(Fe_{1-x}Co_x)₈₀Zr₁₀B₁₀(x=0,0.1,0.2,0.3)合金的 热性能、结构和磁性能研究

华 中¹, 左 斌¹, 王丽丽^{1, 2}, 刘尧棣¹, 董丽荣¹, 孙亚明¹

(1. 吉林师范大学 功能材料物理与化学教育部重点实验室,吉林 四平 136000)(2. 新站乡中心小学,吉林 松原 138001)

摘 要:采用单辊快淬法制备(Fe_{1-x}Co_x)₈₀Zr₁₀B₁₀(x=0,0.1,0.2,0.3)非晶合金,并对 4 种合金在不同温度下进行等温热处理。 利用差热分析仪(DTA),X 射线衍射仪(XRD),透射电镜(TEM)和振动样品磁强计(VSM)等测试手段对样品的热性能、 微观结构及磁性能进行研究。结果表明,未添加 Co 元素的 Fe₈₀Zr₁₀B₁₀合金的热稳定性明显高于添加 Co 元素的合金, 而(Fe_{1-x}Co_x)₈₀Zr₁₀B₁₀(x=0.1,0.2,0.3)合金的热稳定性相差不大。Fe₈₀Zr₁₀B₁₀和 Fe₇₂Co₈Zr₁₀B₁₀合金的晶化过程相似; Fe₆₄Co₁₆Zr₁₀B₁₀和 Fe₅₆Co₂₄Zr₁₀B₁₀合金的晶化过程相似。4 种合金的矫顽力(H_c)呈现先上升后下降的趋势,在 873 K 达到最大值。

关键词: 非晶合金; 热稳定性; 亚稳相 中图法分类号: TG139⁺.8 文献标识码: A 文章编号: 1002-185X(2015)03-0616-05

FeCo 基软磁合金由于具有高的饱和磁感应强度 及高的居里温度,被广泛应用于电子和电信领域并成 为近年来的研究热点之一^[1-12]。众所周知,对非晶合 金的热性能及晶化过程的研究是非常重要的。多数研 究表明 FeCo 基非晶合金在晶化初期,析出的晶化相 为 *a*-FeCo 相,也有少量研究表明晶化初期有 Fe₂₃B₆ 相析出^[10,11]。在 Fe₇₅Co₆Zr₉B₁₀ 非晶合金的晶化初期观 察到 *a*-Mn 型亚稳相^[12],该亚稳相在其它 Fe 基合金中 已有报道^[13-15]。

本研究制备(Fe_{1-x}Co_x)₈₀Zr₁₀B₁₀(x=0,0.1,0.2,0.3) 非 晶合金,研究 Co 含量对 FeCoZrB 合金热性能,微观 结构和磁性能的影响。在晶化初期发现了 α -Mn 型(χ) 亚稳相,并在高温下向 Laves C14(λ)等相转化,而国 内对该方面的研究报道较少。

1 实 验

实验选用高纯度(纯度均在 99.9%以上)的 Fe、 Co、Zr、B 为初始原料,制备名义成分为(Fe_{1-x}Co_x)₈₀-Zr₁₀B₁₀(*x*=0,0.1,0.2,0.3)的非晶合金薄带,快淬速 率为 38 m/s。对 4 种合金分别在 773、823、873、923、 973 K 下保温 1 h。利用 X 射线衍射仪(XRD,D/max 2500/PC,Cu 靶 Kα 辐射, λ=0.154 06 nm)和透射电镜 (TEM, JEM-2100E)测量样品的微观结构并进行样品的结构测试。利用差热分析仪(DTA, TG/DTA 6300)测量样品相应的热性能,升温速率β分别设为10、15、20、25和30 K/min。采用 Kissinger 方法计算合金的晶化激活能。利用振动样品磁强计(VSM, Lake shore M-7407)测试样品的磁性能。

2 结果与分析

图 1 为 $Fe_{80}Zr_{10}B_{10}$ 、 $Fe_{72}Co_8Zr_{10}B_{10}$ 、 $Fe_{64}Co_{16}Zr_{10}$ -B₁₀和 $Fe_{56}Co_{24}Zr_{10}B_{10}$ 合金在升温速率分别为 10、15、 20、25 和 30 K/min 的 DTA 曲线。由图 1 可以看出,4 种合金的 DTA 曲线均存在 2 个晶化放热峰。并且随升 温速率 β 的增大, $Fe_{80}Zr_{10}B_{10}$ 、 $Fe_{72}Co_8Zr_{10}B_{10}$ 、 $Fe_{64}Co_{16}Zr_{10}B_{10}$ 和 $Fe_{56}Co_{24}Zr_{10}B_{10}$ 4种合金的 2 个晶 化峰均向高温区方向移动,说明合金的晶化行为具有 明显的动力学效应。

晶化激活能采用 Kissinger 法^[16]。Kissinger 公式: $\ln\left(\frac{\beta}{T^2}\right) = -\frac{E}{RT} + \text{constant}, 其中 T 为晶化峰值温度; \beta$ 为升温速率; R 为气体常数; E 为晶化激活能。用 $\ln(T^2/\beta)$ 对 1/T 做图,可得到一条斜率为 E/R 的直线,即可得 到 E 晶化激活能。表 1 为(Fe_{1-x}Co_x)₈₀Zr₁₀B₁₀ (x=0, 0.1,

收稿日期: 2014-03-18

基金项目:吉林省科技发展计划资助项目(201105083);教育厅"十二五"科学技术研究项目(2011-158);吉林师范大学研究生创新科研 计划项目(201103)

作者简介:华 中,男,1961年生,博士,教授,吉林师范大学,吉林 四平 136000,电话:0434-3293501, E-mail: huazhong196110@163.com

- 图 1 Fe₈₀Zr₁₀B₁₀、Fe₇₂Co₈Zr₁₀B₁₀、Fe₆₄Co₁₆Zr₁₀B₁₀和 Fe₅₆Co₂₄Zr₁₀B₁₀合金不同升温速率的 DTA 曲线
- Fig. 1 DTA curves of $Fe_{80}Zr_{10}B_{10}(a)$, $Fe_{72}Co_8Zr_{10}B_{10}(b)$, $Fe_{64}-Co_{16}Zr_{10}B_{10}(c)$, and $Fe_{56}Co_{24}Zr_{10}B_{10}(d)$ amorphous alloys at different heating rates

0.2, 0.3)合金在升温速率分别为 10、15、20、25 和 30 K/min 时的 T_{p1}。

图 2 为 Fe₈₀Zr₁₀B₁₀、Fe₇₂Co₈Zr₁₀B₁₀、Fe₆₄Co₁₆Zr₁₀B₁₀ 和 Fe₅₆Co₂₄Zr₁₀B₁₀ 4 种合金 *T*_{p1}的 Kissinger 曲线。求

- 表 1 (Fe_{1-x}Co_x)₈₀Zr₁₀B₁₀ (x=0, 0.1, 0.2, 0.3)合金在升温速率 分别为 10、15、20、25 和 30 K/min 时的 T_{p1}
- Table 1 T_{p1} of the $(Fe_{1-x}Co_x)_{80}Zr_{10}B_{10}(x=0, 0.1, 0.2, 0.3)$ amorphous alloys at heating rates of 10, 15, 20, 25 and
30 K/min (K)

Alloy	$\beta/\mathrm{K} \mathrm{min}^{-1}$				
	10	15	20	25	30
$Fe_{80}Zr_{10}B_{10}$	875.2	880.5	885.5	888.4	891.8
$Fe_{72}Co_8Zr_{10}B_{10}$	865.7	871.4	876.2	880.6	882.7
$Fe_{64}Co_{16}Zr_{10}B_{10}$	860.0	865.2	870.1	873.6	876.9
$Fe_{56}Co_{24}Zr_{10}B_{10}$	858.0	864.2	868.8	872.1	875.0

得的 4 种合金的激活能分别为 413.4、384.0、390.1 和 389.7 kJ/mol,说明未添加 Co 元素合金的热稳定性明显高于添加 Co 元素的合金,而 Fe₇₂Co₈Zr₁₀B₁₀、Fe₆₄Co₁₆-Zr₁₀B₁₀和 Fe₅₆Co₂₄Zr₁₀B₁₀3 种合金的激活能相差不大。

图 3 为 Fe₈₀Zr₁₀B₁₀、Fe₇₂Co₈Zr₁₀B₁₀、Fe₆₄Co₁₆Zr₁₀-B₁₀ 和 Fe₅₆Co₂₄Zr₁₀B₁₀ 合金在升温速率为 25 K/min 的

- 图 2 Fe₈₀Zr₁₀B₁₀、Fe₇₂Co₈Zr₁₀B₁₀、Fe₆₄Co₁₆Zr₁₀B₁₀和 Fe₅₆Co₂₄-Zr₁₀B₁₀合金 T_{p1} 的 Kissinger 曲线
- Fig.2 Kissinger plots for $Fe_{80}Zr_{10}B_{10}$ (a), $Fe_{72}Co_8Zr_{10}B_{10}$ (b), $Fe_{64}Co_{16}Zr_{10}B_{10}$ (c), and $Fe_{56}Co_{24}Zr_{10}B_{10}$ (d) alloys

- 图 3 (Fe_{1-x}Co_x)₈₀Zr₁₀B₁₀(x=0,0.1,0.2,0.3)合金在升温速率为 25 K/min 的 DTA 曲线
- Fig.3 DTA curves of $(Fe_{1-x}Co_x)_{80}Zr_{10}B_{10}(x=0, 0.1, 0.2, 0.3)$ alloys at a heating rate of 25 K/min

DTA 曲线。由图 3 可以看出, Co 含量的增加降低了 合金的 2 个晶化峰的起始温度 T_x 和峰值温度 T_p , 这是 由于 Co 的熔点低于 Fe 的熔点。

图 4 为 $Fe_{80}Zr_{10}B_{10}$ 、 $Fe_{72}Co_8Zr_{10}B_{10}$ 、 $Fe_{64}Co_{16}Zr_{10}B_{10}$

- 图 4 Fe₈₀Zr₁₀B₁₀、Fe₇₂Co₈Zr₁₀B₁₀、Fe₆₄Co₁₆Zr₁₀B₁₀和 Fe₅₆Co₂₄Zr₁₀B₁₀非晶合金淬态及不同温度热处理 后的 XRD 图谱
- Fig.4 XRD patterns of $Fe_{80}Zr_{10}B_{10}(a)$, $Fe_{72}Co_8Zr_{10}B_{10}(b)$, $Fe_{64}-Co_{16}Zr_{10}B_{10}(c)$, and $Fe_{56}Co_{24}Zr_{10}B_{10}(d)$ amorphous alloys as-quenched and annealed at different temperatures

和 $Fe_{56}Co_{24}Zr_{10}B_{10}$ 非晶合金淬态和不同温度热处理后 的 XRD 图谱。从图中可以看出 4 种淬态合金展现宽 的漫衍射峰,表明 4 种合金淬态为典型的非晶结构。 但他们的晶化过程不同,其中 $Fe_{80}Zr_{10}B_{10}$ 和 $Fe_{72}Co_{8}$ - $Zr_{10}B_{10}$ 的晶化过程类似, $Fe_{64}Co_{16}Zr_{10}B_{10}$ 和 $Fe_{56}Co_{24}$ - $Zr_{10}B_{10}$ 的晶化过程类似。但 4 种合金的初始晶化产物 相同,均有 χ 相析出。

图 5 为 $Fe_{80}Zr_{10}B_{10}$ 合金 873 K 退火后和 Fe_{64} -Co₁₆Zr₁₀B₁₀ 合金 823 K 退火后的 TEM 像及选区电子衍 射照片。从图 5 $Fe_{80}Zr_{10}B_{10}$ 合金 873 K 退火后和 $Fe_{64}Co_{16}Zr_{10}B_{10}$ 合金 823 K 退火后的选区电子衍射照 片可以观察到微弱的 α -Fe/[α -Fe(Co)]相 (110), (200) 和 (211) 衍射环。由此可见,4 种合金的初始晶化产 物应为 χ 相和 α -Fe/[α -Fe(Co)]相。对于 $Fe_{80}Zr_{10}B_{10}$ 和 $Fe_{72}Co_8Zr_{10}B_{10}$ 合金,当温度高于 873 K 退火, χ 相向 λ 相和 α -Fe/[α -Fe(Co)]相转化。而对于 $Fe_{64}Co_{16}Zr_{10}B_{10}$ 和 $Fe_{56}Co_{24}Zr_{10}B_{10}$ 合金,当温度高于 823 K 退火, χ 相逐渐转化为 α -Fe(Co)相,并伴有 $Fe(Co)_{3}Zr$ 相和 $ZrCo_{3}B_{2}$ 相析出。

由上可知, $Fe_{80}Zr_{10}B_{10}$ 和 $Fe_{72}Co_8Zr_{10}B_{10}$ 第1个晶 化放热峰与 χ 相和 α -Fe/[α -Fe(Co)]相的析出有关,第2 个放热峰与 χ 相向 λ 相和 α -Fe/[α -Fe(Co)]相转化有关。 Fe₆₄Co₁₆Zr₁₀B₁₀和 Fe₅₆Co₂₄Zr₁₀B₁₀合金第1个晶化放热 峰与 χ 相和 α -Fe(Co)相的析出有关,第2个放热峰与 χ 相向 α -Fe(Co)相转化以及 Fe(Co)₃Zr 相和 ZrCo₃B₂ 相 析出有关。

图 6 为(Fe_{1-x}Co_x)₈₀Zr₁₀B₁₀(x=0,0.1,0.2,0.3)合金的矫 顽力随退火温度的变化曲线。从图 6 中可以看出,4 种合金高于 773 K 退火后,矫顽力明显呈现先上升后 下降的趋势。*H*_c在 873 K 达到最大值,这应该与 *χ* 相

- 图 5 Fe₈₀Zr₁₀B₁₀合金和 Fe₆₄Co₁₆Zr₁₀B₁₀合金 823 K 退火后 的 TEM 照片及选区电子衍射照片
- Fig.5 TEM images and the corresponding selected-area electron diffraction patterns of $Fe_{80}Zr_{10}B_{10}$ alloy (a) and $Fe_{64}Co_{16}$ - $Zr_{10}B_{10}$ alloy (b) annealed at 823 K

- 图 6 (Fe_{1-x}Co_x)₈₀Zr₁₀B₁₀(x=0, 0.1, 0.2, 0.3)合金的矫顽力与 退火温度的变化曲线
 - Fig.6 Variations of coercivity (H_c) of $(Fe_{1-x}Co_x)_{80}Zr_{10}B_{10}$ (x=0, 0.1, 0.2, 0.3) alloys as a function of annealing temperature (T_a)

(*α*-**M**n 型相) 有关,可能是由于 *α*-**M**n 型相具有较大的磁晶各向异性,与之前报道相一致^[17]。高于 873 K,由于 *χ* 相的消失, *H*_c 明显下降。

3 结 论

 Fe₈₀Zr₁₀B₁₀、Fe₇₂Co₈Zr₁₀B₁₀、Fe₆₄Co₁₆Zr₁₀B₁₀
 和 Fe₅₆Co₂₄Zr₁₀B₁₀ 合金第 1 个晶化峰的晶化激活能分 别为 413.4、384.0、390.1 和 389.7 kJ/mol。说明未添 加 Co 元素合金的热稳定性明显高于添加 Co 元素的合 金,而(Fe_{1-x}Co_x)₈₀Zr₁₀B₁₀(x=0.1, 0.2, 0.3)合金的热稳定 性相差不大。4 种合金 DTA 曲线均存在 2 个晶化放热 峰,并且随着 Co 含量的添加合金的 T_x, T_p均降低。

2) 4 种合金淬态为典型的非晶结构。 $Fe_{80}Zr_{10}B_{10}$ 和 $Fe_{72}Co_8Zr_{10}B_{10}$ 合金的第 1 个晶化放热峰与 χ 相和 α -Fe/[α -Fe(Co)]相的析出有关,第 2 个放热峰与 χ 相向 λ 相和 α -Fe/[α -Fe(Co)]相转化有关。 $Fe_{64}Co_{16}Zr_{10}B_{10}$ 和 $Fe_{56}Co_{24}Zr_{10}B_{10}$ 合金的晶化过程相似,第 1 个晶化放 热峰与 χ 相和 α -Fe(Co)相的析出有关,第 2 个放热峰 与 χ 相向 α -Fe(Co)相转化以及 $ZrCo_{3}B_{2}$ 和 Fe(Co)₃Zr 相 的析出有关。

3) 4 种合金温度高于 773 K 退火后, 矫顽力明显呈现先上升后下降的趋势。H_c在 873 K 达到最大值,这应该与χ相的析出有关。

参考文献 References

- Yang Jing(杨 静), Wang Zhi(王 治), Jia Yunyun(贾芸芸) et al.
 Acta Physica Sinica(物理学报)[J], 2010, 59(11): 8148
- [2] Tao Pingjun(陶平均), Yang Yuanzhen(杨元政), Dong Zhenjiang(董振江) et al. Journal of Functional Materials(功能材 料)[J], 2011, 42(6): 976
- [3] Sun Yao, Bi Xiaofang. Journal of Alloys and Compounds[J], 2011, 509(5): 1665
- [4] Mu Danning(穆丹宁), Yang Changlin(杨长林), Wei Xiaowei (魏晓伟) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2013, 42(6): 1316
- [5] Wang Xin(王 昕), Yu Zhihai(余志海), Zhou Peiheng(周佩珩) et al. Rare Metal Materials and Engineering(稀有金属材料与 工程)[J], 2010, 39(4): 682
- [6] Ren Yanping(任燕萍), Yang Yuanzheng(杨元政), Dong Zhenjiang(董振江) et al. Journal of Kashgar Teachers College (喀什师范学院学报)[J], 2008, 29(6): 31
- [7] Samuel Kernion J, Kelsey Miller J, Shen Shen et al. IEEE Transactions On Magnetics[J], 2011, 47(10): 3452
- [8] Long J G, Ohodnicki P R, Laughlin D E et al. Journal of Applied Physics[J], 2007, 101(9): 114
- [9] Babu Arvindha D, Majumdar B, Sarkar R et al. Journal of Materials Research[J], 2011, 16(26): 2065
- [10] Zhang Y R, Ramanujan R V. Journal of Alloys and Compounds[J], 2005, 403(1-2): 197
- [11] Hirata A, Hirotsu Y, Amiya K et al. Intermetallics[J], 2008, 16(4): 491
- [12] Yu W Q, Sun Y M, Hua Z. Applied Surface Science[J], 2011, 257(23): 9733
- [13] Lyasotsky I V, Dyakonova N B, Dyakonov D L et al. Rev Adv Mater Sci[J], 2008, 18: 695
- [14] Lyasotskii I V, Dyakonova N B, Vlasova E N et al. Physica Status Solidi(a)[J], 2006, 203(2): 259
- [15] Nagase T, Umakoshi Y. ISIJ International[J], 2006, 46(9): 1371
- [16] Kissinger H E. Journal of Research of the National Bureau of Standards[J], 1956, 57(4): 217
- [17] Hua Zhong(华中), Liu Yaodi(刘尧棣), Yu Wanqiu(于万秋) et al. Transactions of Materials and Heat Treatment(材料热 处理学报) [J], 2012, 33(5): 25

Thermal Property, Structure and Magnetic Property of (Fe_{1-x}Co_x)₈₀Zr₁₀B₁₀ (x=0, 0.1, 0.2, 0.3) Alloys

Hua Zhong¹, Zuo Bin¹, Wang Lili^{1,2}, Liu Yaodi¹, Dong Lirong¹, Sun Yaming¹

(1. Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education,

Jilin Normal University, Siping 136000, China)

(2. Xinzhan Township Central Primary School, Songyuan 138001, China)

Abstract: (Fe_{1-x}Co_x)₈₀Zr₁₀B₁₀ (x=0, 0.1, 0.2, 0.3) amorphous ribbons were prepared by the single roller melt-spinning and they are isothermally annealed at different temperatures. Thermal properties, microstructures and magnetic properties of the samples were investigated by differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results show that the thermal stability of the Co-free alloy is higher than that of the Co-containing alloys. However, there is little difference in the thermal stability of (Fe_{1-x}Co_x)₈₀Zr₁₀B₁₀ (x=0.1, 0.2, 0.3) alloys. The crystallization processes of Fe₈₀Zr₁₀B₁₀ and Fe₇₂Co₈Zr₁₀B₁₀ alloys are similar. The crystallization processes of Fe₆₄Co₁₆Zr₁₀B₁₀ and Fe₅₆Co₂₄Zr₁₀B₁₀ alloys are similar. Coercivity (H_c) of the four alloys all increase firstly and then decrease. At 873 K, H_c all reaches the maximum. **Key words:** amorphous alloy; thermal stability; metastable phase

Corresponding author: Hua Zhong, Ph. D., Professor, Jilin Normal University, Jilin 136000, P. R. China, Tel: 0086-434-3293501, E-mail: huazhong196110@163.com