Zr-Cr-Cu 三元系 700 ℃等温截面

张 敏^{1,2},欧阳义芳²,袁改焕³,唐轶媛¹,祝金明¹,沈剑韵³,梁建烈¹

(1. 广西民族大学,广西 南宁 530006)(2. 广西大学,广西 南宁 530004)(3. 国核宝钛锆业股份公司,陕西 宝鸡 721014)

摘 要:利用 X 射线粉末衍射法(XRD),扫描电子显微镜(SEM)和能谱分析(EDX)等方法测定了 Zr-Cr-Cu 三元系 700 ℃ 等温截面。 结果表明,此截面由 10 个单相区、18 个两相区和 9 个三相区组成。第 3 组元 Cr 的加入,导致高温 CuZr 相共 析分解温度下降,在 700 ℃时形成稳定的三元相 τ。研究确定体系中富锆角和富铜角不存在三元化合物。富锆区合金由 ZrCr₂、 (α-Zr)和 CuZr₂ 3 相构成。富铜区合金由 Cr、Cu 和 Cu₅Zr 3 相构成。

关键词:相图; Zr-Cr-Cu; 等温截面

中图法分类号: TG113 文献标识码: A 文章编号: 1002-185X(2016)05-1240-05

锆合金具有优良的抗辐射、抗腐蚀以及良好的高温 力学性能,用于核反应堆燃料棒的包壳材料^[1]。锆合金 包壳内部受到强烈辐射,外部是高温高压水,容易出现 水侧腐蚀、氢脆、蠕变、疲劳等影响使用寿命的问题。 锆合金热轧温度一般为 650~700 ℃,在 Zr-4 合金 (Zr-1.5%Sn-0.2%Fe-0.1%Cr)中添加 Cr 和 Cu 元素可 以有效地增加锆合金的耐腐蚀性能^[2,3]。近年的研究发 现,锆合金中加入微量的合金元素 Cu(如韩国开发的 HANA6 合金)和微量的 Cr,可以有效改善锆合金的抗 腐蚀性能^[4]。Zr-Cr-Cu 体系铜合金具有高强度及良好的 导电导热性能,广泛地应用于制备电阻焊电极、触头材 料、集成电路引线框架等^[5]。

Zr-Cu 二元体系存在 6 个二元合金化合物^[6],分别 为: CuZr₂, Cu₁₀Zr₇, CuZr, Cu₈Zr₃, Cu₅₁Zr₁₄, Cu₅Zr。 其中 B2 结构的 CuZr 为高温相,在 730 ℃时发生共析 分解。Liu 等^[7]研究了 CuZr 合金热处理过程的相变,认 为 CuZr 相在 712 ℃时分解为 Cu₈Zr₃和 Cu₁₀Zr₇。Zr-Cr 二元体系存在 1 个中间化合物 ZrCr₂^[8],该化合物为立 方结构,晶格常数 a = 0.7210 nm。Cr-Cu 二元体系相图 不存在任何中间化合物^[9]。

Glazov^[10]和 Zakharov 等^[11]曾经研究 600~1200 ℃, Zr-Cr-Cu 体系富铜角的相关系(Zr 和 Cr 的含量小于 3.5%)。他们确定,该合金系在 940 ℃存在 Cr+ZrCr₂+Cu, Cr+ZrCr₂+L(液相)和 Cu+L+Cu₃Zr 等三相平衡共存现 象。Fedorov^[12]和 Kawakatsu 等^[13]随后研究了 Zr-Cr-Cu 体系富铜角相关系 (Cr 含量 \leq 5%, Zr 含量 \leq 20%)。他 们发现,该合金体系存在 Cu+Cr+Cu₃Zr 的三相区,未 观察到 Cu+ZrCr₂ 共存的现象。1995 年, Zeng 和 Hamalainen^[14]重新研究了 Zr-Cr-Cu 体系富铜区相关系, 发现 Zr-Cr-Cu 体系存在 Cr+Cu+Cu₅Zr 的三相平衡共存。

综上所述,对 Zr-Cr-Cu 三元合金体系富铜区平衡 相关系,不同的研究者,有不同的结论。迄今为止,尚 未发现有全成分范围的 Zr-Cr-Cu 三元合金相关系的公 开文献报道。对 Zr-Cr-Cu 体系相图的研究,将为澄清 Zr-Cr-Cu 合金的平衡析出相,解释相关锆合金的相变过 程,控制锆合金第二相析出,建立面向计算辅助设计的 新型锆合金热力学数据库提供基础数据。

1 实 验

实验用原料为纯度分别为 99.8% 核级海绵铣、 99.95%铬和 99.95%铜。每个合金样品总质量为 2 g。合 金在氩气保护下进行真空电弧熔炼。为保证合金成分均 匀,每个合金样品至少熔炼 3 次。熔炼后,将所熔铸锭 从熔炼炉中取出,剪成小块,然后再次熔炼,确保样品 成分均匀。完成合金制备后,将样品封入真空石英玻璃 管中进行均匀化退火。热处理温度参考 Zr-Cu 二元合金 相图的相关相变温度确定。首先将样品置于 850 ℃均匀 化退火 20 d,然后再以 10 ℃/h 的速率降到 700 ℃保温

收稿日期: 2015-05-16

基金项目: 广西自然科学基金(2011GXNSFA018030, 2013GXNSFAA019315); 国家自然科学基金(51301045); 广西高校优秀人才资助计 划项目

作者简介:张 敏,男,1989年生,硕士,广西大学物理科学与工程技术学院,广西 南宁 530004,电话:0771-3262510, E-mail: 277601856@ qq.com

30 d,最后将试样置于冷水中快速淬火。

经过以上处理后的合金样品分成两部分。其中一部分合金样品用于 X 射线衍射仪分析,另一部分合金 样品用于金相分析,扫描电镜,能谱分析。物相分析是 用 XD-3 型(北京普析) X 射线衍射仪进行,辐射源为 Cu Ka,工作电压为 40 kV,工作电流为 30 mA,扫描 速度选择 2 %min,扫描角度 2*θ*=20 ~80 °。金相分析首 先使用常规的光学显微镜对金相试样的组织形貌进行 观察,结合 X 射线分析结果选择合适的合金,进行扫 描电子显微镜分析。扫描电镜分析是在 Zeiss EVO18 扫 描电镜上进行,成分分析所用能谱仪为布鲁克能谱仪 (EDX)。

2 结果与讨论

利用 X 射线衍射分析 (XRD), 扫描电镜 (SEM) 和能谱分析等实验方法对样品进行分析,获得的部分合 金试样实验结果列于表 1。Zr-Cr-Cu 体系合金不易制成 粉末, XRD 分析所用试样为块状样品。根据表 1 的数 据,绘制出 Zr-Cr-Cu 三元系 700 ℃等温截面相图,如 图 1 所示。图 1 中三角形 (Δ)表示三相区域,圆点 τ 表示基于 CuZr 二元化合物的三元相。

图 2a 和 2b 分别为 3#合金 Zr55Cr15Cu30 的 X 射线衍 射图谱和扫描电子显微镜背散射电子照片(BSE)。3#合 金的 X 射线衍射可清晰标定为 ZrCr₂、CuZr₂两相。进 一步的扫描电镜分析发现, 3#合金由 3 相组成, 如图 2b 所示。根据成分分析的结果(见表 1)可判别,深黑色 相为 $ZrCr_2$,浅灰色基体相为 $CuZr_2$ 。标为 τ 的灰色相, 其成分为 Zr_{51.3}Cr_{1.6}Cu_{47.1},与 CuZr 成分接近。4#合金和 8#合金也能观察到类似的结果。图 3a 和 3b 分别为 8# 合金 Zr₅₀Cr₃₀Cu₂₀ 和 4#合金的 Zr₄₅Cr₁₅Cu₄₀ 扫描电镜背 散射电子照片。能谱分析结果表明,8#合金含有 ZrCr2, CuZr₂和成分为Zr_{49.5}Cr_{2.0}Cu_{48.5}的物相;4#合金由ZrCr₂, Cu10Zr7和成分为Zr48.2Cr2.4Cu49.4的物相构成。3#合金的 τ, 8#合金的 Zr_{49.5}Cr_{2.0}Cu_{48.5}相, 4#合金的 Zr_{48.2}Cr_{2.4}Cu_{49.4} 物相,其成分均与 CuZr 接近。X 射线衍射发现,无论 3#、8#合金,还是4#合金,扣除其中已标定的X射线 衍射峰以后,剩余的衍射峰均能被 CuZr 所标定。因此, 作者确定,高温存在的 CuZr 相,在 700 ℃以三元相的 形式出现。根据 Zr-Cu 二元相图^[6], CuZr 相在 730 ℃时 共析分解为 CuZr₂ 和 Cu₁₀Zr₇。当考虑温度这一变量, 三元合金相图为三棱柱立体模型,加入第3组元时,随 着温度降低,二元共晶点会变成为共晶线。对于共析点 也会有类似的结果。因此,在 700 ℃下 Zr-Cr-Cu 体系 出现基于 CuZr 二元化合物的三元相 τ 是合理的。因而, 也可以确定 Zr-Cr-Cu 体系中存在 ZrCr₂+CuZr₂+τ, $ZrCr_2+\tau+Cu_{10}Zr_7$ 和 $\tau+CuZr_2+Cu_{10}Zr_7$ 3个三相区。

表 1 Zr-Cr-Cu 三元合金 X 射线衍射和扫描电镜分析结果 Table 1 Analysis of Zr-Cr-Cu alloys by XRD and SEM/ EDX (at%)

NT.	Nominal			EDX			Phase	EDX			
No.	Zr	Cr	Cu	Zr	Cr	Cu	identified	Zr	Cr	Cu	
1#	75	15	10	75.3	16.4	8.3	CuZr ₂	67.4	0.2	32.4	
							ZrCr ₂	35.4	63.4	1.2	
							α-Zr	99.1	0.3	0.6	
2#	65	15	20	61.9	17.1	21.0	CuZr ₂	66.0	0.2	33.8	
							α-Zr	98.7	0.2	1.1	
							ZrCr ₂	35.4	62.4	2.2	
3#	55	15	30	56.9	16.4	26.7	CuZr ₂	66.0	0.5	33.5	
							ZrCr ₂	35.0	61.2	3.8	
							τ	51.3	1.6	47.1	
4#	45	15	40	43.7	15.4	40.9	τ	48.2	2.4	49.4	
							$Cu_{10}Zr_7$	39.8	0.9	59.3	
							ZrCr ₂	34.9	59.7	5.4	
5#	35	15	50	28.9	16.2	54.9	Cu ₈ Zr ₃	26.6	0.1	73.3	
							$Cu_{10}Zr_7$	41.8	0.1	58.1	
							ZrCr ₂	36.9	56.8	6.3	
6#	20	15	65	19.9	10.2	69.9	$Cu_{51}Zr_{14}$	20.8	0.3	78.9	
							Cr	0.6	96.8	2.6	
							ZrCr ₂	29.4	65.2	5.4	
7#	10	15	75	10.1	18.6	71.3	Cu ₅ Zr	15.0	1.0	84.0	
							Cu	0.4	0.9	98.7	
							Cr	0.0	98.1	1.9	
8#	50	30	20	47.3	32.5	20.2	ZrCr ₂	32.7	64.1	3.2	
							CuZr ₂	62.9	0.2	36.9	
							τ	49.5	2.0	48.5	
9#	20	30	50	18.1	34.6	47.3	Cr	0.0	98.6	1.4	
							$Cu_{51}Zr_{14}$	22.0	0.6	77.4	
10//	50	10	10		07.0	10.0	ZrCr ₂	31.4	64.8	3.8	
10#	50	40	10	52.2	37.8	10.0	$CuZr_2$	68.0	31.0	1.0	
							$ZrCr_2$	34.8	63.7	1.5	
114	20	40	40	21.2	25.0	42.0	α-Zr	99.2	0.3	0.5	
11#	20	40	40	21.2	35.8	43.0	Cu Zr	0.0	99.1	0.9	
							$Cu_{51}Zr_{14}$	22.4	1.2	/0.4	
12#	20	50	20	10.0	526	27.4	$LICI_2$	52.0	02.0	4.4	
12#	20	50	50	19.0	55.0	27.4	7rCr	20.4	50.5 66 A	0.0 4 2	
							C_{1} C_{2}	29.4	25	4.2	
12#	20	60	20	176	65 6	169	$Cu_{51}ZI_{14}$	20.0	2.5	10.9	
15#	20	00	20	17.0	05.0	10.8	ZrCr.	22.1	57.4 62.0	4.0	
							Cu_{2}	22.0	2.9	4.0	
1/#	20	70	10	10.8	71.1	0.1	$7rCr_{2}$	31.0	2.0 67.1	10	
147	20	70	10	19.0	/1.1	9.1	Cu_{2}	22.8	3.4	73.8	
							Cr	0.1	99 3	0.6	
15#	15	20	65	14.0	22.6	634	Cuar	19.1	0.8	79.9	
1011	15	20	00	1 1.0	22.0	05.4	$C_{11}Zr$	16.7	13	82.0	
							Cr	0.0	97.9	2.1	
							01	0.0	1		

图 4 为 7#合金 Zr₁₀Cr₁₅Cu₇₅ 扫描电镜背散射照片 (BSE)。7#合金为富铜区合金,根据能谱分析结果,黑 色相为 Cr,灰黑色相为 Cu,基体相为 Cu₅Zr。在合金 中未发现 ZrCr₂相,可确定富铜区域不共存 ZrCr₂与 Cu 平衡析出的现象。本实验结果与 Zeng 和 Hamalainen^[14]

图 1 Zr-Cr-Cu 三元系 700 ℃等温截面

Fig.1 Isothermal section of the Zr-Cr-Cu system at 700 °C

- 图 2 3#合金 Zr₅₅Cr₁₅Cu₃₀ 的 XRD 图谱及其扫描电镜背散射 电子照片
 - Fig.2 XRD pattern (a) and BSE image (b) of alloy 3#($Zr_{55}Cr_{15}Cu_{30}$)

的结果一致。可以得出结论,Zr-Cr-Cu 三元合金体系富 铜区域没有形成三元化合物,存在一个 Cr+Cu+Cu₅Zr 的三相区。

图 5 为 1#合金 Zr₇₅Cr₁₅Cu₁₀ 的 X 射线衍射图谱及其 背散射电子像(BSE)。图 5a 显示合金试样由 ZrCr₂、α-Zr 和 CuZr₂ 3 相组成;图 5b 的背散射电子照片中,黑色相 成分为 Zr_{35.4}Cr_{63.4}Cu_{1.2},对应为 ZrCr₂相;基体相成分 为 Zr_{99.1}Cr_{0.3}Cu_{0.6},为 α-Zr,灰色块状相成分为 Zr_{67.4}-Cr_{0.2}Cu_{32.4},对应为 CuZr₂。这个实验结果说明,在 Zr-Cr-Cu 三元合金体系富 Zr 区,在 700 ℃等温截面存在 1 个

- 图 3 8#合金 Zr₅₀Cr₃₀Cu₂和 4#合金 Zr₄₅Cr₁₅Cu₄₀的扫描电子 显微镜背散射电子照片
- Fig.3 BSE images of alloy $8\#\left(Zr_{50}Cr_{30}Cu_{20}\right)$ (a) and alloy 4# $\left(Zr_{45}Cr_{15}Cu_{40}\right)$ (b)

图 4 7#合金 Zr₁₀Cr₁₅Cu₇₅ 的背散射电子像 Fig.4 BSE image of alloy 7# (Zr₁₀Cr₁₅Cu₇₅)

包含 ZrCr₂+α-Zr+CuZr₂ 的三相区。根据这一结果可以推 测,在低锡 Zr-4 合金中加入 Cr 和 Cu 时,合金中只可 能存在 ZrCr₂ 和 CuZr₂ 的析出相,不可能出现 ZrCrCu 的三元化合物相。

图 6 为 5#合金 Zr₃₅Cr₁₅Cu₅₀ 和 14#合金 Zr₂₀Cr₇₀Cu₁₀ 的背散射电子像(BSE)。可以清晰地看到,2 个合金都 由 3 相组成。根据能谱分析结果,可以确定 5#样品由 ZrCr₂、Cu₁₀Zr₇和 Cu₈Zr₃相构成,14#样品由 ZrCr₂、 Cu₅₁Zr₁₄和 Cr 相构成。上述结果说明,Zr-Cr-Cu 体系中 存在 ZrCr₂+Cu₁₀Zr₇+Cu₈Zr₃和 ZrCr₂+Cu₅₁Zr₁₄+Cr 2 个三 相区。根据相邻相区合金点的实验结果,可以推测 Zr-Cr-Cu 体系中,存在 ZrCr₂+Cu₈Zr₃+Cu₅₁Zr₁₄三相平衡 共存的三相区。

图 5 1#合金 Zr₇₅Cr₁₅Cu₁₀ 的 XRD 图谱和背散射电子像 Fig.5 XRD pattern (a) and BSE image (b) of alloy 1# (Zr₇₅Cr₁₅Cu₁₀)

- 图 6 5#合金 Zr₃₅Cr₁₅Cu₅₀和 14#合金 Zr₂₀Cr₇₀Cu₁₀ 的背散射 电子照片
 - Fig.6 BSE images of alloy 5# $(Zr_{35}Cr_{15}Cu_{50})$ (a) and alloy $14\#\,(Zr_{20}Cr_{70}Cu_{10})\ (b)$

3 结 论

 在 700 ℃, Zr-Cr-Cu 三元系由 10 个单相区、18 个两相区和 9 个三相区组成。9 个三相区分别为 ZrCr₂+(α-Zr)+ CuZr₂, ZrCr₂+CuZr₂+τ, ZrCr₂+τ+Cu₁₀Zr₇, τ+CuZr₂+Cu₁₀Zr₇, ZrCr₂+Cu₁₀Zr₇+Cu₈Zr₃, ZrCr₂+Cu₈Zr₃+ Cu₅₁Zr₁₄, ZrCr₂+Cu₅₁Zr₁₄+(Cr), (Cr)+Cu₅₁Zr₁₄+Cu₅Zr, (Cr)+(Cu)+Cu₅Zr。

 在 Zr-Cr-Cu 体系中,当加入第3组元 Cr 时,体 系出现基于 CuZr 二元化合物的三元相 τ。并确定富铜 角由 Cr、Cu、Cu₅Zr 3 相构成和富锆角由 ZrCr₂、α-Zr 和 CuZr₂ 3 相构成。

致 谢:感谢国家能源核级锆材研发中心对本项目的资金支持。

参考文献 References

- [1] Arthur T M. JOM[J], 2011, 63(8): 63
- [2] Liu W Q, Li Q, Zhou B X et al. Journal of Nuclear Materials[J], 2005, 341(2): 97
- [3] Chakravartty J K, Dey G K, Banerjee S et al. Journal of Nuclear Materials[J], 1995, 218(2): 247
- [4] Prak J, Choi B, Jo-Yoo S et al. Journal of ASTM International[J], 2008, 5(5):1
- [5] Li Mingmao(李明茂), Yang Bin(杨 斌), Wang Zhixiang(王智祥). Special Casting and Nonferrous Alloys(特种铸造及有色合金)[J], 2005, 25(4): 252
- [6] Okamoto H. Journal of Phase Equilibria and Diffusion[J], 2008, 29(2): 204
- [7] Liu Z Y, Aindow M, Hriljac J A et al. Journal of Materials Science[J], 2002, 37(4): 745
- [8] Okamoto H. Journal of Phase Equilibria and Diffusion[J], 1993, 14(6): 768
- [9] Okamoto H. Journal of Phase Equilibria and Diffusion[J], 2012, 33(4): 342
- [10] Glazov V M, Zakharov M V, Stepanova M V. Izvestiya Akademii Nauk SSSR, Otdelinie Tekhnicheskikh Nauk[J], 1957, 9: 123
- [11] Zakharov M V, Stepanova M V, Glazov V M. Metallovedeniei Termicheskaya Obrabotka Metallov[J], 1956, 3: 23
- [12] Fedorov V N, Zakharov M V, Osintsev O E et al. Zhurnal Fizicheskoi Khimii[J], 1972, 46: 181
- [13] Kawakatsu I, Suzuki H, Kitano H. Journal of the Japan Institute of Metals[J], 1967, 31: 1253
- [14] Zeng K J, Hämäläinen M, Lilius K. Scripta Metallurgica et Materialia[J], 1995, 32(12): 2009

Isothermal Section of Zr-Cr-Cu Ternary System at 700 °C

Zhang Min^{1,2}, Ouyang Yifang², Yuan Gaihuan³, Tang Yiyuan¹, Zhu Jinming¹, Shen Jianyun³, Liang Jianlie¹

(1. Guangxi University of Nationality, Nanning 530006, China)

(2. Guangxi University, Nanning 530004, China)

(3. State Nuclear Bao Ti Zirconium Industry Company, Baoji 721014, China)

Abstract: The isothermal section of the Zr-Cr-Cu ternary system at 700 $^{\circ}$ C was investigated by X-ray diffraction, scanning electron microscope and energy dispersive analysis. The results show that the section is composed of 10 single-phase regions, 18 two-phase regions and 9 three-phase regions. The τ phase occurs as a stable ternary phase at 700 $^{\circ}$ C when Cr is introduced. No ternary compound is observed in the Zr-rich corner and Cu-rich corner. The alloys in Zr-rich corner consist of ZrCr₂, α -Zr and CuZr₂, while those in the Cu-rich corner consist of Cr, Cu and Cu₂Zr.

Key word: phase diagram; Zr-Cr-Cu; isothermal section

Corresponding author: Liang Jianlie, Ph. D., Professor, College of Science, Guangxi University of Nationality, Nanning 530006, P. R. China, Tel: 0086-771-3262510, E-mail: liangjl1971@126.com