# UF4在空气中热化学反应研究

# 仲敬荣,余春荣,邓辉,任一鸣

(中国工程物理研究院,四川 绵阳 621900)

摘 要:分别采用显微激光拉曼光谱(micro-laser Raman spectroscopy, MLRS)、X 射线光电子能谱(X-ray photoelectron spectroscopy, XPS)、称重及形貌观察等手段,开展了 UF4 在空气中的热化学反应实验,研究不同温度时效 UF4 质量、颜色及失重情况,获取反应前后不同铀化合物的 Raman 和 XPS 特征图谱。结果表明,UF4 在空气中加热至 200 ℃时,性质稳定,其拉曼光谱图基本无变化;但在 250 ℃以上,样品表面颜色发生明显变化,Raman 和 XPS 分析发现有 UO<sub>2</sub>、UO<sub>2</sub>F<sub>2</sub>、U<sub>3</sub>O<sub>8</sub>等多种铀化合物生成;随着温度升高,UF4 在空气中的化学反应速率呈现由快到慢的变化趋势。 关键词:UF4;拉曼光谱(Raman);X 射线光电子能谱(XPS);化学反应;空气 中图法分类号:TL211 文献标识码:A 文章编号:1002-185X(2016)12-3135-05

铀的卤化物是制备铀金属过程中的重要化合物,工 艺上最重要的方法是用镁或钙热还原铀的卤化物,其中 四氟化铀(UF<sub>4</sub>)是最常用的卤化物之一。早在 20 世 纪 60 年代,科学家们<sup>[1,2]</sup>对铀卤化物的制备、化学与物 理性质已有详细报道,并鉴定证明铀的氟化物主要有: UF<sub>3</sub>、UF<sub>4</sub>、U<sub>4</sub>F<sub>17</sub>、U<sub>2</sub>F<sub>9</sub>、UF<sub>5</sub>、UF<sub>6</sub>等。1999年, Walker 等<sup>[3]</sup>对氟化铀酰及其水合物的合成、结构和表征进行了 详细报道。宋维端等<sup>[4]</sup>对 UF4 和 UO2F2 与过热蒸汽作用 的动力学机理进行过调研,康仕芳和董晓雨等<sup>[5,6]</sup>对UF4 的制备和水解反应实验进行了研究。分子光谱法<sup>[7]</sup>主要 研究分子中以化学键联结的原子之间的振动光谱和分 子的转动光谱,利用特征谱带的频率,推断分子中可能 存在的基团或键,进而确定物质的化学结构。拉曼和红 外光谱法可看作研究分子能级间跃迁的互补方法,国内 外已有多个研究者利用激光拉曼、红外光谱等手段[8] 实时研究了金属铀<sup>[9-13]</sup>、铀合金<sup>[14]</sup>、铀氧化物<sup>[15,16]</sup>、铀 化合物[17]及其表面涂层[18]在不同温湿度和气氛条件下 的腐蚀反应,分析推断了各种腐蚀产物及其氧化膜的形 成过程, 表征出多种离线条件下无法检测到的中间产 物。 X 射线光电子能谱 (X-ray photoelectron spectroscopy, XPS)技术<sup>[19]</sup>也被称作用于化学分析的电 子能谱(electron spectroscopy for chemical analysis, ESCA),它可以给出固体样品表面所含的元素种类、化 学组成以及有关的电子结构重要信息,在各种固体材料 的基础研究和实际应用中起着重要的作用。但是, UF4 化学反应过程的分子光谱和 XPS 研究则较少见报道。

UF<sub>4</sub>中各物相的化学组成(如 UO<sub>2</sub>、UO<sub>2</sub>F<sub>2</sub>和 UC 等物质)和物理特性(如晶体结构、松装密度、粒度、 比表面积等)将影响钙热还原的反应特性,从而影响高 纯铀的纯化质量。因而,在充分调研并掌握 UF<sub>4</sub>物化 特性的基础上,分别采用显微激光拉曼光谱(micro laser raman spectroscopy,MLRS)和X射线光电子能谱(XPS) 分析技术,开展 UF<sub>4</sub>在空气中热化学反应的实验研究, 获取反应前后不同铀化合物的拉曼光谱和 XPS 特征 谱,可为UF<sub>4</sub>粉末制备工艺的优化和各工艺流程中不同 物质化学形态的研究提供技术方法和基础数据。

## 1 实 验

实验所用的 UF<sub>4</sub>样品来源于中核北方核燃料元件 有限公司。一般情况下,UF<sub>4</sub> 原料样品为翠绿色粉末 晶体(绿盐),密度 6.70 g/cm<sup>3</sup>,松装密度 2.0~4.5 g/cm<sup>3</sup>, 熔点 1 036 ℃,沸点 1 417 ℃,几乎不溶于水,属单 斜晶系,具有非挥发性及非吸水性。为便于实验研究, 需将一定量的 UF<sub>4</sub> 原料样品置于玛瑙研钵中研磨均 匀,并压制成一定厚度(<1 mm)的片状,从而确保 UF<sub>4</sub>实验样品表面平整,颗粒分布均匀。

在(25±5)℃,相对湿度 50%~60%下,用感量为 0.01 g的电子天平准确称取一定量的 UF4 片状样品, 置于马弗炉中分别进行不同温度点和时间段的实验, 马弗炉自带的热电偶温控系统调节样品反应所需的温 度或进行程序升温。UF4 样品经过不同温度时效之后 自然降至室温,准确称重。首先在 XploRA 型激光拉

收稿日期: 2015-12-15

**基金项目**:国家安全某重大基础研究项目资助

作者简介: 仲敬荣, 女, 1975 年生, 硕士, 副研究员, 中国工程物理研究院, 四川 绵阳 621900, 电话: 0816-3626997, E-mail: zhongjingrong@caep.cn

曼光谱仪配备的 BX41 奥林巴斯显微镜上进行表面形 貌观察,同时进行拉曼光谱扫描分析; 然后送至 XPS 真空室,采用 X 射线光电子能谱分析 UF<sub>4</sub>在不同温度 时效后样品表面元素的组成及价态。

采用法国 Horiba jobin yvon 公司 XploRA 型显微 激光拉曼光谱仪,配备有 532、638、785 nm 3 种不同 波长的激发光源,BX41 奥林巴斯显微镜对 UF<sub>4</sub> 样品 进行表征。分析参数为:扫描范围 50~4 000 cm<sup>-1</sup>,激 发波长 532 或 638 nm,激光功率 $\leq$  25%或 10%,物镜 50× LDW,针孔孔径 300 µm,狭缝宽度 100 µm,光 栅刻线 1 200 gr·mm<sup>-1</sup>或 1 200 T,样品曝光时间 10~20 s,采样循环次数 5~10 次。

ESCALAB-250 型 X 射线光电子能谱仪,美国 THERMO 公司,仪器本底真空优于 2×10<sup>-8</sup> Pa。以单色 化 Al Kα(1 486.6 eV)射线为激发源,发射电压 15 kV, 功率 150 W,能谱仪采用半球能量分析器(HMA)采集 光电子。当通道能为 30 eV 时,用 Ag 3d<sub>5/2</sub>(368.3 eV) 标定谱仪,谱峰的半高宽 0.6 eV。Ar<sup>+</sup>溅射时,离子动 能 3 keV, 束流 3 μA, 束斑 500 μm×500 μm。

## 2 结果与讨论

### 2.1 拉曼光谱分析

由于 UF<sub>4</sub>中化学组成的复杂性,以及铀氧化物结构也比较复杂,并且不同氧化价态的种类较多,目前 文献报道的主要有 UF<sub>4</sub>、UF<sub>6</sub>、UOF<sub>4</sub>、UO<sub>2</sub>F<sub>2</sub>、 UO<sub>2</sub>F<sub>2</sub>2H<sub>2</sub>O、UOF<sub>5</sub>、UO、UO<sub>2</sub>、UO<sub>3</sub>、U<sub>3</sub>O<sub>8</sub>、UO<sub>2</sub><sup>2+</sup> 等。虽然已有较多文献报道了实验或理论计算的各种 铀化合物的拉曼光谱,但由于样品制备、实验条件、 仪器灵敏度等因素,结果并不完全一致,且不同化学 计量组成的数据仍然相当缺乏。表 1 为实验研究及相 关文献报道的不同铀化合物拉曼光谱特征频率范围及 对应振动峰的归属指认<sup>[20-22]</sup>。

由表 1 看出, 200~500 cm<sup>-1</sup>范围内主要为 U-F、 U-O 键的弯曲振动, 500~990 cm<sup>-1</sup>范围主要是 U-F、 U-O 及 O=U=O 键的伸缩振动及反对称伸缩振动。其 中, UF<sub>4</sub>、UF<sub>6</sub>的特征吸收区在较低波数范围(700~100 cm<sup>-1</sup>), UO<sub>2</sub> 常在 400~780 cm<sup>-1</sup> 波数范围,其次是 U<sub>3</sub>O<sub>8</sub>(750~850 cm<sup>-1</sup>), UO<sub>3</sub>、UO<sub>2</sub><sup>2+</sup>及 UO<sub>2</sub><sup>+</sup>则在较高波 数范围(770~990 cm<sup>-1</sup>)。Pointurier 等<sup>[22]</sup>收集并制备了 多种不同的铀化合物,并测定出其对应的拉曼光谱 图。本研究主要依据表 1 及 Pointurier 等人的测定结 果判断 UF<sub>4</sub> 在空气中热化学反应过程所生成的多种 铀化合物。

在(25±5)℃,相对湿度 50%~60%下,对空气中不同温度时效的 UF<sub>4</sub>样品分别进行拉曼光谱分析。如图 1。

| 表 1 | 铀化合物的拉曼特征频率及归属指认 |
|-----|------------------|
|     |                  |

 Table 1
 Raman characteristic shift and assignment of

| uranium             | compounds <sup>[20-22]</sup> |
|---------------------|------------------------------|
| <b>WI WIII WIII</b> | compounds                    |

|                              | -                                |                                          |
|------------------------------|----------------------------------|------------------------------------------|
| Raman shift/cm <sup>-1</sup> | Uranium<br>compounds             | Assignment                               |
| 667, 532, 202, 142           | UF <sub>6</sub> /UF <sub>4</sub> | U-F                                      |
| 868, 552, 660, 389           | $UOF_4$                          | U-O, U-F, U-F-U                          |
| 970~930, 260, 234, 146       | $UO_2F_2$                        | $\mathrm{UO_2}^{2+}$ , U-F, O-U-O, F-U-F |
| 950~935, ~430                | $UO_2F_2$ $2H_2$<br>O            | UO2 <sup>2+</sup> , U-F                  |
| 820, 590                     | UOF <sub>5</sub>                 | U-O, U-F                                 |
| 800, 325, 450                | UO                               | U-O                                      |
| 1156, 576, 635               | $UO_2$                           | U-O                                      |
| 750~850, 100~550             | $U_3O_8$                         | U-O, -O-U-O-U-O-                         |
| 787, 826, 100~400            | $UO_3$                           | U-O                                      |
| 850~950, 780~870             | $\mathrm{UO_2}^{2+}$             | O=U=O                                    |
| 800~900                      | $UO_2^+$                         | U-O                                      |
|                              |                                  |                                          |

错误!



图 1 UF<sub>4</sub>在空气中不同温度时效的拉曼光谱

Fig.1 Raman spectra of different uranium compounds UF<sub>4</sub> heated at stated temperatures and for different time in air: (a) room temperature~200 °C and (b) above 200 °C

由图 1 看出, UF<sub>4</sub>在空气中加热至 200 ℃时,还相当 稳定,其拉曼光谱图基本没有变化;但在 250 ℃以上, 样品表面颜色已经发生明显变化,并逐渐加深,说明 UF<sub>4</sub>发生了化学反应,拉曼光谱分析发现有 UO<sub>2</sub>、 UO<sub>2</sub>F<sub>2</sub>、U<sub>3</sub>O<sub>8</sub>、UO<sub>3</sub>等多种铀化合物生成。

#### 2.2 XPS 分析

将UF4原料及其在空气中不同温度时效后的样品分 别送入XPS分析真空室后不进行Ar<sup>+</sup>离子溅射刻蚀,得 到图2所示的0~1200 eV电子轨道结合能范围内的XPS 能谱。由图2看出,UF4样品表面可探测的主要元素包 括U、F、O、C等,其中,U元素的光电子峰有4d<sub>3/2</sub>(979 eV)、4d<sub>5/2</sub>(746 eV)、4f<sub>5/2</sub>(392 eV)、4f<sub>7/2</sub>(382 eV)、5d<sub>5/2</sub>(98 eV)、5p<sub>3/2</sub>(200 eV)等,U元素以化合及氧化状态存在于 表面,F元素1s峰、O元素1s峰和C元素1s峰结合能 分别为686,532和284 eV。随着温度升高(图中谱线 由下至上),各元素结合能峰位有所位移,峰高增强或 降低甚至消失,并且各元素可能有多种化学状态存在。 其中,O1s峰不断增强,说明生成的铀氧化物不断增加;

F 1s 峰不断减弱直至消失,即铀的氟化物在高温 (≥400 ℃)下基本是完全转变为铀的氧化物; C 1s 峰 强度变化不大,代表非束缚碳或称为"石墨碳"碳元素的 峰,则是由环境气氛引入固有存在的碳。

图 3 为 UF<sub>4</sub>不同温度时效后 U 4f 区域窄能量扫描 的 XPS 谱,对应 U 4f 峰位及卫星峰位如表 2 所示, 表 3 为文献[23,24]报道不同铀氧化物 U 4f 及其卫星峰 有关参数。由图表看出,UF<sub>4</sub>在空气中经过不同温度 时效后 U 4f 峰位有所位移,说明生成了多种氧化物铀 相:UO<sub>2</sub>、UO<sub>2+x</sub>、UO<sub>3</sub>、UO<sub>2</sub>F<sub>2</sub>、U<sub>3</sub>O<sub>8</sub>等。

## 2.3 不同温度时效的反应速率

在(25±5)℃,相对湿度 50%~60%下,利用马弗 炉开展 UF4在空气中热化学反应的实验研究,分别进 行了 17 个不同温度点和时间段的实验工作。设单位时 间(h)内 UF4样品的质量变化为反应速率 K(g/h), 以 lnK与 1000/T 做图,图 4 为 UF4样品在空气中不同 温度时效 lnK与 1000/T 的 Boltzmann 拟合曲线,  $R^2$  = 0.994,拟合得到的反应方程如下:











Fig.3 U 4f spectra of  $UF_4$  materials after aging at different temperatures in air

#### 表 2 UF<sub>4</sub>在空气中不同温度时效后 U 4f 峰位变化情况

Table 2U 4f peak binding energies of UF4 after aging at<br/>different temperatures and for different time in air<br/>(eV)

| Temperature  | U 4f <sub>5/2</sub> | U 4f <sub>7/2</sub> | Satellite peaks | Assignment                                      |
|--------------|---------------------|---------------------|-----------------|-------------------------------------------------|
| Initial, RT  | 393.0               | 382.1               | 397.0, 386.0    | UF <sub>4</sub> ,UO <sub>2</sub> F <sub>2</sub> |
| 300 °C, 22 h | 393.5               | 382.5               | -               | $UF_4, UO_2F_2, UO_{2+x}$                       |
| 400 °C,10 h  | 392.3               | 381.5               | -               | $UO_3$                                          |
| 900 ℃.10 h   | 392.3               | 381.4               | 391.3, 380.4    | $U_3O_8$                                        |

表 3 文献[23,24]报导不同铀氧化物 U 4f 及其卫星峰有关参数

Table 3 Comparison of binding energies of the U 4f and satellite peaks for different uranium oxides from references[23,24](eV)

| Sample     | $U \; 4 f_{5/2}$ | FWHM  | Satellite peaks     | U 4f <sub>7/2</sub> | FWHM |
|------------|------------------|-------|---------------------|---------------------|------|
| $UO_2$     | 391.3            | ~1.95 | 387.0, 398.0        | 380.4               | 1.95 |
| $UO_{2+x}$ | 391.5            | ~2.10 | 387.0, 398.0, 399.8 | 380.6               | 2.10 |
| $UO_3$     | 392.8            | -     | 396.8, 402.8, 385.7 | 381.9               | -    |
| $U_3O_8$   | 392.6            | ~2.4  | 399.0, 402.5        | 381.7               | 2.40 |

$$y = -18.28 + \frac{12.16}{1 + \exp(\frac{x - 2.03}{0.16})} \tag{1}$$

由图 4 看出, UF<sub>4</sub> 在空气中的化学反应可分为两 个阶段: 200~400 ℃温度范围,反应速率较快,由于 空气中存在 O<sub>2</sub> 和一定量 H<sub>2</sub>O(g)的协同作用,与 UF<sub>4</sub> 复合化学反应生成的多种铀化合物主要出现在此温度 范围; 400 ℃以上温度条件反应速率较慢,则是以反 应生成或铀化合物转化成 U<sub>3</sub>O<sub>8</sub> 为主。

根据 Arrhenius 方程: lnK=lnA-E<sub>a</sub>/RT, 对 UF<sub>4</sub>



图 4 UF<sub>4</sub>在空气中不同温度时效的 lnK 与 1000/T 拟合曲线

Fig.4 Fitting curve of  $\ln K$  and 1000/T of UF<sub>4</sub> after aging at different temperatures and for different time in air





Fig.5 Fitting calibration curves and linear equations of  $\ln K$  vs 1000/T of UF<sub>4</sub> after aging at different temperatures and for different time in air

样品在空气中不同温度时效的 ln*K* 与 1000/*T* 关系进行 分段(400 ℃为界点)线性拟合(图 5 所示)。

将拟合得到的线性方程相关参数带入 Arrhenius 方程,分别得出:

 $A_1$ =2.63×10<sup>5</sup>,  $E_{a1}$ =1.00×10<sup>5</sup> J/mol (200~400 ℃);  $A_2$ =2.79×10<sup>-3</sup>,  $E_{a2}$ =2.33×10<sup>3</sup> J/mol (400~800 ℃)。 由上可知, UF<sub>4</sub> 在空气中热化学反应两个阶段的 表观活化能大约相差2个数量级。

综上所述,并结合相关文献资料报道,空气中 UF<sub>4</sub> 不同温度时效的复杂化学反应可归纳如下:

(1) 干燥空气中, UF<sub>4</sub> 在 300~600 ℃范围内主
 要生成 UO<sub>2</sub>F<sub>2</sub> 和 U<sub>3</sub>O<sub>8</sub>:

4UF<sub>4</sub>(s)+5O<sub>2</sub>(g)→UO<sub>2</sub>F<sub>2</sub>(s)+U<sub>3</sub>O<sub>8</sub>(s)+7F<sub>2</sub>(g) (2)
(2) 有水存在时, UF<sub>4</sub> 水解的同时还会生成
UO<sub>2</sub>F<sub>2</sub>,并且 UO<sub>2</sub>也可转化为 U<sub>3</sub>O<sub>8</sub>:

| $UF_4(s)+2H_2O(g) \rightarrow UO_2(s)+ 4HF(g)$            | (3) |
|-----------------------------------------------------------|-----|
| $2UF_4(s)+O_2(g)+2H_2O(g)\rightarrow 4HF(aq)+2UO_2F_2(s)$ | (4) |
| $3UO_2(s)+O_2(g)\rightarrow U_3O_8(s)$                    | (5) |
| (3) 水解生成的 UO <sub>2</sub> 也可能被水汽氧化, 氧                     | 貳化  |
| 后生成的 UO3 再被 HF 氟化为 UO2F2:                                 |     |

 $UO_2(s)+H_2O(g) \rightarrow UO_3(s)+H_2(g)$  (6)  $UO_3(s)+2HF(g) \rightarrow UO_2F_2(s)+H_2O(g)$  (7)

 $UF_4(s)+1/2O_2(g)+4H_2O(g)\rightarrow 4HF(aq)+UO_3 2H_2O(s)(8)$ 

3UF<sub>4</sub>(s)+O<sub>2</sub>(g)+6H<sub>2</sub>O(g)→12HF(aq)+U<sub>3</sub>O<sub>8</sub>(s) (9) U<sub>3</sub>O<sub>8</sub>(s)+1/2O<sub>2</sub>(g)+6H<sub>2</sub>O(g)→3UO<sub>3</sub> 2H<sub>2</sub>O(s) (10) (4)更高温度(≥700 ℃)条件,UF<sub>6</sub>的挥发而

使铀损失:

 $2UF_4(s) + O_2(g) \rightarrow UF_6(g) + UO_2F_2(s)$ (11)

## 3 结 论

 1)通过相关实验条件的设计与控制,开展了 UF<sub>4</sub> 在空气中热化学反应特性研究,获取实验条件下反应 前后不同铀化合物的 Raman 和 XPS 变化谱图。

2) 200~400 ℃温度范围, UF<sub>4</sub> 热化学反应速率增大
 (表观活化能 *E*<sub>a</sub> 约 10<sup>5</sup> J/mol), 主要是由于生成了多种
 铀的氧化物相: UO<sub>2</sub>F<sub>2</sub>、U<sub>3</sub>O<sub>8</sub>、UO<sub>2</sub> 或 UO<sub>2+x</sub>、UO<sub>3</sub>等。

3)400 ℃以上温度条件,反应速率变慢(表观活 化能 *E*<sub>a</sub>约 10<sup>3</sup> J/mol),主要是氧化物铀相之间的转化 反应,并最终全部转变为 U<sub>3</sub>O<sub>8</sub>。

4) UF<sub>4</sub>在空气中的热化学反应速率呈现由快到慢的变化趋势。

**致谢**:在实验过程中,罗丽珠、陈志磊、蔡定洲等同事提供了 诸多有益的分析数据和资料,在此表示衷心地感谢。

#### 参考文献 References

- Katz J J, Rabinowitz E. *The Chemistry of Uranium*[M]. New York: Mc-Graw-Hill Book Co Ltd, 1951
- [2] Cordfunke E H P. The Chemistry of Uranium[M]. Amsterdam-London-New York: Elsevier Publ Co, 1969
- [3] Walker S M, Halasyamani P S, Allen S et al. J Am Chem Soc[J], 1999, 121: 10 513
- [4] Song Weidanduan(宋维端). Study on Kinetics Mechanism of

Pyrohydrolysis Reaction about  $UF_4$  and  $UO_2F_2$  with Steam-gas (UF<sub>4</sub>和 UO<sub>2</sub>F<sub>2</sub>与过热蒸汽作用的动力学机理的 研究)[R]. Beijing: Technological Information Institute of China, 1965

- [5] Kang Shifang(康仕芳), Zhao Jun(赵 君). Journal of Nuclear and Radiochemistry(核化学与放射化学)[J], 1998, 20(4): 202
- [6] Dong Xiaoyu(董晓雨), Zheng Xiaobei(郑小北), Song Yulong(宋昱龙). Journal of Nuclear and Radiochemistry(核 化学与放射化学)[J], 2014, 36(3): 181
- [7] Wu Jingguang(吴瑾光). Recent Advances and Application in Technology of Fourier Transform Infrared Spectroscopy(近 代傅里叶变换红外光谱技术及应用)[M]. Beijing: Science Techniques and Literature Press, 1994
- [8] Chu Mingfu(褚明福), Zou Lexi(邹乐西), Zhong Jingrong(仲 敬荣). Chinese Journal of Rare Metals(稀有金属)[J], 2005, 29(1): 106
- [9] Ruan C, Luo W, Wang W et al. Analytica Chimica Acta[J], 2007, 605: 80
- [10] Siekhaus W J. Composition of Uranium Oxide Surface Layers Analyzed by μ-Raman Spectroscopy[R]. Boston: Lawrence Livermore National Laboratory, 2003
- [11] Zhong Jingrong(仲敬荣), Chu Mingfu(褚明福), Xiao Sa(肖 洒) et al. Journal of Nuclear and Radiochemistry(核化学与 放射化学)[J], 2010, 23(1): 27
- [12] Zhong Jingrong(仲敬荣), Xiao Sa(肖 洒), Chu Mingfu(褚明 福) et al. China Measurement & Test(中国测试)[J], 2009, 35(2): 112
- [13] Chu Mingfu(褚明福), Meng Daqiao(蒙大桥), Zou Lexi(邹乐西) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2009, 38(4): 627
- [14] Nagelberg A S, Ottesen D K. Corrosion Behavior of Lean

Uranium-titanium Alloys[R]. Washington, DC: Sandia National Laboratory, 1980

- [15] Yu B Z, Hansen W N. Mikrochim Acta[J], 1988, 94(1): 189
- [16] Caculitan N, Siekhaus W J. The Growth of Epitaxial Uranium Oxide Observed by Micro-Raman Spectroscopy[R]. Boston: Lawrence Livermore National Laboratory, 2005
- [17] Lefevre G, Kneppers J, Fedoroff M. J Colloid Interface Sci[J], 2008, 327: 15
- [18] Roeper D F, Chidambaram D, Halada G P et al. Electrochimica Acta[J], 2006, 51: 4815
- [19] Liu Shihong(刘世宏), Wang Danghan(王当憨), Pan Chenghuang(潘承璜) et al. X-ray Photoelectron Spectra Analysis(X 射线光电子能谱分析)[M]. Beijing: Science Press, 1980
- [20] Stephen Paul Anderson. A Study of the Hydrolysis of Uranium Hexafluoride by Fourier Transform Infrared Spectroscopy[R]. Knoxville: The University of Tennessee, 1982
- [21] Bostick W D, McCulla W H, Pickrell P W. Sampling, Characterization, and Remote Sensing of Aerosols formed in the Atmospheric Hydrolysis of Uranium Hexafluoride[R]. Tennessee: Martin Marietta Energy Systems Inc, Oak Ridge Gaseous Diffusion Plant, 1984
- [22] Pointurier F, Marie O. Spectrochimica Acta Part B[J], 2010, 65: 797
- [23] Zuo Changming(左长明), Zhao Chunpei(赵纯培), Wang Xiaolin (汪小琳) et al. Transaction of Sichuan University Natural Science(四川大学学报,自然科学版)[J], 1998, 35(3): 424
- [24] Wang Xiaolin(汪小琳), Fu Yibei(傅依备), Xie Renshou(谢仁寿) et al. Nuclear Techniques(核技术)[J], 1997, 20(4): 210

# Thermal Chemical Reaction Activation of UF<sub>4</sub> in Air

Zhong Jingrong, Yu Chunrong, Deng Hui, Ren Yiming (China Academy of Engineering Physics, Mianyang 621900, China)

**Abstract:** Thermal chemical reaction characteristics of UF<sub>4</sub> material in air were investigated by micro-laser Raman spectroscopy (MLRS), X-ray photoelectron spectroscopy (XPS), weighing and morphology observation. Based on the physical and chemical properties of UF<sub>4</sub>, we have obtained the Raman and XPS spectra of different uranium compounds after heating at stated temperatures and for different time. The results indicate that UF<sub>4</sub> sample is equivalent stable until it is heated to 200  $\degree$  in air, and its Raman spectra almost do not change. But when heated above 250  $\degree$  in air, the surface color of UF<sub>4</sub> sample changes obviously, multiform uranium compounds are formed such as UO<sub>2</sub>, UO<sub>2</sub>F<sub>2</sub>, U<sub>3</sub>O<sub>8</sub> from Raman and XPS analysis. On the other hand, the chemical reaction rate of UF<sub>4</sub> in air shows a trend from fast to slow.

Key words: uranium tetrafluoride (UF4); Raman spectroscopy; XPS; chemical reaction; air

Corresponding author: Ren Yiming, Ph. D., China Academy of Engineering Physics, Mianyang 621900, P. R. China, Tel: 0086-816-3626995, E-mail: renyiming@caep.cn