Gd 掺杂 CeB_6 基阴极材料的制备及性能

梁超 t^{1} ,张 忻¹,刘洪亮¹,张繁星¹,王 杨¹,郑 亮¹,张久兴^{1,2}

(1. 北京工业大学 新型功能材料教育部重点实验室,北京 100124)

(2. 合肥工业大学, 安徽 合肥 230009)

摘 要:以 CeB₆和 GdB₆粉末为原料,采用放电等离子烧结技术(SPS)制备了高致密的多元稀土六硼化物 Gd_xCe_{1-x}B₆(x=0.0~1.0)多晶块体。系统研究了 Gd 掺杂对 Gd_xCe_{1-x}B₆多晶块体的物相组成、力学性能、电阻率及热发射性 能的影响。研究结果表明,在烧结温度为 1550 ℃,烧结压强为 50 MPa,保温 5 min 的工艺条件下,可获得高致密的 Gd_xCe_{1-x}B₆单相块体材料。烧结块体的维氏硬度可达 24.02 GPa。热电子发射性能测试结果表明,适量的 Gd 掺杂可以显 著提高电子发射性能,其中 Gd_{0.1}Ce_{0.9}B₆成分块体具有最佳的热电子发射性能,在 1600 ℃,4 kV 外加电压条件下,发 射电流密度达到 101.57 A cm⁻²,零场电流密度达到 21.94 A cm⁻²,平均有效逸出功为 2.34 eV,优于同一条件下 GdB₆和 CeB₆块体的热发射性能。

关键词: CeB₆基阴极材料; Gd 掺杂; 热电子发射性能; 放电等离子烧结

稀土六硼化物(REB₆, RE=La, Ce, Gd, Sm 等)因其 特殊的晶体结构,具有熔点高、硬度大、化学稳定性 高等优异性能,作为优秀的阴极材料,应用于雷达、 航空航天、电子工业、仪器仪表、医疗器械等多个领 域^[1-5]。其中, CeB₆和 GdB₆具有相对较低的逸出功而 在热电子发射方面具有良好的应用前景^[6-9]。Zhang 等^[7]采用气相沉积法制备的 GdB₆ 纳米线其场发射开 启电压低于 LaB₆纳米线,逸出功约为 1.5 eV。同时, CeB₆与 LaB₆相比,具有更好的抗碳污染能力,且 1527 ℃以下的蒸发率比 LaB₆低 40%,因而作为热阴 极具有更长的使用寿命^[8,9]。另有研究发现,多元稀土 六硼化物与二元相比,具有更低的逸出功和更好的热 发射性能,因此受到了国内外学者的关注^[10,11]。但目前 传统的热压烧结法制备出的多晶块体致密度较低,具有 较大的逸出功,直接影响了其发射性能,限制了其应用 范 围^[12,13]。因此,本实验以CeB₆为研究对象,采 用放电等离子烧结技术制备 Gd 掺杂 CeB₆ 基块体材 料,并系统研究 Gd 掺杂对 Gd_xCe_{1-x}B₆多晶块体热电 子发射性能的影响规律。

1 实 验

将不同比例的GdB₆(纯度为95.5%)和CeB₆(纯 度为94.8%)混合粉末球磨后装入*Φ*20 mm的石墨模具 中,利用SPS设备(型号为SPS-3.20-MV)在真空度低于8 Pa的条件下烧结成块体材料。烧结参数如下:烧结压 强为50 MPa,升温速率为120 ℃/min,保温时间为5 min,烧结温度为1350~1550 ℃。

1002-185X(2016)12-3267-04

采用 X 射线衍射仪(D8 Advance)分析 Gd_xCe_{1-x}B₆ 烧结体的物相组成,用阿基米德排水法测量烧结样品 的密度,用 HXD-1000 数字显微硬度计测量烧结块体 的硬度,用 ULVAC ZEM-2 型 Seebeck 系数和电阻率 测试仪测试烧结块体的电阻率。烧结块体的热电子发 射性能测试在电子科技大学电子发射性能测试仪上进 行,测试温度为 1400~1600 ℃,测试样品发射面积为 $1 \times 1 \text{ mm}^2$,测试时真空度为 5×10^{-5} Pa,阳极电压为脉 冲电压,频率为 120 Hz,脉冲宽度为 20 μs。

2 结果与讨论

2.1 烧结块体的制备及表征

图 1 为 GdB₆ 和 CeB₆ 按 Gd_{0.1}Ce_{0.9}B₆ 化学计量比配 比的混合粉末在不同温度烧结后块体的 XRD 图谱。 从图中可以看出,烧结温度为 1350 ℃时,除了主相 Gd_{0.1}Ce_{0.9}B₆ 外,还存在少量的 GdB₄ 相。随着烧结温 度的进一步升高,GdB₄ 相的含量逐渐减少。当温度达 到 1550 ℃时,GdB₄ 相完全消失。这说明提高烧结温 度可以获得单相的块体材料。图 2 为在 1550 ℃,50

收稿日期: 2015-12-28

基金项目: 国家自然科学基金(50871002); 北京市教委科技计划面上项目 (KM201510005001)

作者简介:梁超龙,男,1987年生,硕士,北京工业大学材料科学与工程学院,北京 100124,电话: 010-67392169, E-mail: linalcl@163.com

MPa 压力条件下,保温 5 min 烧结得到的 Gd_xCe_{1-x}B₆ 块体材料的物相组成。从图中可以看出,每个衍射峰 都很尖锐且峰强很高。表明结晶良好,所有物相空间 群均为 Pm-3m,属立方晶系。这表明 GdB₆和 CeB₆混 合粉末经放电等离子烧结后能形成单相固溶体。从图 中还可以看出,衍射峰的位置随样品中 GdB₆含量递 增而均向右偏移,说明晶格常数在逐渐变小,这是因 为 Ce 原子半径(0.182 nm)比 Gd 原子半径(0.180 nm) 大,Gd 原子替代 Ce 原子形成了单相固溶体后晶格常 数变小。

2.2 烧结体密度和力学性能

表 1 为用排水法测量的在 1550 ℃, 50 MPa 烧结 的 $Gd_xCe_{1-x}B_6$ 块体材料的密度。可以看到, $Gd_xCe_{1-x}B_6$ 块体材料的致密度可达 91.5%以上, 有较高的致密度。 这是因为 $Gd_xCe_{1-x}B_6$ 块体的烧结是在高温高压下进行 的。图 3 给出了 $Gd_xCe_{1-x}B_6$ (x=0.0~1.0)块体材料的维氏 硬度随 Ce 含量的变化曲线。其中 CeB₆ 硬度为 20.51 GPa^[14]。从图中可以看出, 烧结体具有良好的维氏硬度,

图 1 Gd_{0.1}Ce_{0.9}B₆ 混合粉末在不同温度烧结后块体的 XRD 图谱

Fig.1 XRD patterns of $Gd_{0.1}Ce_{0.9}B_6$ polycrystalline sintered at different temperatures

图 2 1550 ℃烧结后 Gd_xCe_{1-x}B₆ 块体的 XRD 图谱

最高可达24.02 GPa。其主要原因是GdB₆具有比CeB₆ 更高的硬度,CeB₆中掺入GdB₆会提高Gd_xCe_{1-x}B₆的硬 度,从而使得热阴极在高温环境工作过程中有很好的 稳定性。Chen等^[15]制备的LaB₆单晶体的维氏硬度为 20.7 GPa,相比可知,本研究中的Gd_xCe_{1-x}B₆块体维氏 硬度已达到了单晶水平。

2.3 烧结体电阻率

理想的热阴极材料除要有良好的热发射性能外, 作为"直热式"阴极(通过自身加热发射电子)还需要 具有较大的电阻率来自身加热,电阻率高低关系到此 类阴极材料的发射性能和相关器件的制备。本研究采 用四探针法测量了1550 ℃烧结的Gd_xCe_{1-x}B₆块体材料 在100~500 ℃时的电阻率,如图4所示。从图中可以看 出,Gd_xCe_{1-x}B₆块体的电阻率随着Gd含量的降低呈下 降趋势,随测试温度的升高而呈线性增加趋势。表现 出典型的金属导电特性,室温电阻率都在30 μΩ cm以 上,有望作为"直热式"阴极应用。

2.4 烧结体热电子发射性能

1550 0

对Gd_xCe_{1-x}B₆块体分别在1400、1500和1600 ℃ 3 种温度下进行了脉冲发射特性测试。图5是根据测试实验结果,采用肖特基直线外延法计算得到的Gd_xCe_{1-x}B₆

表1 1550 ℃烧结的Gd_xCe_{1-x}B₆块体材料的密度

 Table 1
 Density of $Gd_x Ce_{1-x}B_6$ polycrystalline sintered at

15	50 C		
Sample	Theory density /g cm ⁻³	Actual density /g cm ⁻³	Relative density/%
CeB ₆	4.800	4.435	92.4
$Gd_{0.1}Ce_{0.9}B_6$	4.850	4.469	92.1
$Gd_{0.2}Ce_{0.8}B_6$	4.901	4.503	91.9
$Gd_{0.3}Ce_{0.7}B_6$	4.951	4.556	92.0
$Gd_{0.4}Ce_{0.6}B_6$	5.001	4.578	91.5
GdB_6	5.303	4.868	91.8

图 3 Gd_xCe_{1-x}B₆烧结块体的维氏硬度随 Ce 含量变化曲线

Fig.3 Vickers hardness curves of Gd_xCe_{1-x}B₆ polycrystalline as a function of Ce content

图 4 Gd_xCe_{1-x}B₆块体的电阻率随测试温度的变化规律

块体的零场发射电流密度。从图中可以看出,随着Gd 含量的降低, $Gd_xCe_{1-x}B_6$ 块体的发射性能逐渐提高。在 2 kV电压下, GdB_6 的发射电流密度高达10.4 A/cm²。

当Gd掺杂量x=0.1时, $Gd_{0.1}Ce_{0.9}B_6$ 块体在同条件下的发 射电流密度高达55.4 A/cm², 且在4 kV电压下发射电流 密度高达101.57 A/cm²,零场电流密度为21.94 A/cm²。 这说明适当掺杂Gd可以提高阴极材料的发射性能。

基于热电子发射理论,利用上述实验结果计算得 到的零场发射电流密度,采用理查生公式(1)可以计 算出各成分块体材料的有效逸出功,如表2所示。

$$\boldsymbol{\Phi}_{\rm e} = kT \ln \left(\frac{AT^2}{j_0}\right) \tag{1}$$

式中, Φ_e 为有效逸出功;k为玻尔兹曼常数,取值为8.62 ×10⁵ eV/K; A为发射常数,取19.1A/(cm² K²)^[17]; j_0 为零 场发射电流密度; T为阴极测试绝对温度。从表2给出 的结果可以看出,随着Gd含量的降低,Gd_xCe_{1-x}B₆块 体的逸出功呈先升高再降低再升高趋势,最低可降至 2.34 eV。说明适当掺杂Gd可以降低阴极材料的逸出 功,提高其发射性能。

图 5 肖特基直线外延法计算的 Gd_xCe_{1-x}B₆块体零场电流密度

Fig.5 Calculated j_0 of Gd_xCe_{1-x}B₆ polycrystalline by schottky line: (a) x=0.1, (b) x=0.2, (c) x=0.3, (d) x=0.4, (e) x=1.0, and (f) x=0.0

|--|

 Table 2
 Effective work function of Gd_xCe_{1-x}B₆ polycrystalline

	$j_0/A \text{ cm}^{-2}$			<i>Φ</i> / . U
x	1400 °C	1500 °C	1600 °C	$\Psi_{\rm e}/{ m ev}$
0.0	7.38	9.79	12.39	2.39
0.1	8.11	10.73	21.94	2.34
0.2	4.4	9.28	11.55	2.42
0.3	_	—	1.09	2.89
0.4	—	—	3.34	2.71
1.0	—	—	3.48	2.71

3 结 论

1) 采用放电等离子烧结技术可以制备高致密度 Gd_xCe_{1-x}B₆ 块体材料,烧结块体力学性能优异,维氏 硬度可达 24.02 GPa。

2) 适当的 Gd 掺杂可以显著提高块体材料的电子 发射性能,其中 Gd_{0.1}Ce_{0.9}B₆块体材料具有最佳的热发 射性能,在 1600 ℃,4 kV 外加电压条件下,发射电 流密度达到 101.57 A cm⁻²,零场电流密度达到 21.94 A cm⁻².

3) 经计算得到 Gd_{0.1}Ce_{0.9}B₆ 在不同温度下的平均 有效逸出功为 2.34 eV,在同样条件下优于 GdB₆和 CeB₆块体样品的热发射性能。

参考文献 References

- Monnier R, Delley B. *Physical Review B*[J], 2004, 70(19): 3352
- [2] Late D J, Singh V R, Sinha S et al. Appl phys A[J], 2009, 97(4): 905
- [3] Chen C H, Aizawa T, Iyi N et al. Journal of Alloys and Compounds[J], 2004, 366(1): 6
- [4] Hossain F M, Riley D P, Murch G E. Physical Review B[J], 2005, 72(23): 1
- [5] Takeda M, Fukuda T, Kurita Y et al. Proceedings of the 22nd International Conference on Thermoelectrics[C]. Le Grand Motte: IEEE Press, 2003: 259
- [6] Kudintseva G A, Kuznetsova G M, Bondarenko V P et al. Poroshkovaya Metallurgiya[J], 1967, 2: 45
- [7] Zhang H, Zhang Q, Tang J et al. J Am Chem Soc[J]. 2005, 127: 13 120

- [8] Takeda M, Fukuda T, Domingo F et al. Solid State Chem[J], 2004, 177(2): 471
- [9] Togawa K, Shintake T, Inagaki T et al. Phys Rev Spec Top Accel Beams[J], 2007, 10: 20 703
- [10] Bao L H, Zhang J X, Zhang N et al. Physica Scripta[J], 2012, 85: 35 710
- [11] Bao L H, Zhang J X, Zhou S L et al. Chinese Physics B[J], 2011, 20(5): 58 101
- [12] Storms E K. J Appl Phys[J], 1981, 52(4): 2961
- [13] Storms E K, Mueller B A. J Appl Phys[J], 1981, 52(4): 2966
- [14] Zhou Shenlin(周身林), Zhang Jiuxing(张久兴), Liu Danmin (刘丹敏) et al. Journal of Inorganic Materials (无机材料学 报)[J], 2009, 24(4): 793
- [15] Chen C H, Xuan Y, Otani S et al. Journal of Alloys and Compounds[J], 2003, 350 (1-2): 4
- [16] Bao L H, Zhang J X, Zhou S L. Journal of Rare Earths[J], 2011, 29(6): 580
- [17] Togawa K, Shintake T, Inagaki T et al. Physical Review Special Topics-Accelerators and Beams[J], 2007, 10(2): 20 703

Preparation and Properties of the CeB₆ Base Cathode Material with Gd Doping

Liang Chaolong¹, Zhang Xin¹, Liu Hongliang¹, Zhang Fanxing¹, Wang Yang¹, Zheng Liang¹, Zhang Jiuxing^{1, 2} (1. Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China) (2. Hefei University of Technology, Hefei 230009, China)

Abstract: GdB₆ and CeB₆ were used as raw materials, and hexaborides Gd_xCe_{1-x}B₆ (x=0.0~1.0) bulk materials were prepared by spark plasma sintering (SPS). The effects of Gd doping on the phase composition, the mechanical properties, the resistivity and the thermionic emission properties of the CeB₆ base material were studied. The results show that high density Gd_xCe_{1-x}B₆ single-phase block material can be obtained with the sintering parameters including the temperature 1550 °C, the pressure 50 MPa and holding time 5 min. And the Vickers hardness of the sintered samples can reach 24.02 GPa. The thermionic emission properties results show that the proper amount of Gd doping can significantly improve the electron emission properties of bulk materials. Gd_{0.1}Ce_{0.9}B₆ composition block has the best thermal emission properties; its emission current density is 101.57 A/cm², the zero field current density is 21.94 A/cm², and the average effective work function is 2.34 eV under the applied voltage condition of 4 kV at 1600 °C, which are better than those of GdB₆ and CeB₆ block samples under the same conditions.

Key words: CeB₆ base cathode material; Gd doping; thermionic emission property; spark plasma sintering

Corresponding author: Zhang Xin, Ph. D., Associate Professor, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China, Tel: 0086-10-67392661, E-mail: zhxin@bjut.edu.cn