溶剂热法合成花状 Co₃O₄ 微球及其对 高氯酸铵热分解的催化作用

李 纲,张文彦,迟煜頔,李广忠

(西北有色金属研究院 金属多孔材料国家重点实验室,陕西 西安 710016)

摘 要:以醋酸钴为原料,在甲醇体系中采用溶剂热法合成了由纳米片自组装而成的花状(CH₃O)₂Co 前驱体微球。将前驱体熔烧后,得到了形貌保持良好的花状多孔 Co₃O₄ 微球。利用 X 射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、热重(TG)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和 N₂吸附-脱附等手段对样品的物相、化学组成、形貌及孔结构进行了表征。采用差示扫描量热(DSC)技术评价了 Co₃O₄ 花状微球对高氯酸铵(AP)的热分解催化作用。结果表明,花状 Co₃O₄ 微球对 AP 热分解过程具有良好的催化活性,添加 2% (质量分数)的 Co₃O₄ 可使 AP 的高温分解峰值温度降低 122 ℃,表观分解热提高 422 J/g。优异性能的发挥归因于其良好的分散性和丰富的级次孔结构。

关键词:氧化钴;花状微球;溶剂热合成;高氯酸铵;热分解

中图法分类号: O643.36 文献标识码: A 文章编号: 1002-185X(2016)12-3201-06

高氯酸铵(AP)是复合固体火箭推进剂中常用的氧 化剂和高能成分,它在推进剂中占有的比重很大,可 达 65%~71%^[1]。AP 的性质与推进剂的总体性能紧密 相关,尤其是其热分解特性显著影响着推进剂的燃烧 性质。因此,研究 AP 的热分解行为可以对推进剂的 燃烧性能进行预测,并能对推进剂燃烧行为的改善提 供理论指导,具有十分重要的意义。

通过减小 AP 的粒度来增加与燃烧剂的接触面积 在一定程度上可以起到改善固体推进剂燃烧性能的作 用,但这种方法的缺陷在于,一方面其对推进剂的燃 速提高有限,另一方面高氯酸铵的超细化过程十分危 险^[2]。研究表明,过渡金属氧化物如 Fe₂O₃^[3]、NiO^[4]、 Cu₂O^[5]、MnO₂^[6]、CeO₂^[7]、CdO^[8]等对 AP 的热分解均 具有不同程度的催化作用。因此,以纳米催化剂调节 推进剂的燃烧性能已成为当前固体推进剂领域的研究 热点之一。

作为过渡金属氧化物家族重要成员的 Co₃O₄,其除在锂离子电池^[9]、超级电容器^[10]、生物传感^[11]、磁 性材料^[12]等领域有广泛应用外,在催化分解 AP 上也 有良好的表现。如 Sun 等^[13]采用热分解钴基络合物制 得了 3 种具有不同形貌(花状超结构、多层堆积结构和 纳米片状)的 Co₃O₄,并分别测试了它们催化分解 AP 的性能。实验结果表明,纳米片状 Co₃O₄的催化能力 最为优异,可将 AP 的热分解温度提前 101.3 ℃; Zhang 等^[14]报道了海胆状 Co₃O₄ 对 AP 也具有良好的催化分 解 效 果, 能 将 其 分 解 峰 值 温 度 降 低 120 ℃。 Alizadeh-Gheshlaghi 等^[15]采用溶胶-凝胶法制得的球 形 Co₃O₄ 可将 AP 的高温分解温度提前 92 ℃。综合文 献报道的结果不难看出,催化剂对 AP 的催化分解效 果受其形貌影响较大。

迄今为止,尽管已有较多不同形貌 Co₃O₄用于催 化 AP 热分解的相关报道,但是有关具有良好分散性 的花状 Co₃O₄ 多孔微球的制备工艺及其催化 AP 热分 解的报道甚少。因此,本研究以 Co(Ac)₂ 为原料,不 添加任何模板剂,在甲醇体系中采用溶剂热法合成了 由纳米片自组装而成的花状(CH₃O)₂Co 前驱体微球。 随后通过热分解钴醇盐前驱体,获得了分散性好、粒 度均匀且很好遗传前驱体形貌的 Co₃O₄花状微球。采 用 XRD、FT-IR、TG、SEM、TEM 和 N₂ 吸附-脱附等 多种手段对样品进行了表征,利用差热分析技术评价 了 Co₃O₄花状微球对 AP 热分解的催化活性。

1 实 验

采用溶剂热法来制备 Co₃O₄花状微球。在搅拌下, 将 0.6 g 醋酸钴溶解于 60 mL 无水甲醇中,直至形成 透明的溶液。随后,将该溶液移入 120 mL 带有聚四

收稿日期: 2015-12-05

基金项目:国家自然科学基金(51104121,51374174);陕西省青年科技新星项目(2015KJXX78);陕西省自然基金重点项目(2013JZ015) 作者简介:李 纲,男,1981年生,博士,高级工程师,西北有色金属研究院金属多孔材料国家重点实验室,陕西 西安 710016,电话: 029-86231095, E-mail: 47922138@163.com

氟乙烯内衬的水热釜中,于 200 ℃保温 8 h。待反应 釜自然冷却到室温后,离心收集桃红色沉淀即钴醇盐 前驱体微球。将前驱体依次用蒸馏水及无水乙醇淋洗 后,于 60 ℃烘干。为了得到目标产物 Co₃O₄花状微 球,将前驱体置于马弗炉中进行热处理,热处理温度 为400 ℃,热处理时间为2 h,升降温速率为2 ℃/min。

样品的晶相结构和纯度用 X 射线衍射表征,在 Philip X'Pert PRO 型衍射仪上完成,Cu 靶,Kα辐射, 扫描步长 0.02°,加速电压和电流分别为 40 kV 和 40 mA。前驱体的红外光谱在美国尼高力仪器公司的 Avatar 360 型透射傅里叶变换红外光谱仪上测定,KBr 压片制样,测量范围 4000~400 cm⁻¹。前驱体的热重分 析在耐驰公司的 STA 449C 型热分析仪上完成,空气 氛围,升温速率 10 ℃/min,温度范围 50~800 ℃。样 品的形貌在 Quanta 600F 型扫描电镜和 JEM 2100 型透 射电镜上观察。N₂ 吸附-脱附曲线在 Quantachrome NOVA2000e 型氮气吸附仪上测定,工作温度为 -198.5 ℃。在测试前,将待测样品于 180 ℃脱气 3 h。 样品比表面积由 BET 法算得,孔径分布曲线则由脱附 支数据用 BJH 法算得。

按 98:2 的质量比称取商用 AP 与花状 Co₃O₄微球,加入少许乙醇,混合、研磨。待乙醇挥发后,在耐驰公司的 STA 449C 型热分析仪上对样品进行 DSC 热分解测试。升温速度为 10 ℃/min,N₂流速为 20 mL/min,试样量 2 mg 左右,温度范围 50~500 ℃,铝质样品池,根据AP 的热分解温度和表观分解热值来评价催化剂的活性。

2 结果与讨论

2.1 前驱体和产物的组成分析

图 1a 为前驱体的 XRD 图谱。通过计算机检索, 谱图上出现的衍射峰与数据库中含钴物质的特征衍射 峰均不能很好的吻合,因此无法通过 XRD 谱将合成得 到的前驱体简单地归为某种含钴物质。值得注意的是, 与谱图上其它微弱的衍射峰相比,在 20=10.9°处出现 了1个尖锐的衍射峰。Zhu等[16,17]在乙二醇体系中采用 溶剂热法合成 Fe₃O₄时,也在 2*θ*≈11°处出现了类似的衍 射峰,认为该处出现的特征衍射峰是醇盐 Fe-EG 形成 的标志。对于本研究而言,该峰的出现揭示可能形成了 钴醇盐前驱体。图 1b 为前驱体在 400 ℃热处理 2 h 后 所得产物的 XRD 图谱。由图可见,样品所有的衍射峰 均与 Co₃O₄标准数据(PDF43-1003)一致,在 2 *θ*=19.1 °、 31.3 °、37.0 °、38.6 °、44.9 °、55.8 °、59.4 °和 65.4 °处出 现的衍射峰分别对应于 Co₃O₄ 的(111)、(220)、(311)、 (222)、(400)、(422)、(511)和(440)晶面。在整个谱图中, 除了归属于 Co₃O₄ 的衍射峰外,没有其它杂质峰出现,

证实所得产物为纯度较高的 Co₃O₄。通过谢乐公式计算 得到产物的平均晶粒尺寸为 33 nm。

为了确定前驱体的结构和功能基团,对其进行了 FT-IR测试,相应结果如图2所示。谱图上波数为3450 cm⁻¹附近出现的宽吸收峰对应于前驱体表面所吸附水 分子的不对称伸缩振动,1633 cm⁻¹出现的尖锐强吸收 峰来源于水分子的弯曲振动^[18]。波数1409 cm⁻¹处出现 的特征吸收峰归属于-CH₃的伞形弯曲振动^[19]。在1082 cm⁻¹出现的吸收峰则对应于 C-O 的伸缩振动^[20]。波数 582 cm⁻¹附近的吸收峰则是由 Co-O 的伸缩振动引起 的^[21]。FT-IR 谱的结果表明,前驱体可能为(CH₃O)₂Co。

为了进一步确定前驱体的组成,对其进行了热重 分析,TG曲线如图3所示。TG曲线显示,样品的失 重明显分为两步,即发生在温度低于 100 ℃和 100~350℃温度区间内的失重。100 ℃以下发生的失重 归因于样品中吸附水的脱除,此步的失重率为 1.6%; 100~350 ℃之间发生的失重则是由前驱体醇盐的热分 解引起的,即可能发生了如下的反应:

 $6CH_3O-Co-OH_3C+19O_2 \rightarrow 2Co_3O_4+12CO_2+18H_2O$ (1)

TG 曲线显示 350 ℃后样品的质量无明显变化, 表明此时前驱体已分解完全。样品在较高温度下的失 重率为 36.6%,与由上述方程式计算得到 (CH₃O)₂Co

Fig.1 XRD patterns of the precursor (a) and product (b)

分解转化为 Co₃O₄ 的理论值 34.7%基本一致。综合 XRD、FT-IR 和 TG 结果,可以确定前驱体的化学组 成为(CH₃O)₂Co。

2.2 前驱体和产物的形貌分析

图 4a 为前驱体的 SEM 照片。由图可知,前驱体 呈花状微球形貌,尺寸 3~7 μm。这些微球的分散性和 均匀性较好,基本无团聚现象出现。图 4b 为单个微球 的放大图。图片清晰显示出单个微球由厚度 40~60 nm 的纳米片围绕着中心组装而成,这些纳米片的表面非 常光滑。图 4c 为产物的 SEM 照片。由图可见,煅烧 所获产物的形貌和几何尺寸与前驱体相比均没有发生 明显的改变。需要指出的是,前驱体经煅烧后,其表 面出现了大量孔洞且变得较为粗糙(图 4d)。

为了进一步观察产物的细微结构,对其进行了 TEM 表征,结果示于图 5 中。图 5a 为单个微球的 TEM 照片。由图可见,微球是由若干纳米片围绕着中 心自组装而成的,尺寸约 5 μm。微球的局部放大照片 示于图 5b 中。不难看出,这些纳米片是由尺寸在 20~40 nm 的纳米晶构成的,这与通过谢乐公式计算得 到的结果大致相当。值得注意的是,在纳米片上分布 着丰富的蠕虫状不规则孔道,孔道的尺寸从几纳米到 100 nm 以上不等。这应该是组成前驱体的基本结构单 元——纳米片在热分解过程中脱除 CO₂ 和 H₂O 分子造 成的。

2.3 产物的孔结构分析

氮气吸附-脱附等温线用来测定样品的比表面积 和孔结构。等温线及相应的孔径分布曲线如图 6 所示。 样品的等温线形状呈 IV 类(图 6a),在相对压力 *P*/*P*₀=0.8~1.0 的范围内,出现了由毛细管的凝聚作用 引起的 H₃ 型迟滞环,表明样品具有明显的介孔结构 (2~50 nm)。滞后环向相对高压力 *P*/*P*₀≈1 的位置移动, 表明样品中存在大孔(>50 nm)^[22,23]。此外,观察到滞 后环的面积不大,表明样品的孔体积较小。样品的孔 径分布曲线(图 6b)证实其孔径分布较宽(2~160 nm), 且主要集中在介孔区域,最可几孔径为 50 nm。介孔 来源于组成前驱体的结构单元——纳米片的热分解, 而大孔的出现则是由纳米片和纳米片之间的空隙引起 的。孔结构分析所得结果与从透射电镜上直观观察到 的孔结构信息吻合的较好。根据 BET 法计算得到样品 的比表面积为 9.3 m²/g,根据相对压力 *P*/*P*₀=0.994 处 的氮气吸附体积确定出的样品孔体积为 0.05 cm³/g。

图 4 前驱体和产物的 SEM 照片 Fig.4 SEM images of the precursor (a, b) and product (c, d)

图 5 产物的 TEM 照片

Fig.6 Nitrogen adsorption-desorption isotherm (a) and the corresponding pore size distribution curve (b)

2.4 花状 Co₃O₄的催化性能

图 7 给出了纯 AP 及花状 Co₃O₄ 催化 AP 热分解的 DSC 曲线。图 7a 显示,纯 AP 热分解的 DSC 曲线上 出现了1个吸热峰和2个放热峰。在248℃出现的吸 热峰对应于 AP 的晶型转化,此过程中 AP 由斜方晶系 转化为立方晶系;峰值温度 326 ℃处的微弱放热峰对 应于 AP 的低温热分解,在该过程中 AP 发生部分分解 并生成中间产物:峰值温度为443 ℃的强烈放热峰对应 于 AP 的高温热分解,在该过程中 AP 完全分解为挥发 性产物,这与文献所报道的 AP 的热分解规律一致^[24,25]。 与纯 AP 的热分解曲线相比,花状 Co₃O₄ 微球的加入 对 AP 的晶型转化温度基本无影响,但对 AP 的热分解 过程产生了显著影响。这种差异在 DSC 曲线上除表现 为高温放热峰向低温方向大幅移动并合并成1个放热 峰外,还表现为放热峰的增高和放热峰面积的显著增 大。这是由于放热峰峰温越低, AP 放热也将会越集中, 因而放热量也相应越大。添加 2% (质量分数,下同) 的 Co₃O₄花状微球使得纯 AP 的高温分解峰值温度下 降了 122 ℃, 高温表观分解热则由纯 AP 的 642.1 J/g 提高到 1064 J/g, 提高约 422 J/g, 增幅达 0.66 倍。高 温放热峰值温度的显著降低和表观分解热值的急剧升 高有力证实了花状 Co₃O₄ 微球对 AP 的热分解有良好 的催化效果。

文献[13]通过热分解钴的有机配合物获得了比 表面积为 34.60 m²/g 的 Co₃O₄ 纳米片,其催化分解 AP 的高温分解峰温度下降了 101.3 ℃。文献[15]研究了 采用溶胶-凝胶法制得的比表面积为 56.2 m²/g 的 Co₃O₄ 颗粒对 AP 的热分解催化作用。结果表明,在 AP 中添加 3% 的纳米 Co₃O₄ 可使其高温峰下降 92.1 ℃。从 AP 高温分解峰值温度降低的程度来看, 本研究制得的花状 Co₃O₄ 微球对 AP 的热分解催化效 果显然要优于这二者。

已有研究表明,催化剂催化分解 AP 的性能与其 比表面积和孔容有很大的关系。通常认为^[6.13],大的 比表面积和孔容有利于催化剂催化性能的发挥。但本 工作在所获产物 Co₃O₄的比表面积和孔容远小于上述 文献的情况下,却显示出更加优异的催化性能。此现 象表明,催化剂的比表面积和孔容虽对其催化分解 AP 的性能有重要影响,但不是唯一的决定因素。研究结 果证实,其它因素如催化剂的分散性^[26]等对催化分解 AP 的性能也有重要影响。本工作制得的花状 Co₃O₄ 微球具有优异催化性能的原因之一可能源于其良好的 分散性。这是因为,纳米粒子尽管具有高的比表面积, 但为减少比表面能而易自发团聚的趋势使得它们在与 AP 接触时有效比表面积和活性反应位会大幅下降和 减少。因此,出现样品拥有大比表面积和在对 AP 催 化分解性能上的不完全对应也就不难理解了。事实上, 通过提高催化剂的分散性和减少团聚来提升催化分解 AP 的性能,研究者已开展了较多的工作。如江晓红等^[27] 制得了球形 SiO₂负载 Co₃O₄的核壳型催化剂,由于内 核作为壳层催化剂的载体,增大了比表面积及催化剂 和反应物之间的接触点位。因此,对 AP 显示出良好 的催化活性。马振叶等^[28]的研究结果证实,经醋酸改 性处理过的 Fe₂O₃ 纳米粒子较之未改性样品具有更好 的分散性, 在催化分解 AP 上因此也相应表现出更好 的性能,可将高温分解峰温度降低约 20 ℃。另一方 面,花状 Co₃O₄ 微球具有丰富的级次孔道结构可能也 是其具有良好催化活性的重要原因。据文献报道^[29,30], AP 的高温热分解阶段以气相反应为主,是整个分解过 程的控制步骤,在该阶段,NH₃(g)和HClO₄(g)发生氧 化还原反应生成气体小分子。本研究获得的 Co₃O₄具 有双孔径分布结构特征,即既具有纳米片上因 CO₂和 H₂O 分子逸出产生的介孔,又具有纳米片之间交叠产 生的大孔。这些级次孔洞的存在为 AP 分解后的气相 反应物分子进入催化剂内部提供了便捷通道,有利于 加速气态物质的快速扩散和反应热的快速传导,从而 有益于促进 AP 的热分解。

3 结 论

1) 不添加任何模板剂,在甲醇体系中采用溶剂热 法合成了由纳米片自组装而成的花状(CH₃O)₂Co 前驱 体微球。将前驱体进行焙烧后,获得了良好遗传前驱 体形貌、分散性良好、粒度为 3~7 μm 的多孔 Co₃O₄ 花状微球。 2) Co₃O₄ 微球对 AP 的热分解显示出良好的催化 活性,添加 2%的 Co₃O₄ 可使 AP 的高温分解峰值温度 降低 122 ℃,表观分解热提高 422 J/g,其优异性能的 发挥归因于 Co₃O₄ 微球良好的分散性和丰富的级次孔 结构。

参考文献 References

- [1] Heng Qiuli(衡秋丽), Xiao Feng(肖 锋), Luo Jianmin(骆建敏) et al. Chin J Inorg Chem (无机化学学报)[J], 2009, 25(2):359
- [2] Zhang Y, Wang N, Huang Y et al. Ceram Int[J], 2014, 40(7): 11 393
- [3] Zhang Y, Liu X, Nie J et al. J Solid State Chem[J], 2011, 184(2): 387
- [4] Wang J, Wei C, Pang H et al. Catal Commun[J], 2011, 12(11): 1031
- [5] Luo Xiaolin(罗小林), Han Yinfeng(韩银凤), Yang Desuo(杨 德锁) et al. Acta Phys Chim Sin(物理化学学报)[J], 2012, 28(2): 297
- [6] Arun Chandru R, Patra S, Oommen C et al. J Mater Chem[J], 2012, 22(14): 6536
- [7] Zhang D, Xie Q, Wang M et al. Solid State Sci[J], 2010, 12(9): 1529
- [8] Singh G, Kapoor I P S, Dubey R et al. Mater Sci Eng B[J], 2011, 176(2): 121
- [9] Zhang X X, Xie Q S, Yue G H et al. Electrochim Acta[J], 2013, 111: 746
- [10] Jagadale A D, Kumbhar V S, Lokhande C D. J Colloid Interface Sci[J], 2013, 406: 225
- [11] Jia W, Guo M, Zheng Z et al. J Electroanal Chem[J], 2009, 625(1): 27
- [12] Farhadi S, Pourzare K, Bazgir S. J Alloy Compd[J], 2014, 587: 632
- [13] Jin L N, Liu Q, Sun W Y. Cryst Eng Comm[J], 2012, 14(22): 7721
- [14] Zhang D E, Xie Q, Chen A M et al. Solid State Ionics[J], 2010, 181(31-32): 1462
- [15] Alizadeh-Gheshlaghi E, Shaabani B, Khodayari A et al. Powder Technol [J], 2012, 217: 330
- [16] Xu J S, Zhu Y J. J Colloid Interface Sci[J], 2012, 385(1): 58
- [17] Cao S W, Zhu Y J. J Phys Chem C[J], 2008, 112(32): 12 149
- [18] Li Guian(李贵安), Zhu Tingliang(朱庭良), Ye Luyuan(叶录元) et al. Acta Phys Chim Sin(物理化学学报)[J], 2009, 25(9):
 1811
- [19] Yang K, Peng H, Wen Y et al. Appl Surf Sci[J], 2010, 256(10): 3093

- [20] Tao F, Gao C, Wen Z et al. J Solid State Chem[J], 2009, 182(5): 1055
- [21] Yang Y P, Liu R S, Huang K L et al. Trans Nonferrous Met Soc China [J], 2007, 17(6): 1334
- [22] Yu J, Yu H, Cheng B et al. J PhotoChem Photobiol A: Chem[J], 2006, 182(2): 121
- [23] Yu H, Yu J, Cheng B. J Mol Catal A: Chem[J], 2006, 253(1-2): 99
- [24] Cao Xinfu(曹新富), Li Fengsheng(李凤生), Yang Yi(杨 毅) et al. Chin J Catal(催化学报)[J], 2006, 27(2): 157
- [25] Liu T, Wang L, Yang P et al. Mater Lett[J], 2008, 62(24): 4056

- [26] Tan Linghua(谈玲华), Li Qinhua(李勤华), Hang Zusheng(杭祖圣) et al. J Funct Mater(功能材料)[J], 2011, 42(3): 564
- [27] Yin Ping(尹 萍), Jiang Xiaohong(江晓红), Zou Min(邹 敏)
 et al. Chin J Inorg Chem(无机化学学报)[J], 2014, 30(1):
 185
- [28] Ma Zhenye(马振叶), Li Fengsheng(李凤生), Chen Aisi(陈 爱四) et al. J Mater Sci Eng(材料科学与工程学报)[J], 2005, 23(3): 345
- [29] Dubey R, Srivastava P, Kapoor I P S et al. Thermochim Acta[J], 2012, 549: 102
- [30] Chen L, Zhu D. Solid State Sci [J], 2014, 27: 69

Solvothermal Synthesis of Flower-like Co₃O₄ Microspheres and Their Catalytic Performance for Thermal Decomposition of Ammonium Perchlorate

Li Gang, Zhang Wenyan, Chi Yudi, Li Guangzhong

(State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China)

Abstract: The flower-like precursor (CH₃O)₂Co microspheres assembled by nano-flakes were firstly fabricated by a solvothermal method using $Co(Ac)_2$ as source materials in a methanol system. Co_3O_4 porous microspheres with well-preserved morphologies were then achieved by calcining the precursor. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermal gravimetry (TG), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and N₂ adsorption-desorption were used to characterize the phase, chemical composition, morphology and pore structure of the samples. Differential scanning calorimetry (DSC) was employed to evaluate the catalytic performance of these Co_3O_4 microspheres for thermal decomposition of ammonium perchlorate (AP). The result shows that the as-obtained Co_3O_4 microspheres exhibit excellent catalytic performance. Adding 2 wt% Co_3O_4 microspheres into AP decreases the high-temperature exothermic peak by 122 °C and the apparent decomposition heat increases by 422 J/g. The excellent catalytic activity is attributed to good dispersity and plentiful hierarchical pore structure of Co_3O_4 microspheres.

Key words: tricobalt tetraoxide; flower-like microspheres; solvothermal synthesis; ammonium perchlorate; thermal decomposition

Corresponding author: Li Gang, Ph. D., Senior Engineer, State Key Laboratory of Porous Metal Materials, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, P. R. China, Tel: 0086-29-86231095, E-mail: 47922138@163.com