TC4 合金表面渗钼层在模拟油田介质中的耐蚀性

林乃明¹,谢瑞珍¹,秦 林¹,田 伟^{1,2},郭俊文¹,唐 宾¹

(1. 太原理工大学,山西太原 030024)(2. 中联西北工程设计研究院,陕西西安 710082)

摘 要:采用等离子表面合金化技术对 TC4 合金进行渗钼表面改性,使用光学显微镜,辉光光谱分析仪和 X 射线衍射 仪分析渗钼层的特征,借助电化学测试技术评价 TC4 合金和渗钼层在模拟油田介质中的耐蚀性。结果表明:渗钼层均 匀、连续,渗层由钼的沉积层和扩散层组成;渗钼层的耐蚀性略低于 TC4 合金。

关键词: TC4 合金; 渗钼; 腐蚀

中图法分类号: TG174.445; TG146.2⁺3 文献标识码: A 文章编号: 1002-185X(2016)12-3233-05

套管是油井的重要基础材料,约占整体油井管消费 量的 3/4。腐蚀和磨损极易导致套管失效,严重威胁油 井的安全运行^[1]。为保证油气田安全、高效地开发和 生产,最有效的办法是使用耐蚀合金管材,但耐蚀合 金含有价格昂贵的金属元素,大批量使用会增加生产成 本^[2]。TC4 合金比强度高、热稳定性好、耐蚀性优异、 生物相容性好,被誉为王牌钛合金,广泛应用于军事、 工业、医疗等领域^[3]。目前,已有机构探索将 TC4 合 金-碳钢复合管作为新型套管材料应用于油气开采(如 图 1a 所示)。以碳钢管为基体材料,发挥碳钢管优良 的力学性能和价廉优势;以TC4 合金为内衬,利用其 优异的耐蚀性,能够显著降低原材料和管道的长期运 营成本,具有广阔的应用前景^[4]。

但是,TC4合金导热系数小、摩擦系数大,粘着 磨损和微动磨损敏感性高,且表面承载能力低^[5],直 接将TC4合金作复合管内衬使用将严重影响结构的安 全性和可靠性;这也是TC4合金作为复合管内衬材料 不能回避、也是必须考虑的问题。针对上述问题,采 用适当的表面技术对TC4合金进行表面改性,可显著 改善其耐磨性^[6]。研究表明,钼与β-Ti无限互溶;经表 面渗钼处理的TC4合金在常温/高温下均表现出优异 的磨损抗力^[5-7]。且我国钼资源丰富,若渗钼TC4合金 在油气田腐蚀介质中亦具有较好的耐蚀性,则可进一 步扩展渗钼工艺在TC4合金表面改性中的应用(如图 1b所示),亦可满足TC4合金作复合管内衬使用时兼具 良好耐磨性和耐蚀性的需要。

本实验借助等离子表面合金化技术对TC4合金进

行渗钼处理,利用电化学测试技术研究渗钼TC4合金 在CO₂饱和的模拟某油田采出液中的耐蚀性,旨在为 拓展TC4合金在石油管材方面的应用提供实验依据。

1 实 验

材料取自退火态的TC4合金棒材,由电火花线切 割成尺寸为 *Φ* 12 mm×4 mm的试样,其成分(质量 分数,%)为: 6.70 Al、4.21 V、0.10 Fe、0.14 O、0.07 Si、0.03 C、0.015 N、0.003 H,余量Ti。试样经SiC 砂纸逐级打磨至1000[#],在丙酮中超声清洗,蒸馏水洗, 冷风干燥后备用。利用等离子表面合金化设备对TC4合 金进行渗钼,源极为纯度99.95%的钼板。渗钼工艺^[8]: 源极电压-900~-700 V,TC4合金工件电压-650~-400 V,Ar气气压35~40 Pa,TC4合金-源极间距15 mm,处 理温度850 ℃,时间3 h。分别采用Zeiss Axiovert-25CA 型光学显微镜,GDA750辉光光谱分析仪,DX-2700型X 射线分析仪分析渗钼层的表面和截面特征,确定元素分 布和相结构。耐蚀性测试介质采用模拟某油田采出液,

图 1 TC4-碳钢复合管示意图

Fig.1 Schematic diagram of TC4-carbon steel composite tube

收稿日期: 2015-12-19

基金项目: 中国博士后科学基金 (2012M520604); 山西省青年科技基金 (2013021013-2); 太原理工大学青年基金 (2013T011)

作者简介:林乃明,男,1981 年生,博士,讲师,太原理工大学表面工程研究所,山西 太原 030024,电话: 0351-6010540, E-mail: lnmlz33 @126.com

用去离子水和分析纯化学试剂配制而成,其组分(g/L)^[9]: NaCl 24.5、MgCl₂ 4.2、Na₂SO₄ 1.7、CaCl₂ 1.1、NaHCO₃ 0.8、Na₂CO₃ 0.2。测试前介质溶液通入 N₂除去 O₂, 再通入 CO₂ 至饱和。利用 CS350 电化学工作站测定各 试样的开路电位、极化曲线和交流阻抗谱。采用三电 极体系,试样为工作电极,铂片为辅助电极,饱和甘 汞电极(SCE)为参比电极。

2 结果与讨论

2.1 渗钼层的特征

肉眼观察渗钼层呈银灰色,表面平整、连续,具 有一定的光反射能力。渗钼层的表面形貌如图 2a 所 示,渗钼层表面连续、均匀;表面分布着由辉光放电 过程中 Ar 离子轰击刻蚀所形成的微凸峰和凹谷。Ar 离子的轰击、溅射可实现清理、活化 TC4 合金表面, 提高工件表面温度,促进钼元素的渗入的目的^[3,5,7,8]。 图 2b 是渗钼层截面形貌的 SEM 照片。可以发现渗钼 层完整、均匀,渗层与基体之间结合良好,没有裂纹 和孔洞等缺陷。

渗钼开始后,TC4 合金表面不断吸附从钼靶中溅 射出来的钼离子,随着其表面钼浓度逐渐升高,钼离 子逐渐向内部扩散,先形成扩散层。随着渗钼过程的 继续,表层与亚表层中钼元素的浓度差减小,扩散越 来越困难,表面便形成钼的沉积层^[10]。图3给出的渗

图 2 渗钼层的表面形貌和截面形貌

Fig.2 Surface (a) and cross-sectional (b) morphologies of Mo coating

Fig.5 Component prome of Mo coaring

钼层成分分布曲线验证了渗钼层的"沉积层+扩散层" 分布特征。发现钼元素在渗层中呈梯度分布,表层的 钼元素的质量分数超过 90%。成分的梯度分布使渗层 与基体间形成结构与性能渐变的冶金结合,能够避免 基体到渗层的组织、性能的突变,保证了渗层在服役 过程中不会出现剥(脱)落现象^[11]。结合图 2b 的截面观 察结果,渗钼层的厚度大约为 15 μm。

图 4 所示渗钼层和 TC4 合金的 XRD 图谱证明了 TC4 合金表面渗钼层的形成。由图 4 可以发现,钼的 衍射特征峰最为显著,验证了渗钼层的外层为钼的沉 积层。已有研究表明,渗钼层的存在能够显著提高 TC4 合金的表面硬度,进而改善其抗塑性变形能力和耐磨 损性能^[8,10]。

2.2 电化学腐蚀行为

通过测取材料在腐蚀介质中的开路电位可判断材料在该介质中发生电化学腐蚀反应的倾向;从热力学角度分析,开路电位越正,表明发生电化学腐蚀反应的驱动力越小,材料在该腐蚀介质中越稳定^[9]。渗钼层和TC4 合金的开路电位(open circuit potential, *E*_{OCP})-时

图 4 渗钼层和 TC4 合金的 XRD 图谱

Fig.4 X-ray diffraction patterns of Mo coating and TC4 alloy

间曲线如图 5 所示。它们的开路电位从测试初始阶段 便开始正移,均随着时间的延长而增加,波动幅度较 小并逐渐趋于稳定。渗钼层和 TC4 合金在腐蚀介质中 都表现出良好的化学稳定性和钝化能力,开路电位正移 说明它们的腐蚀倾向在降低。整个测试时间内,渗钼层 的开路电位始终略低于 TC4 合金,说明渗钼层较 TC4 合金具有更高的腐蚀倾向。

通过测试材料的极化曲线,可研究电极反应过程 中电子在腐蚀界面的得失与转移;而由此获得的腐蚀 电流则可反映材料腐蚀速率的快慢^[9]。渗钼层和 TC4 合金的极化曲线如图 6 所示。由图 6 可见,渗钼层和 TC4 合金的阴极过程相似,在阳极支都表现出钝化特 征,而且未出现破钝化现象,说明它们都具有较好的 抗点蚀能力^[12,13]。TC4 合金很快进入钝化状态,并表 现出更宽的钝化区,大约在其极化曲线阳极部分的 0~2.7 V 范围内,腐蚀电流随着电位的增加变化很小, 而且维钝电流数值较低。渗钼层的活化区较宽,仅在 2.0~2.8 V 的区间内出现钝化,维钝电流也高于 TC4 合金。利用 Tafel 外推法得出测试试样的腐蚀电流,渗 钼层的腐蚀电流略高于 TC4 合金,二者的腐蚀电流在 同一个数量级。

Fig.5 E_{OCP}-time curves of Mo coating and TC4 alloy

图 6 渗钼层和 TC4 合金的极化曲线

TC4合金化学活性较高,表面连续、致密的钝化 膜化学稳定高,可阻止CI的扩散渗透,使腐蚀过程受 到抑制;同时阳极极化又促进了TC4合金表面钝化膜 的生成,故表现出低的腐蚀电流和腐蚀速率。尽管钼 本身也可形成钝化膜,但渗钼TC4外表面钼沉积层的 柱状晶结构难以保证其表面钝化膜的完整性,为CI向 内迁移提供了通道,易出现活性点,进而形成微型原 电池,促进腐蚀的发生;而且图2a显示渗钼层表面粗 糙度较大,比表面积高于TC4合金,因此渗钼层的腐 蚀电流更大^[8,13]。

极化曲线测试后,肉眼观察TC4合金没有明显变化,而渗钼层呈黑色,但表面较为平整。借助Hitachi-S4800型扫描电子显微镜观察渗钼层和TC4合金的表面腐蚀形貌,渗钼层发生均匀腐蚀,可观察到分布不均的浅蚀坑(图7a);TC4合金腐蚀轻微,表面仅能观察到砂纸打磨留下的划痕,未见明显的蚀孔和蚀坑(图7b)。

对经过极化后的渗钼层和TC4合金进行X射线衍射 分析,获得的谱线如图8所示。可见渗钼层和TC4合金 经过极化测试后,对应的衍射谱特征与极化曲线测试 前的衍射谱较为接近,说明经过极化测试后表面的腐 蚀产物膜较薄,亦可反映出渗钼层和TC4合金表面腐 蚀轻微。

图9分别给出了渗钼层和TC4合金交流阻抗的 Nyquist图。如图9所示,渗钼层和TC4合金都表现

图 7 渗钼层和 TC4 合金极化后的表面形貌

Fig.7 Surface morphologies of Mo coating (a) and TC4 alloy (b) after polarization tests

为一个简单的容抗弧,没有出现"扩散尾",表明腐蚀 过程受电化学控制。容抗弧半径的大小表征了电极/ 溶液界面传递电阻的大小,也直接反映了测试样品的 耐蚀性;半径越大,表明腐蚀介质的溶解阻力越大, 在该介质中的稳定性越好,耐蚀性也就越好^[14]。

采用由图 10 所示的等效电路对获得的阻抗谱进行 拟合,利用 Zview 软件进行处理数据及阻抗谱的等效电 路分析。图中, *R*_s为溶液电阻,*Q*为常相位角元件,*R*_{ct}为 电荷转移电阻。*Q*值反映了测试试样表面腐蚀产物膜的 致密程度,*Q*越大,表面致密性越差,反映出材料的耐 蚀性能差。*R*_{ct}反映了 TC4 合金表面钝化层和渗钼层阻 挡腐蚀介质穿透涂层的能力,*R*_{ct}越大,耐蚀性能越好^[14]。

由表 1 所示的电化学测试结果可见,渗钼层在模 拟油田介质中的耐蚀性略低于 TC4 合金。已有研究结 果表明,在不同测试条件下,渗钼层均表现出优异的 耐磨性^[5,7,8],在没有显著降低 TC4 合金耐蚀性的前提 下,选择性使用渗钼 TC4 合金,可满足在油田环境下 抗磨、耐蚀的服役要求。

图 8 渗钼层和 TC4 合金极化后的 XRD 图谱

图 9 渗钼层和 TC4 合金的奈奎斯特图

Fig.9 Nyquist plots of Mo coating and TC4 alloy

图 10 渗钼层和 TC4 合金的等效电路图

Fig.10 Equivalent circuit model of Mo coating and TC4 alloy

表 1 电化学测试结果

Table 1 Results of electrochemical tests

Material	TC4 alloy	Mo coating
$E_{\rm ocp}/{ m V}$	-0.0842	-0.148
$E_{\rm corr}/{ m V}$	-0.435	-0.244
$i_{\rm corr}/{\rm A~cm}^{-2}$	2.492×10^{-7}	2.992×10 ⁻⁷
$Q/\mu F \text{ cm}^{-2}$	23.972	110.636
$R_{\rm ct}/\Omega \cdot {\rm cm}^2$	9.692×10^5	4.103×10^{4}

3 结 论

1) 对TC4合金进行等离子表面渗钼合金化处理, 可以获得均匀、连续的渗钼层。

2) 在模拟油田介质中,渗钼层的开路电位略低于 TC4合金,即渗钼层的腐蚀倾向高于TC4合金;渗钼层 的腐蚀电流也略高于TC4合金,但二者在同一个数量 级。

3) 渗钼处理没有显著降低TC4合金的耐蚀性,亦 具有优异的耐磨性,有望满足TC4合金作复合管内衬 服役于油田环境时兼具良好耐蚀、抗磨的需要。

参考文献 References

- Li Helin(李鹤林), Zhang Yaping(张亚平), Han Lihong(韩礼 红). Steel Pipe (钢管)[J], 2007, 36(6): 1
- [2] Tian Wei(田伟), Xie Faqin(谢发勤), Zhao Xuehui(赵雪会). Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2012, 41(3): 482
- [3] Wang Zhenxia(王振霞), He Zhiyong(贺志勇), Wang Yingqin (王英芹) et al. Rare Metal Materials and Engineering (稀有 金属材料与工程)[J], 2012, 41(7): 1186
- [4] Guo Minghai(郭明海), Liu Junyou(刘俊友), Pang Yusi(庞于思) et al. Steel Pipe (钢管)[J], 2013, 42(1): 11
- [5] Qin Lin(秦林), Li Zhe(李哲), Ma Lianjun(马连军) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2009, 38(12): 2226

- [6] Lin Naiming, Zhang Hongyan, Zou Jiaojuan et al. Reviews on Advanced Materials Science[J], 2014, 38(1): 61
- [7] Ben Nengjun(贲能军). Tribological Behaviors of Ti6Al4V with Surface Plasma Molybdenized (钛合金表面等离子渗 Mo 摩 擦 行 为 的 研 究)[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 46
- [8] Ren Beilei(任蓓蕾). Research on Corrosion and High Temperature Oxidation Resistance of Mo and Mo-Cr Alloyed Layers on TC4 (TC4 合金等离子渗 Mo 与 Mo-Cr 共渗的腐 蚀及高温氧化性能研究)[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011: 19
- [9] Lin Naiming, Li Maolin, Zou Jiaojuan et al. Journal of Materials Engineering and Performance[J], 2013, 22(5): 1365
- [10] Li Zhe(李 哲). Diffusion Kinetics of Mo-based Plasma Alloying on Ti6A14V and its Wear Properties (Ti6A14V 表面

等离子 Mo 基合金化扩散动力学及磨损性能研究)[D]. Taiyuan: Taiyuan University of Technology, 2010: 25

- [11] Tang Jingang(汤金钢), Liu Daoxin(刘道新), Tang Changbin (唐长斌) et al. Rare Metal Materials and Engineering (稀有 金属材料与工程)[J], 2013, 42(2): 331
- [12] Dong Lixin(董李欣), Wang Huaming(王华明). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2009, 38(6): 1010
- [13] Sui Jiehe(隋解合), Wu Ye(吴 治), Wang Zhixue(王志学) et al. Rare Metal Materials and Engineering (稀有金属材料与 工程)[J], 2007, 36(2): 255
- [14] Wu Lei(吴 磊), Yan Mi(严 密), Ying Huagen(应华根) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2007, 36(8): 1398

Corrosion Resistance of Molybdenizing Coating on TC4 Alloy in Simulated Oilfield Medium

Lin Naiming¹, Xie Ruizhen¹, Qin Lin¹, Tian Wei^{1,2}, Guo Junwen¹, Tang Bin¹

(1. Taiyuan University of Technology, Taiyuan 030024, China)

(2. China United Northwest Institute for Engineering & Research, Xi'an 710082, China)

Abstract: Plasma surface alloying process was employed to prepare a molybdenizing coating on TC4 alloy. Microstructural characteristics of the molybdenizing coating were analyzed using optical microscope (OM), glow discharge optical emission spectrometer analysis (GDOES) and X-ray diffraction (XRD). Corrosion resistance of the molybdenizing coating and TC4 alloy in simulated oilfield medium was estimated via electrochemical measurements. The results reveal that the uniform and continuous molybdenizing coating is composed of a deposition layer and a diffusion layer. The molybdenizing coating presents slightly lower corrosion resistance than TC4 alloy. **Key words:** TC4 alloy; molybdenizing; corrosion

Corresponding author: Lin Naiming, Ph. D., Lecturer, Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China, Tel: 0086-351-6010540, E-mail: lnmlz33@126.com