N36 锆合金包壳管的高温蠕变行为

王朋飞,赵文金,陈 乐,梁 波,卓 洪

(中国核动力研究设计院 反应堆燃料及材料重点实验室,四川 成都 610041)

摘 要:研究了 N36 锆合金包壳管在温度为 593~723 K、应力为 60~160 MPa 条件下的拉伸蠕变行为。结果表明,本试 验条件下 N36 锆合金管材存在不同的蠕变变形机制。593~673K 下低应力范围内,蠕变应力因子 n 约为 3,蠕变表观激 活能 Q_{app}≈150 kJ mol⁻¹,蠕变变形受位错的粘滞性滑移过程控制; 高应力范围内蠕变应力因子 n 为 5~6,蠕变激活能 Q_{app}≈170 kJ mol⁻¹,遵循典型的 5 次幂律蠕变规律,蠕变变形受位错攀移过程控制。在 723 K 时,高应力范围内发生幂 律失效。N36 锆合金包壳管表现为典型的 Class A 型合金蠕变特征,表现出与 Zircaloy 合金不同的蠕变规律。

关键词:N36 锆合金包壳管;高温蠕变;蠕变机制

中图法分类号: TG146.4⁺14 文献标识码: A

文章编号: 1002-185X(2015)05-1149-05

锆合金由于具有中子吸收截面低,优良的抗腐蚀性 能和力学性能等优点而被广泛用作核动力反应堆燃料 元件包壳及堆芯结构部件材料。作为包壳和堆芯结构部 件,锆合金在堆内长时间受高温、载荷和中子辐照等影 响会发生蠕变。为了保证燃料元件有效运行,要求锆合 金具有良好的抗蠕变变形能力。因此抗蠕变性能是锆合 金在核反应堆中应用所需要考虑的基本问题之一。

尽管堆外性能不能反映辐照等因素的影响,但是堆 外蠕变行为的研究仍然是研究堆内蠕变的基础。过去几 十年,国外针对 Zr-2 和 Zr-4 合金,开展了大量的堆外 蠕变行为研究,建立了蠕变本构模型,并对蠕变机制进 行了探讨,构建了变形机制图^[1-4]。近年来 Hayes^[5,6]和 Nam^[7]等对大量 Zr-2,Zr-4 等 Zr-Sn 系合金蠕变数据进 行了收集、总结和再认识,归纳出这类合金在宽广温度 和应力范围内表现出典型 ClassII(M)型合金蠕变特征, 即在低的应力范围变形受到 Coble 或 Harper-Done 等扩 散型蠕变过程控制;而在高的应力范围变形受位错攀移 过程控制,在初始阶段通过位错的攀移形成大量亚晶, 蠕变应力因子约为 6。Murty^[8]总结和归纳了一些含 Nb 锆合金的基本蠕变规律,认为 Nb 原子通过和位错间相 互作用,在中间应力范围内表现出位错的粘滞性滑移特 性,遵循典型的 ClassI(A)型合金蠕变特征。

随着核动力反应堆技术朝着提高燃料燃耗、降低燃料循环成本、提高反应堆安全可靠性发展,对燃料元件包壳材料锆合金的性能提出更高要求,为此一些核电技术发达的国家相继研究和开发了 Zirlo、M5、E635、HANA 系列、NDA 等新型合金^[9-13]。N36 锆合金是中

国自主研究和开发,能满足高燃耗、长寿期堆芯要求的 Zr-Sn-Nb 系合金^[14]。尽管在研究开发 N36 锆合金过程 中开展过高温蠕变行为研究,且证实了其抗蠕变性能优 于 Zr-4 合金^[15],但是还没有对其蠕变机制进行系统和 深入的研究。

本实验研究了国产 N36 锆合金管材在温度为 593~ 723 K、应力为 60~160 MPa 条件下的拉伸蠕变行为。 重点为基于蠕变稳态阶段本构关系,通过对蠕变速率与 温度、应力之间宏观规律的总结,对属于 Zr-Sn-Nb 系 的 N36 锆合金管材蠕变机制进行了初步探讨。

1 实 验

实验所用的材料为直径 9.5 mm、壁厚 0.57 mm 的 N36 锆合金管材,合金主要成分(质量分数,%)为: 0.9~1.1 Sn、0.9~1.1 Nb、0.2~0.4 Fe 及余量 Zr,组织 为再结晶态等轴晶粒组织,晶粒大小为 3~4 μm。

采用 RDL50 型高温蠕变持久试验机对管材进行 恒定载荷条件下的蠕变试验。试验前,采用真空电子 束焊接方法将管材焊接在带有螺纹的锆合金端头上, 构成标准拉伸蠕变试样,其标距段尺寸为100 mm。利 用 3 个 PtRh-Pt 热电偶监测试样标距段温度。试验过 程中,标距段上、中、下 3 点温度梯度控制在±1℃以 内。蠕变数据由计算机控制系统自动采集。

2 结果与讨论

2.1 蠕变曲线及蠕变行为

图 1 给出 593~723 K 不同应力下的蠕变应变和蠕

收稿日期: 2014-05-18

作者简介:王朋飞,男,1983年生,博士生,中国核动力研究设计院,四川 成都 610041,电话:028-85903373,E-mail: wpf03082108@163.com

Fig.1 Creep curves of the N36 alloy cladding under various stress conditions at different temperatures: (a) 593 K, (b) 623 K, (c) 653 K, (d) 673 K, and (e) 723 K

变时间的关系曲线。可以看出,除了在 723 K 高应力 水平下蠕变加速明显,达到了蠕变的第 3 阶段外,其 余各试验条件下蠕变都处于第 1 和第 2 阶段。温度和 应力对蠕变行为有重要的影响,随着温度和应力水平 的提高,蠕变应变增加,合金的抗蠕变性能变差。

图 2,3 分别给出了不同温度时蠕变应变和应力的 关系及不同应力时蠕变应变和温度的关系。可以看出, 随着应力的提高,蠕变应变增加,但是不同温度下其 增加幅度有所不同。在温度为 593 和 623 K 时,其增 幅较小。当温度超过 623 K 后,随应力提高蠕变应变

图 2 不同温度下蠕变应变量和应力的关系

图 3 不同应力下蠕变应变量和温度关系

Fig.3 Relationship between creep strain and test temperature under various stresses

增加更为明显。其中 723 K 时,应力超过 100 MPa, 蠕变达到第 3 阶段,并且在较短时间内发生断裂失效。 在一定应力条件下,随温度升高,蠕变应变量增加, 但是随应力的升高,其增幅明显加剧。

将蠕变应变对蠕变时间进行微分处理,可以得出 蠕变变形速率和时间的关系。在蠕变时间内最小的蠕 变变形速率可以认为是稳态蠕变速率。表1给出各试 验条件下的稳态蠕变速率。

表 1 各试验条件下的稳态蠕变速率 Table 1 Strain rate of N36 Zr-alloy at steady-state creep step under various test conditions

under various test conditions						
<i>T</i> /K	Steady creep rate/h ⁻¹					
	60 MPa	80 MPa	100 MPa	120 MPa	140 MPa	160 MPa
593	_	2.56E-07	5.17E-07	8.69E-07	1.80E-06	3.47E-06
623		7.52E-07	1.72E-06	2.67E-06	5.86E-06	1.56E-05
653	1.55E-06	2.45E-06	6.36E-06	1.48E-05	3.11E-05	8.73E-05
673	3.58E-06	8.30E-06	1.66E-05	4.74E-05	8.67E-05	2.26E-04
723		1.36E-04	3.02E-04	9.67E-04	3.89E-03	—

2.2 蠕变应力因子及激活能

蠕变的第2阶段是蠕变速率达到稳态的阶段,稳态 阶段的蠕变速率是对实际工程应用十分有用的数据。大 量研究表明,锆合金在稳态蠕变阶段蠕变速率与应力、 温度的蠕变本构关系可以用 power-law 表示^[5-8,16],即:

$$\dot{\varepsilon}_{\rm s} = A\sigma^n \exp(-\frac{Q_{\rm a}}{RT}) \tag{1}$$

式中, \dot{c}_s 为稳态蠕变速率; σ 为外施应力;n为应力因 子; Q_a 为表观蠕变激活能,R为普适气体常数,T为 绝对温度,A为材料常数。当试验温度不变时,可以 得到各试验温度下的蠕变应力因子,即:

$$n = \left(\frac{\partial \lg \dot{\varepsilon}}{\partial \lg \sigma}\right)_{T}$$
(2)

利用蠕变应力因子计算公式(2),结合表1给出的数据,绘出了不同温度下稳态蠕变速率和应力的双对数关系,如图4所示。从图中可以看出,在本研究试验的温度范围内,蠕变速率和应力的双对数关系不能用一条直线来拟合,存在按一定应力区间划分的线性关系。

对各温度下不同区间应力因子 n 进行了拟合,可 以看出在 593~673 K 时低应力区间的应力因子 n 约为 3,而高应力区间的应力因子 n 为 5~6,723 K 时低及 高的应力区间内应力因子分别为 4 和 8。这些不同的 应力因子说明 N36 合金在不同的试验条件下存在不同

的蠕变速率控制过程,即不同的蠕变机制。

当试验应力不变时,通过计算可以得到蠕变表观激活能 Q_a,即:

$$Q_a = -R \left(\frac{\partial \ln \dot{\varepsilon}}{\partial 1/T} \right)_{\sigma} \tag{3}$$

由于公式(3)是在恒定σⁿ条件下给出的激活能计算 表达式,但是从图4可以看出,应力因子n在不同应 力和温度区间是不同的,因此在计算激活能时应按应 力因子不同区间选取数据进行计算。结合表1给出的 数据,绘出60和80MPa(典型n约为3)、140和160 MPa(n为5~6)下593~673K时蠕变速率和温度倒数 关系,如图5所示。图中直线的斜率即为激活能。由 于 n>7区间,试验条件过少,没有进行相关激活能的 计算,这需要在以后工作中进一步补充。激活能计算 结果表明,在相同应力因子的区间内,激活能和加载 的应力无关。因为其蠕变速率控制机制是相同的。

2.3 蠕变机制初步探讨

金属或合金高温蠕变过程中,应力因子 *n* 和蠕变变 形机制具有一定对应关系。以往的研究表明^[7,8,16],金 属或合金在高温蠕变过程中,当应力因子 *n* 约为 1 时, 对应 3 种类型的蠕变机制,即 Harper-Dorn、Nabarro-Hering 及 Coble 蠕变机制,具体区分这 3 种蠕变机制 还要结合金属或合金的晶粒尺寸和蠕变激活能。当应 力因子 *n* 为 3~7 时,认为是位错运动控制的蠕变机制,

图 5 593~673 K 时稳态蠕变速率和 1/T 的关系

Fig.5 Steady-state creep rate plotted against 1/T at 593~673 K:(a) 60 MPa and 80 MPa, and (b) 140 MPa and 160 MPa

其中应力因子 n 约为 3 时,对应位错粘滞性滑移蠕变 机制;应力因子 n 约为 5 时,对应位错的攀移蠕变机制, 这是许多纯金属中发现的典型的 5 次幂律蠕变机制;应 力因子 n 约为 7 时,研究认为也可能存在低温位错攀移 机制,但一般认为应力因子 n 为 4~7 时符合典型的 5 次幂律蠕变机制,对应位错的攀移速率控制过程。应力 因子 n>7 时,通常表现为幂律失效的蠕变变形机制。

从拟合出的各试验条件下的蠕变应力因子(如图 4 所示),可以看出在本试验条件下,不同温度和应力范 围内,N36 锆合金应该存在至少 3 个不同速率控制的蠕 变区间,对应 3 种蠕变机制。本试验条件下,593~673 K 的低应力区间内,应力因子 n 约为 3,对应位错粘滞 滑移蠕变机制,此时位错粘滞性滑移为蠕变变形的控制 过程。而高的应力区间内,应力因子 n 为 5~6 时,对 应位错攀移蠕变机制,蠕变速率由非保守的位错攀移过 程控制。在 723 K 下,高的应力区间,如超过 100 MPa 时, n>7,此时对应的蠕变机制为幂律失效蠕变机制。

位错滑移蠕变机制中(n约为3),位错的运动受 到静止时偏聚在位错处形成的原子气团(固溶原子) "拖拽"作用的影响。N36 锆合金含有大量的 Sn、Nb 和一定量 Fe, Fe 在 α-Zr 中固溶度小, Sn、Nb 在 α-Zr 中固溶度较 Fe 高。虽然在 α-相处理过程中 Fe 会和 Nb 生成一种 Zr(Fe、Nb)₂ 的 Laves 相以第二相形式析出, 但是对 N36 锆合金第二相结构和成分分析时,也发现 了大量的 β-Nb 相^[17],可以相信, Fe 在 α-Zr 中不可能 完全以第二相形式析出,存在一定量固溶形式的 Fe。 因此对于 N36 锆合金来说,对位错的拖拽作用的原子 气团主要有 Sn 和 Nb, Fe 可能也起到一定的作用。

由经典的溶质原子"拖拽"模型推导出了位错粘 滞性滑移速率和溶质原子浓度、溶质原子扩散系数、 外施应力及温度的关系^[18],即:

$$V = \frac{D_{\rm B}\sigma b}{kTC_0} \exp(-\frac{W}{kT}) \tag{4}$$

式中, $D_{\rm B}$ 为溶质原子在固体中的扩散系数; σ 为外施 应力; C_0 为远离位错区域的原子浓度;W为溶质-位错 的结合能;k为玻尔兹曼常数;T为绝对温度;b为位 错伯格斯矢量。位错粘滞性滑移过程能否进行,需要 外施应力 σ 和温度满足一定条件,使位错运动呈现出 牛顿粘滞性。当外加应力 σ 过小时,位错运动呈现出 生顿粘滞性。当外加应力 σ 过小时,位错运动速度很 慢,原子气团可以通过扩散始终伴随着位错运动,位 错不受到溶质原子的拖拽作用;外加应力 σ 或温度足 够高($W \approx kT$)时,"原子气团"会因"蒸发"而失去 "拖拽"作用。本研究计算结果表明,593~673 K 温 度范围内,随应力提高,位错运动失去粘滞性特性, 蠕变机制发生转变。当温度达到 723 K 时,即使在本 试验条件下较低的应力下,也不表现粘滞性特性,更 低应力的蠕变特性需要进一步研究。

前述对蠕变机制区间划分的分析是基于一个重要 的蠕变机制参数,应力因子 n。如果对试验条件下蠕 变机制区间划分是正确的话,那么另外一个重要的蠕 变机制参数, 蠕变激活能也应该能自洽。计算激活能 表明, 在应力因子 n 约为 3 区间的蠕变表观激活能 Q_{app} ≈150 kJ mol⁻¹, 比应力因子 n 为 5~6 区间的蠕变表 观激活能 $Q_{app} \approx 170 \text{ kJ mol}^{-1}$ 小。按前述讨论,应力因 子n约为3区间对应位错的粘滞性滑移速率控制过程, 而应力因子 n 为 5~6 区间对应位错的攀移速率控制过 程,那么这两个蠕变机制区间的激活能差值就比较好 理解。因为在位错滑移蠕变机制中,位错运动主要是 受到形成于位错附近的原子气团对位错的"拖拽"作 用,而位错攀移蠕变机制中首先位错要从周围的原子 气团中挣脱激活,或者原子气团要得到"蒸发"激活, 被"拖拽"的位错重新滑移、塞积,最终在一定激活 条件下发生非保守的攀移运动。位错的非保守攀移需 要较大的能量激活,比滑移困难。

普遍认为,幂律蠕变过程中蠕变表观激活能应该 和金属或合金的自扩散激活能一致。文献[18]给出了 大量金属(包括 bcc、fcc、hcp)蠕变表观激活能和自 扩散激活能数据,证实了上述的观点。本研究中计算 得到的应力因子 n 为 5~6 区间蠕变表观激活能 $Q_{app}\approx170$ kJ mol⁻¹,小于相关文献报道纯 α-Zr 自扩散 激活能(约为 272 kJ mol⁻¹)。

文献[19]详细讨论了合金元素对α-Zr自扩散激活能 的影响, 认为 α-Zr 自扩散激活能的改变在很大程度上 是和固溶的合金元素种类和数量密切相关的。以 Fe 为 例,一定温度范围内,固溶于 α -Zr中Fe的扩散系数比 α-Zr 快约 8 个量级。King 等的研究^[20]表明, 923 K 时, 固溶在 α -Zr 中 Fe 的平均激活能是 75.6 kJ mol⁻¹, 当温 度低于 923 K 时, 激活能甚至低至 67.2 kJ mol⁻¹。研究 指出,在所有温度范围内,Fe都是极快的扩散溶质原子。 在高温下由于 Fe 扩散系数高, 扩散激活能低, Fe 能很 快地扩散到缺陷附近形成 Fe-空位对,并和缺陷发生交 互作用,从而促进了 α -Zr 的自扩散,降低了晶格的自 扩散激活能。对于 N36 锆合金, 根据前面分析, 合金中 可能存在有一定含量固溶的 Fe、Sn 和 Nb,这些合金元 素的扩散系数要比 Zr 大, 尤其是 Fe, 因此尽管目前没 有关于 N36 合金自扩散激活能的具体数据,但是可以相 信,由于受到固溶的合金元素影响,其晶格的自扩散激 活能肯定要低于有关文献报道的 α-Zr 自扩散激活能。

3 结 论

N36 锆合金管材在本试验条件下存在 3 个不同的蠕变速率控制机制:低的应力范围内,蠕变应力因子 n 约为 3,受位错滑移过程控制;在高的应力范围内,蠕变应力因子 n 为 5~6,遵循典型的 5 次幂律蠕变规律,受位错攀移过程控制;在更高的温度和应力下发生幂律失效机制。

2) 位错滑移控制过程可能和 Sn、Nb 和 Fe 等固 溶原子在位错周围形成气团并起到"拖拽"作用有关。

3) N36 锆合金管材表现出不同于 Zircaloy 合金的 蠕变规律,表现为典型的 ClassA 型合金蠕变特征。

参考文献 References

- [1] Franklin D G, Lucas G E, Bement A L. ASTM STP 815[C].
 Philadelphia: ASTM, 1983: 9
- [2] Moon J H, Cantonwine P E, Anderson K R et al. Journal of Nuclear Materials[J], 2006, 353(3):177
- [3] Knorr D B, Notis M R. Journal of Nuclear Materials[J], 1975, 56(1): 18
- [4] Mcinteer W A, Baty D L, Stein K O. ASTM STP 1023[C].Philadelphia: ASTM, 1989: 621
- [5] Hayes T A, Kassner M E, Rosen R S. Metallurgical and Materials Transaction A[J], 2002, 33(2): 337
- [6] Hayes T A, Kassner M E. Metallurgical and Materials Transaction A[J], 2006, 37(8): 2389
- [7] Nam C, Choi B K, Lee M H et al. Journal of Nuclear Materials[J], 2002, 305(1): 70
- [8] Charit I, Murty K L. Journal of Nuclear Materials[J], 2008,

374(3): 354

- [9] Nikulina A V, Markelov V A, Peregud M M et al. ASTM STP 1295[C]. Philadelphia: ASTM, 1996: 785
- [10] Mardon J P, Garner G, Beslu P et al. International Topical Meeting on Light Water Reactor Fuel Performance[C]. Portland: ANS, 1997: 405
- [11] Kim K T. Nuclear Engineering and Design[J], 2013, 263: 59
- [12] Song K W, Jeong Y H, Kim K S et al. Journal of Nuclear Engineering and Technology[J], 2008, 40(1): 21
- [13] Seibold A, Garzarolli F, Manzel R. International Topical Meeting on Light Water Reactor Fuel Performance[C]. Park City, Utah: ANS, 2000: 84
- [14] Zhao Wenjin(赵文金), Zhou Bangxin(周邦新), Miao Zhi(苗志) et al. Atomic Energy Science and Technology(原子能科学技术)[J], 2005, 7(1): 2
- [15] Peng Jihua(彭继华), Li Wenfang(李文芳). Rare Metal(稀有 金属)[J], 2008, 32(1): 1
- [16] Murty K L. Appl Mech Rev[J], 1993, 46: 194
- [17] Zhao Wenjin(赵文金). *Rare Metals Letters*(稀有金属快报)[J], 2004, 23(5): 15
- [18] Zhang Junshan(张俊善). High Temperature Deformation and Fracture of Materials(材料的高温变形与断裂)[M]. Beijing: Science Press, 2007: 6
- [19] Hood G M. Journal of Nuclear Materials[J], 1988, 159: 149
- [20] King A D, Hood G M, Holt R A. Journal of Nuclear Materials[J], 1991, 185: 174

High Temperature Creep Behavior of N36 Zirconium Alloy Cladding Tubes

Wang Pengfei, Zhao Wenjin, Chen Le, Liang Bo, Zhuo Hong

(Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041, China)

Abstract: High temperature tensile creep behavior of N36 zirconium alloy cladding tubes in the temperature range from 593 K to 723 K and the stress range from 60 MPa to 160 MPa was investigated. The results show that there are three distinct rate-controlled creep mechanisms for N36 zirconium alloy cladding tubes. In the temperature range from 593 K to 673 K the stress exponent *n* is ~3 and creep activation $Q\approx150$ kJ mol⁻¹ is found in the low applied stress region, which means the dominant process is viscous-glide-controlled. But in the high applied stress region the stress exponent *n* is 5~6 and the creep activation $Q\approx170$ kJ mol⁻¹ is found, which obeys the typical five power law creep mechanism controlled by the climb of edge dislocations. At 723 K and with high applied stress the power law breakdown appears and the exact mechanism is not clear by now. In the test condition N36 zirconium alloy cladding tubes exhibit a type of creep behavior similar to that noted in class-I(A) alloys, which is very different from zircaloy.

Key words: N36 zirconium alloy cladding tube; high temperature creep; creep mechanism

Corresponding author: Wang Pengfei, Candidate for Ph. D., Research Associate, Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041, P. R. China, Tel: 0086-28-85903373, E-mail: wpf03082108@163.com