gariboldi E, Spigarelli S et al. J Mater Sci[J], 2008, 43(8): 2912
- [12] Gariboldi E, Cabibbo M, Spigarelli S et al. Int J Pres Ves Pip[J], 2008, 85(1): 63

- [13] Mankins W, Hosier J, Bassford T. *Metall Trans*[J], 1974, 5(12): 2579
- [14] Jiang He (江 河), Dong Jianxin (董建新), Zhang Maicang (张麦仓) et al. Journal of University of Science and Technology Beijing(北京科技大学学报) [J], 2014, 36(6):795
- [15] Wu Q, Song H, Swindeman R W et al. Metall Mater Trans A[J], 2008, 39 (11): 2569
- [16] Guo Yan, Wang Bohan, Hou Shufang. Acta Metall Sinica[J], 2013, 26 (3): 307
- [17] Lifshitz I M, Slyozov V V. J Phys Chem Solids[J], 1961, 19(1): 35
- [18] Ardell A J, Ozolins V. Nat Mater[J], 2005, 4(4): 309

Microstructure Evolution during Aging of Alloy 617B for 700 °C Ultra-Supercritical Boiler Pipe

Jiang He, Dong Jianxin, Zhang Maicang, Yao Zhihao (University of Science and Technology Beijing, Beijing 100083, China)

Abstract: The microstructure stability and mechanical properties of alloy 617B after 720 °C/10 000 h, 800 °C/2000 h and 850 °C/100 h aging and short term aging at different temperatures were studied. The results show that the microstructure stability of alloy 617B after aging at 720 °C for 10,000 h is relatively poor, γ' phase coarsens and harmful phase precipitates on grain boundary. Aging temperature has an impact on the microstructure stability of alloy 617B. γ' phase coarsens rapidly with the increasing of aging temperature and the intragranular precipitates are transferred. The hardness of alloy 617B is mainly influenced by the precipitation rule of γ' phase. There are zipper-like precipitates in grains during 720 °C aging while the structure of phase needs further study.

Key words: ultra-supercritical; aging; microstructure stability

Corresponding author: Jiang He, Candidate for Ph. D., School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China, Tel: 0086-10-62332884, E-mail: jianghe17@sina.cn