Zr-Sn-Nb 合金织构与力学性能

张福全¹,马永富¹,周惦武²,刘金水¹,宋建力³

(1. 湖南大学 材料科学与工程学院,湖南 长沙 410082)
(2. 湖南大学 汽车车身先进设计制造国家重点实验室,湖南 长沙 410082)
(3. 中核北方核燃料元件有限公司,内蒙古 包头 014035)

摘 要:对 Zr-Sn-Nb 合金带材在 25、200、400 ℃下进行拉伸试验,采用背散射电子衍射(EBSD)技术研究了织构对锆 合金力学性能的影响。结果表明,带材具有较强的{0001}基面双峰织构,[0002]基轴在 TD-ND 平面内,并向 TD 方向 倾斜约 30°,大晶粒多为{0001}<1010>和{0001}<1120>取向,小晶粒为{0001}<1010>取向。织构造成带材力学性能呈 现各向异性, σ_s在 TD 方向最高,在 RD 方向最低; σ_b在 RD 方向最高,在 45°方向最低。随着温度的升高,σ_s与 σ_b都 有所降低, Δσ_s与 Δσ_b也随之减小,且 Δσ_s较 Δσ_b受温度的影响更为明显。带材的延伸率随温度升高而增大,但 400 ℃ 时的延伸率较 200 ℃时的低,晶界强度的下降以及动态应变时效是造成这种现象的主要原因。

关键词: Zr-Sn-Nb 合金; 拉伸性能; 织构; 各向异性

中图法分类号: TG146.4 ⁺ 14 文献标识码: A 文章编号: 1002-185X(2017)03-0687

锆合金的热中子吸收截面积较小,抗腐蚀性能优 异,并具有良好的加工成形性和力学性能,因而被广 泛用于制备压水堆核电站中的燃料包壳管以及定位格 架^[1,2]。力学性能作为锆合金的一项重要性能指标,决 定了锆合金燃料组件的加工成形性以及安全使用寿 命。因此,研究锆合金织构与力学性能之间的关系, 对改善锆合金力学性能以及合理制定燃料组件成形工 艺具有重要的意义。

锆合金经过一系列的塑性加工后,会形成明显的 织构,其对燃料组件的后续成形性、力学性能以及腐 蚀性能等会造成重要的影响^[3,4]。因此,国内外研究学 者在锆合金的变形机制、织构形成机理以及织构演变 规律等方面开展了大量的研究工作。Tenckhoff^[5]对锆 合金的变形机制与织构特征做了详细的评述,一致认 为柱面<a>滑移是锆合金最易开启的滑移系,基面<a> 滑移以及锥面<c+a>滑移为主要的辅助滑移系。栾佰峰 等人^[6-8]对不同种类锆合金的织构特征以及织构演变 规律做了大量而细致的研究,发现{0001}基面双峰织 构为锆合金典型的织构特征,而且织构类型会因其处理 状态不同而不同,轧制织构为{0001}<1010>,再结晶 织构为{0001}<1120>。Gerspach等^[9]认为轧制织构向再 结晶织构的转变是由再结晶择优形核引起的;而 Zhu 等[10]认为该转变发生在再结晶晶粒长大阶段。

本研究对一种国产 Zr-Sn-Nb 系新型锆合金的织 构与力学性能进行了研究,并结合锆合金的变形机制 探讨了织构以及温度对 Zr-Sn-Nb 合金力学性能的影 响,研究结果期望为改善锆合金力学性能及制定核燃 料组件成形工艺提供有益的参考。

1 实 验

实验材料为一种国产 Zr-Sn-Nb 系新型锆合金,成 分(质量分数,%)为: Sn 0.8~1.2、Nb 0.9~1.1、 少量的 Fe 和 O、余为 Zr。合金经过一系列轧制及退 火处理,最终被加工成厚度为 0.68 mm 的带材。本实 验从带材上取样进行织构与力学性能研究。

织构检测在配备有 EBSD 组件的 QUANTA-200 扫描电子显微镜上进行。对试样 RD-TD 面取样分析, 采用电解抛光方法制备 EBSD 试样,电解抛光液为 10%HClO₄+90%C₂H₅OH,抛光电压为 20 V,抛光电流 为 0.2~0.4 A,温度为–20~–40 ℃,抛光时间为 30 s。 按 GB/T228-2002 和 GB/T4338-2006 将带材沿轧制方 向(RD)、45 °方向以及横向(TD)切割成标准拉伸试样, 在 MTS810 电液伺服万能材料试验机上进行拉伸试 验,拉伸速率为 2 mm/min,拉伸温度分别为 25、200、

收稿日期: 2016-03-15

基金项目:湖南省科技计划项目(2014GK3112)

作者简介:张福全,男,1962 年生,博士,教授,湖南大学材料科学与工程学院,湖南 长沙 410082,电话: 0731-88821497, E-mail: zhangfq@hnu.edu.cn

400 ℃。高温环境由配套的高温炉及控制精度为± 1 ℃的温控系统提供。为保证拉伸试样各部位受热均 匀,分别在拉伸试样平行长度内两端各固定一支热电 偶,在试验温度保温 20 min 后进行加载,直至试样断 裂。

2 结果与讨论

2.1 显微组织及织构

图 1 为 Zr-Sn-Nb 合金带材的金相显微组织及第二 相 SEM 形貌。由图 1a 可见, Zr-Sn-Nb 合金由等轴状 的 α 晶粒组成,晶粒尺寸为 5~8 μm,晶粒内部以及晶

图 1 Zr-Sn-Nb 合金显微组织

- Fig.1 Microstructures of Zr-Sn-Nb alloy: (a) metallographic structure and (b) SEM morphologies of SPPs
- 界上弥散分布着细小的第二相颗粒。由图 1b 可见,

Zr-Sn-Nb 合金中存在 2 种尺寸的第二相(如图 1b 中的 P₁、P₂所示),大颗粒尺寸约为 100 nm,小颗粒尺寸约 为 50 nm。耿迅等^[11]在对一种相对成熟的 Zr-Sn-Nb 系 合金第二相的研究中也发现了类似现象,并确定了较 大尺寸粒子为 Zr-Nb-Fe 粒子,较小尺寸粒子为 β-Nb 粒子。Shishov^[12]、Toffolon^[13]等对不同成分 Zr-Sn-Nb-Fe 合金中的第二相种类进行了研究,发现当 Zr-1.0Sn-1.0Nb 系合金中 Fe 含量较少时,第二相为 β-Nb 粒子以及 HCP 结构的 Zr(Nb, Fe)₂粒子。

图 2 为 Zr-Sn-Nb 合金带材的极图和反极图。从图 2a 可以看出,带材呈现出较强的 {0001 } 基面双峰织构,其中[0002]基轴在带材 TD-ND 平面内,并向 TD 方向倾斜约 30°,结合图 2b,可以发现大多数晶粒的 <1010>//RD,而少部分晶粒的 <1120>//RD。对纯锆 以及其它锆合金(如 Zr-2、Zr-4、N18)变形过程中织构 转变特征进行研究,发现锆及其合金在冷轧变形过程 中也会形成 {0001 } 基面双峰织构,且晶粒取向为 <1010>//RD;冷轧带材在经过中间退火或成品退火 后,晶粒会围绕 C 轴旋转 0°-30°,晶粒取向最终由 <1010>//RD 转变为<1120>//RD^[6,14]。

图 3 为 Zr-Sn-Nb 合金带材 EBSD 组织重构后得到的晶粒取向差角分布图。可以看出, Zr-Sn-Nb 合金带材的晶粒取向差集中在 5 °和 30 °附近。其中 5 °处密度最高,约为10%;而 30 °处次之,约为9%。由于 Zr-Sn-Nb 合金带材组织中存在一定数量的由于变形所产生的小角度晶界,因此晶粒取向差会在 5 °处出现峰值;另外,由于本研究采用的 Zr-Sn-Nb 合金带材中存在着 {0001 } <1010>和 {0001 } <1120>2 种类型的织构,而这 2 种织

图 2 Zr-Sn-Nb 合金极图、反极图

构的取向关系正好为 30 ~0001>,因此带材的晶粒取 向差会在 30°处出现另一峰值。

为进一步认识 Zr-Sn-Nb 合金带材的织构特征,将 带材退火后的再结晶晶粒按照尺寸大小进行分类,并 分别做出这2种尺寸晶粒的反极图。如图4所示,为 Zr-Sn-Nb 合金带材 RD-TD 面大尺寸晶粒(>5 µm) 和小 尺寸晶粒(<2 µm)的晶粒取向成像图以及反极图。从图 4a 和图 4b 分别可以看出,大尺寸晶粒中既有{0001} <1010>取向,也有{0001}<1120>取向,而小尺寸晶 粒基本全部为{0001}<1010>取向,这与 Chen^[8]、Zhu^[10] 等的研究结果一致。分析产生这种现象的主要原因为: 一方面冷轧变形后的锆合金在再结晶退火时发生择优 形核与长大, <1120>//RD 的晶核相对于<1010>//RD 的晶核更容易长大,这种择优长大机制造成了再结晶 时带材的织构逐渐由<1010>//RD 向<1120>//RD 转变 ^[7];另一方面对于 Zr-Sn-Nb 系合金,由于合金中添加 的合金元素种类较多,在合金晶粒内部及晶界上会弥 散分布着大量细小的第二相颗粒,在锆合金冷轧带材再 结晶退火过程中这些第二相颗粒会对晶界造成较强的

钉扎作用,阻碍晶界的迁移,从而延缓了晶粒由 <1010>//RD向<1120>//RD的转变^[8]。因此,Zr-Sn-Nb 合金带材的再结晶组织中尺寸较大的晶粒多为 <1120>//RD取向,同时存在部分<1010>//RD取向, 而尺寸较小的晶粒基本全部为<1010>//RD取向。

2.2 拉伸力学性能

图5给出了不同温度下Zr-Sn-Nb合金带材的拉伸 曲线。可以发现 Zr-Sn-Nb 合金拉伸曲线呈现 5 个明显 的阶段:弹性变形阶段、屈服阶段、均匀塑性变形阶 段、不均匀集中塑性变形阶段以及断裂阶段。与 Zr-Nb、Zr-4 等合金的拉伸曲线不同, Zr-Sn-Nb 合金带材 的拉伸曲线出现了明显的屈服平台。有研究发现 M5(Zr-Nb-O)合金的拉伸曲线也有类似的屈服平台^[15], O 原子的存在可能是产生这种现象的主要原因。与 M5 合金类似,本研究所采用的 Zr-Sn-Nb 合金含有少 量的 O 原子杂质。Zr 和 O 的原子半径分别为 0.16 和 0.06 nm, O 以间隙原子的方式存在于 Zr 中^[16], 而间 隙式溶质原子往往择优分布在位错线上,形成间隙原 子"气团",将位错牢牢钉扎住。屈服平台正是"气团" 与位错之间的相互作用产生的。从图 5 中可看出,随 着温度的升高,Zr-Sn-Nb 合金带材的屈服强度和抗拉 强度都出现了明显的降低,而塑性则表现为先升高再 降低。此外,还可看出 Zr-Sn-Nb 合金带材的力学性能 呈现出明显的各向异性。无论是室温还是高温,屈服 强度在 TD 方向最高; 抗拉强度在 RD 方向最高, 45° 方向最低:25 ℃与200 ℃下,延伸率在45 °方向最高, TD 方向最低,当温度升高到 400 ℃时,延伸率在 RD 方向最高,TD 方向最低。随着温度的升高,带材各个 方向上的力学性能差异逐渐减小,其中 $\Delta \sigma_{s}(\sigma_{s}^{max} - \sigma_{s}^{min})$ 受温度的影响要高于 $\Delta \sigma_{\rm b}(\sigma_{\rm b}^{\rm max} - \sigma_{\rm b}^{\rm min})$ 。

屈强比(σ_s/σ_b)是材料屈服强度与抗拉强度的比值, 对材料的冲压成形性能影响较大。σ_s/σ_b数值小,板材

图 4 Zr-Sn-Nb 合金不同尺寸晶粒的取向成像图及反极图

第46卷

Fig.4 Orientation imaging microscopy OIM images (a, c) and the corresponding inverse pole figures (b, d) for two kinds of grains of Zr-Sn-Nb alloy: (a, b) >5 μm and (c, d) <2 μm</p>

由屈服到破裂前的塑性变形阶段长,有利于冲压成形; 此外,屈强比与成形零件的回弹也有密切的关系, σ_s/σ_b 数值小,回弹也小,故成形时定形性较好。Zr-Sn-Nb 合金带材的 σ_s/σ_b 在 RD 方向最小,TD 方向最大,且 随着温度的升高 σ_s/σ_b 逐渐减小。

锆为密排六方金属, c/a=1.593(<1.732), (1010) 面原子的平均密度最高。Chalmers 和 Martius^[17]提出金 属在发生塑性变形时,位错更倾向于在最密排面上沿 着最密排方向运动。根据 Chalmers 和 Martius 的假设, 锆的 c/a <1.732, <a>位错在柱面上滑移的阻力最小。 因此, 锆及其合金在发生塑性变形时优先滑移系为柱 面<a>滑移。有研究发现^[18], 锆及其合金在 76~1100 K 温度范围内发生塑性变形时,均可以观察到柱面<a> 滑移的开启。Von Mises 指出,多晶体要完成连续均匀 的塑性变形,至少需要同时拥有5个独立的滑移系, 而{1010}<1120>滑移系族最多只能提供 2 个独立的 滑移系^[19],因此,还需要其它滑移系的支持。对于锆 合金,除了柱面<a>滑移以外,基面<a>滑移以及锥面 <c+a>滑移在受力合适的情况下,也会成为辅助滑移 系^[5]。Bailey^[20]和 Akhtar^[21]等分别在实验中观察到了 锆合金基面<a>滑移迹线和锥面<c+a>滑移迹线。对于 给定的变形体系,当滑移面所受到的分切应力大于临 界剪切应力时,滑移启动,材料开始发生屈服。由 Schmid 定律可知,材料的屈服强度 σ_s 与 Schmid 因子 大小μ成反比,当μ较小时,材料不易发生屈服,称 为硬取向; 当 µ 较大时, 材料容易发生屈服, 称为软 取向。

为进一步认识 Zr-Sn-Nb 合金带材屈服强度的各向异性,本实验分别对带材柱面<a>滑移以及基面<a> 滑移在不同取向上的 Schmid 因子进行了计算统计,结 果如图 6 所示。从图 6a~6c 可以看出,带材不论在何 方向受力,大部分晶粒柱面<a>滑移的 Schmid 因子较 高,处于有利滑移取向。同样,从图 6d~6f 可以看出, 带材在 RD 方向以及 45 °方向受力时,大部分晶粒基面 <a>滑移的 Schmid 因子较低,处于不易滑移取向;而 在 TD 方向受力时,大部分晶粒基面<a>滑移的 Schmid 因子较高,处于有利滑移取向。

表1给出了带材在不同方向受力时,柱面<a>滑移 以及基面<a>滑移的 Schmid 因子加权平均值。可以看 出,柱面<a>滑移的 Schmid 因子在 RD 方向最大,在 TD 方向最小,而基面<a>滑移的 Schmid 因子在 TD 方 向最大,在 RD 方向最小。此外,由于开启基面<a> 滑移所需要的临界分切应力要明显高于开启柱面<a> 滑移所需要的临界分切应力^[5]。综合分析可知带材在 RD 方向拉伸时更容易发生屈服。因此,Zr-Sn-Nb 合 金带材的屈服强度在 RD 方向最低,在 TD 方向最高。 随着温度的升高,原子结合强度降低,位错运动阻力 减小,开启滑移所需要的临界分切应力减小,同时晶 界强度降低,晶粒之间更容易协调变形,因此屈服强 度与抗拉强度均随着温度的升高而有所降低,且 $\Delta \sigma_s$ 、 $\Delta \sigma_b$ 也随之减小。

通常,随着温度的升高,材料的塑性会得到提高, 但在本实验中发现,在400 ℃进行拉伸时,Zr-Sn-Nb 合金带材的延伸率反而没有 200 ℃时的高,Myung 等^[22]在对 Zr-1.5Nb-0.4Sn-0.2Fe 合金的拉伸试验中也 发现了类似现象。分析产生这种现象的原因可能有以 下几种:(1)随着温度的升高,材料的晶内强度和晶 界强度都会降低,但晶界强度受温度的影响更为显著, 下降的更为明显,在400 ℃时,材料的晶界强度已经 降至很低,当材料受力时,晶内还未得到充分的变形 晶界已经开始发生断裂,导致材料在变形过程中提前断裂;(2)随着温度的升高,溶质原子的扩散速率升

高,400 ℃时氧原子具有足够高的扩散速率向位错偏 聚,形成溶质原子"气团",对位错造成钉扎,阻碍变

Fig.6 Schmid factor distribution of prism <a> slip (a~c) and basal <a> slip (d~f) at different orientations

表 1 带材柱面<a>滑移和基面<a>滑移在不同取向上的 Schmid 因子加权平均值

 Table 1
 Weighted average of Schmid factor of prism <a> slip and basal <a> slip at different orientation

Slip	RD	45 °	TD
{ 1010 }<1120>	0.43	0.41	0.35
$\{0001\} < 11\overline{2}0 >$	0.20	0.22	0.30

形过程中位错的运动,导致晶内变形困难,塑性降低, 即所谓的动态应变时效。

3 结 论

1) Zr-Sn-Nb 合金由等轴状的 α 晶粒组成, 晶粒尺 寸为 5~8 μm, 细小第二相均匀弥散的分布于晶粒内部 以及晶界上。

2) Zr-Sn-Nb 合金带材呈现出较强的{0001}基面双 峰织构,[0002]基轴在 TD-ND 平面内,并向 TD 方向 倾斜约 30°。再结晶退火过程中的择优形核与长大造 成晶粒呈现 2 种不同取向,大尺寸晶粒既有 {0001}<1010>取向也有{0001}<1120>取向,小尺寸 晶粒只有{0001}<1010>取向。

3) Zr-Sn-Nb 合金带材拉伸力学性能呈现明显的 各向异性,织构是造成这种差异的主要原因。其中 σ_s 在 TD 方向最高,在 RD 方向最低; σ_b 在 RD 方向最高, 在 45 °方向最低。随着温度的升高, σ_s 与 σ_b都有所降 低, Δσ_s 与 Δσ_b 也随之减小, 且 Δσ_s较 Δσ_b 受温度的影 响更为明显。延伸率随温度升高而增加, 但 400 ℃时 的延伸率较 200 ℃时的低, 晶界强度的下降以及动态 应变时效是造成这种现象的主要原因。

参考文献 References

- Zayimofusiji(扎依莫夫斯基). Zirconium Alloys for Nuclear Power(核动力工程)[M]. Beijing: Atomic Energy Press, 1988: 199
- [2] Krishnan R, Asundi M K. Proceedings of the Indian Academy of Sciences SEC[J], 1987, 41(1): 41
- [3] Peng Qian(彭 倩), Shen Baoluo(沈保罗). Chinese Journal of Rare Metals(稀有金属)[J], 2005, 29(6): 903
- [4] Sun Guocheng, Zhou Bangxin, Yao Meiyi et al. Acta Metallurgica Sinica[J], 2012, 48(9): 1103
- [5] Tenckhoff E. Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircalloy[M]. Philadelphia: ASTM International, 1988: 19
- [6] Luan Baifeng(栾佰峰), Xiao Dongping(肖东平), He Fangfang (贺方方). Journal of Chinese Electron Microscopy Society (电 子显微学报)[J], 2012, 31(6): 476
- [7] Liu Erwei(刘二伟), Zhang Xiyan(张喜燕), Chen Jianwei(陈建

伟) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2012, 41(2): 226

- [8] Chen Jianwei, Luan Baifeng, Chai Linjiang et al. Acta Metallurgica Sinica[J], 2012, 48(4): 393
- [9] Gerspach F, Bozzolo N, Wagner F. Scripta Materialia[J], 2009, 60(4): 203
- [10] Zhu K Y, Chaubet D, Bacroix B et al. Acta Materialia[J], 2005, 53(19): 5131
- [11] Geng Xun(耿 迅), Liu Qingdong(刘庆冬), Liu Wenqing(刘 文庆) et al. Rare Metal Materials and Engineering(稀有金属 材料与工程)[J], 2008, 37(4): 717
- [12] Shishov V N, Peregud M M, Nikulina A V et al. Zirconium in the Nuclear Industry: 11th International Symposium[C]. West Conshohocken: ASTM International, 2005: 666
- [13] Toffolon C, Brachet J C, Servant C et al. Zirconium in the Nuclear Industry: 13th International Symposium[C]. West Conshohocken: ASTM International, 2002: 361
- [14] Liu Hong(刘 鸿), Dai Xun(戴 训), Wang Ying(王 莹) et al. Journal of Chinese Electron Microscopy Society(电子显微学)

报)[J], 2010, 29(5): 37

- [15] Wang Zhengpin(王正品), Zhou Jing(周静), Gao Wei(高巍) et al. Journal of Xi'an Technological University (西安工业大 学学报)[J], 2010, 30(3): 263
- [16] Daniel H, George D S. Scripta Materialia[J], 2009, 61(4):411
- [17] Chalmers B, Martius U M. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences[J], 1952, 213(1113): 175
- [18] Song S G, Gray G T. Metallurgical and Materials Transactions A[J], 1995, 26(10): 2665
- [19] Groves G W, Kelly A. Philosophical Magazine[J], 1963, 8(89): 877
- [20] Bailey J E. Journal of Nuclear Materials[J], 1962, 7(3): 300
- [21] Akhtar A, Teghtsoonian A. Acta Metallurgica[J], 1971, 19(7):655
- [22] Myung H L, Kim J H, Choi B K et al. Journal of Alloys and Compounds[J], 2007, 428(1-2): 99

Texture and Tensile Properties of Zr-Sn-Nb Alloy

Zhang Fuquan¹, Ma Yongfu¹, Zhou Dianwu², Liu Jinshui¹, Song Jianli³

(1. Hunan University, Changsha 410082, China)

(2. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China)(3. China North Nuclear Fuel Corporation, Baotou 014035, China)

Abstract: A series of tensile tests for Zr-Sn-Nb alloy strip were carried out at 25, 200 and 400 °C. The effect of texture on the mechanical properties of zirconium alloy was studied by Electron Backscatter Diffraction (EBSD). The results show that Zr-Sn-Nb alloy strip possesses typical basal texture with twin peaks, and [0002] basal poles (in TD-ND plane) tilted $\pm 30^{\circ}$ in TD. The larger grains mostly belongs to the {0001} < 1010 > and {0001} < 1120 > texture while the smaller grains are in the {0001} < 1010 > orientation. Due to the texture, the strip presents mechanical anisotropy. The σ_s is highest in TD and lowest in RD; the σ_b is highest in RD and lowest in 45° direction. With the increase of temperature, both σ_s and σ_b decreases. Besides, $\Delta \sigma_s$ and $\Delta \sigma_b$ decrease too, but $\Delta \sigma_s$ decreases more obviously. The elongation of strip increases with the temperature increasing. However, the elongation of strip at 400 °C is smaller than that at 200 °C, which is attributed to the decrease of grain boundary strength and dynamic strain aging.

Key words: Zr-Sn-Nb alloy; tensile properties; texture; anisotropy

Corresponding author: Zhang Fuquan, Ph. D., Professor, School of Materials Science and Engineering, Hunan University, Changsha 410082, P. R. China, Tel: 0086-731-88821497, E-mail: zhangfq@hnu.edu.cn