PMMA 模板制备 CeO2 空心微球及低频阻尼性能

江学良,王 维,官 健,杨 浩,孙 刚,任 军

(武汉工程大学, 湖北 武汉 430073)

摘 要:以分散聚合法制备的聚甲基丙烯酸甲酯(PMMA)微球作为牺牲模板,通过六水硝酸铈的前驱体溶液均相沉淀和 自组装制备了二氧化铈(CeO₂) /PMMA 复合微球,高温煅烧处理后得到 CeO₂空心微球,将其与丁基橡胶复合制备成低 频高阻尼复合材料。采用傅里叶转换红外分析(FTIR),扫描电子显微镜(SEM),透射电子显微镜(TEM),热重分析仪 (TG),X 射线衍射(XRD)和 X 射线光电子能谱(XPS)对 CeO₂空心球的形貌与结构组成进行表征。实验表明,CeO₂空心 球由立方萤石结构的颗粒组成,粒径约为 0.9 μm,壳层厚度约 40 nm。将 CeO₂空心微球作为填料加入橡胶中制备 CeO₂/ 橡胶复合材料;与纯丁基橡胶相比,复合橡胶材料在不同频率(0~180 Hz)下的低频阻尼性能得到明显提高。

关键词: PMMA; 模板; CeO₂; 空心微球; 低频阻尼

中图法分类号: TB383; O614.33⁺2 文献标识码: A

文章编号: 1002-185X(2015)05-1249-05

二氧化铈^[1] (CeO₂)因其折射率高,化学稳定性强, 力学强度高,介电常数高及在可见光和近红外区的透 性高等优异性质,成为一种应用广泛的轻稀土氧化物, 成功应用于抛光材料,催化剂,氧传感器,紫外闭塞 滤波器等领域^[2]。金属氧化物空心球结构具有限制化 学物缓释,隔离纳米金属催化剂颗粒^[3],可制备高比 表面积电池材料和低折射率材料等特性^[4],因此合成 稀土氧化物^[5]空心球的研究已成为热点。

目前关于 CeO₂ 空心微球的合成研究多集中于水 热法和碳球模板。X. Z. Li 等^[6]以碳球为模板,六亚甲 基四胺为沉淀剂,通过层层自组装法,700 ℃煅烧制 备了粒径 250 nm,壳层厚度为 20 nm 的 CeO₂空心球。 陈丰等^[7]以直径约为 300 nm 的碳球为模板,通过无机 物前驱体颗粒的自组装制备了壳层由面心立方相 CeO₂ 颗粒构成的 CeO₂ 纳米空心球。Devaraju 等^[8]人 以 PVA500 为表面修饰剂,采用水热一步法合成得到 粒径范围为 150~500 nm 的 CeO₂空心球。水热法合成 步骤简单,但空心球的粒径分布和单分散性与传统的 模板法相比仍有欠缺。

Yamaguchi 等^[9]在导电玻璃基片上通过电泳沉积 和恒电势电沉积法得到粒径为 400 nm,壳层厚度 80 nm 的 CeO₂ 空心球,但靠近基片的空心球底部壳层厚 度较小。Nicholas 等^[10]在 130 ℃下将硝酸铈沉积在粒 径为 200 nm 的 SiO₂胶体晶体模板上,通过高强度长 时间的化学腐蚀法去除模板,得到壳层为 12 nm 的 CeO₂空心球。有机物模板法在空心球制备中,球形度 好和粒径可控的特点使得此方法仍广泛应用。Y. Chen^[11]以聚苯乙烯为模板制备了粒径范围 200~250 nm,壳层厚度 15~20 nm 的纳米 CeO₂空心球,由 5~10 nm 的纳米颗粒紧密堆积组成。Z.G. Chen 等^[12]以油菜 花粉为模板制备了孔径 0.3 μm 的多孔球状氧化铈空心 球,粒径为 15 μm。在制备 CeO₂空心球的文献报道中, 通过聚苯乙烯 (PS) 微球和碳球模板已制得粒径大于 10 μm 和小于 300 nm 的氧化铈空心球。但目前关于以 聚甲基丙烯酸甲酯 (PMMA) 微球为模板制备亚微米 级的 CeO₂空心球的文献报道较为少见。

噪声污染同水污染、大气污染被列为世界三大污染,严重影响着人类生活环境的质量。目前,工业生产、交通运输所产生的噪声主要是中高频噪声,噪声的监测主要是针对中高频噪声(分贝),而对于分贝不高的低频(<250 Hz)噪声还未引起人们的足够认识。 城市中的低频噪声来源广泛,可直达人的耳骨,对人体有极大危害。Michael等^[13]研究了低频声波在直径 10 mm的玻璃珠中的衰减作用。于立刚等^[14]研究表明, 空心材料的引入可以提高黏弹性复合材料的机械阻 尼,从而影响黏弹性复合材料的力学和声学性能。与 中高频声波相比,低频声波具有在空气中衰减慢,频 率低声波长,穿透能力强,易于绕开障碍物等特点,

收稿日期: 2014-05-21

基金项目:国家自然科学基金 (51273154);湖北省自然科学基金 (2011CBD220); 2012武汉工程大学校长基金项目

作者简介: 江学良, 男, 1972 年生, 博士, 副教授, 武汉工程大学材料科学与工程学院, 湖北 武汉 430073, 电话: 027-87195661, E-mail: sjtujxl@163.com

因而传统吸声材料对中高频声波有很好的吸收作用, 但对低频声波吸收较差。当前抑制低频噪声一般是采 用硬而重的材料,如混凝土、重金属板材等。因此开 发轻便的低频吸声材料具有非常重要的现实意义。

本实验以分散聚合法合成的 PMMA 微球为模板, 采用均匀沉淀和自组装,通过高温煅烧制备粒径均一, 球形度完好的 CeO2空心球。并以 CeO2空心微球为填 料加入丁基橡胶中,制备了 CeO2/丁基橡胶复合材料, 并研究其空心结构对低频阻尼性能的影响。

1 实 验

实验原料为聚乙烯吡咯烷酮(PVP)K-30, AR, (国 药集团化学试剂有限公司);甲基丙烯酸甲酯(MMA), AR, (天津福晨化学试剂厂);尿素,AR, (上海实验 试剂有限公司);六水硝酸铈,AR, (国药集团化学试 剂有限公司);偶氮二异丁腈(AIBN),AR, (国药集团 化学试剂有限公司);甲醇,AR, (西陇化工股份有限 公司);去离子水, (实验室自制)。

采用分散聚合法制备单分散 PMMA 微球。在 250 mL 三口烧瓶中加入一定量的精制 MMA 单体、分散剂 PVP、引发剂 AIBN、分散介质去离子水和甲醇,控制 搅拌速度为 3000 r/min,预分散 0.5 h 后缓慢升温至 75 ℃,恒温反应 1 h 后滴加配置好的滴加液(单体 0.25 g,甲醇 1.625 和 0.825 g 去离子水的混合液)。滴加完 毕后继续恒温反应 4 h 后冷却收料。

取 5 mL 制备好的 PMMA 乳液,分别用甲醇和去离子水清洗。将 0.1 g PMMA 微球加入 20 mL 去离子水中,超声分散 20 min。加入 0.5 g 的 PVP 和 0.3 g 的六水硝酸铈,超声分散后得到均相的悬浮液。将悬浮液移入三口烧瓶中,在 3000 r/min 的搅拌速度下升温至 90 ℃,然后以 2 d/s 的速度加入 30 mL 浓度为 25%的尿素水溶液,恒温 90 ℃反应 6 h 后,抽滤并用去离子水洗涤,然后置于 50 ℃的恒温干燥箱中干燥 12 h,即得到 PMMA/CeO₂ 复合微球。

将真空干燥的复合微球粉末置于马弗炉中于 600℃高温煅烧4h,即得到CeO₂空心球。

将 CeO₂空心球 100 份、偶联剂 1~5 份置于高速 混合机中,以1200~1500 r/min 的高速搅拌 10~30 min, 得到预处理的空心球。

在开炼机中,依次加入预处理后的 CeO₂ 空心球、 丁基橡胶、氧化锌、硬脂酸、硫磺、软化剂和二硫化 苯并噻唑,在 30~100 ℃的共混温度下,混炼 30 min。 将混炼胶在 140 ℃下硫化 30 min,得到 CeO₂/橡胶复 合材料。

采用 Magna-IR750 傅里叶红外分析测试仪(美国

Nicolet 公司),将单分散微球样品粉末与 KBr 研细压 制成膜后,测试其红外吸收光谱。

将分散聚合所得乳液用甲醇和水反复洗涤、离心, 干燥后用(德国 LEO 公司)LEO1550VP型的高分辨 场发射扫描电镜(FESEM)表征,电镜电压 30 kV, 分辨率为 1.5 nm。

采用 JSM-5510LV(日本 JEOL 公司)型扫描电子显 微镜表征 PMMA/CeO2复合微球和 CeO2空心球样品的 形貌和粒径。表征前离子溅射,喷金 2 min。

用(日本岛津) KRATOS SAM-800 型光电子能谱仪 进行样品表面分析, Mg Kα 为激发源,加速电压为 11.0 kV,发射电流为 20 mA,样品分析室的真空度为 2×10⁻⁷ Pa,电子结合能用污染碳的 C1s 峰(284.6 eV)校正。

将样品置于无水乙醇中,然后超声分散均匀成为 悬浮液,将悬浮液滴在铜网上干燥。用透射电子显微 镜(TEM, Hitachi H600-2)进行表征。样品先用离子溅射 式喷金,喷金时间为2min,然后测试空心球的形态、 尺寸和壳层厚度。

用 PTR-2 型热天平及 CR-T 型高温差热仪测定各种样品的热失重曲线。样品放入氧化铝坩锅中,以 Al₂O₃ 作参比物进行测试。温度扫描范围为室温至 800 ℃,在 N₂氛围中控制升温速率为 10 ℃/min。

采用 D/MAX-III型(日本岛津公司)X 射线衍射仪, 测定不同煅烧温度下的样品的晶型。在管电压 30 kV, 管电流 30 mA 的 Cu Kα(发射波长 0.154 06 nm)的条件 下,以4 %min 的扫描速度对 2*θ*=10 ~80 °的范围进行扫描。

试样阻尼性能测试是在 DMA27 型粘弹谱仪上测 定损耗因子(tanδ),所采用的模式是双悬臂梁模式。 不同频率下损耗因子(tanδ)的测试条件为:温度为 25 ℃室温,测试频率为 0~200 Hz。

2 结果与讨论

2.1 形貌分析

图 1a, 1b, 1c, 1d 分别为 PMMA 微球模板、 PMMA/CeO₂ 复合微球、CeO₂空心球的扫描电镜照片 和 CeO₂空心球的透射电镜照片。图 1a 中通过分散聚 合制备出来的 PMMA 微球大小比较均一,粒径约为 0.8 µm,单分散性良好。图 1b 中 PMMA/CeO₂ 复合微 球仍为均一粒径。在自组装和均相沉淀过程中,PMMA 微球表面包覆了较为疏松的前驱体颗粒,导致粒径增 大,约为1 µm。从图 1c 中可以观察到 CeO₂的空心结 构,空心球大小比较均一,粒径约为 0.9 µm。 CeO₂ 空心微球的粒径有一定程度的收缩,原因在高温煅烧 下壳层的纳米 CeO₂发生晶化,形成纳米颗粒,堆积在 模板表面,且煅烧过程中的收缩使排列变得致密,粒

图 1 不同微球的电镜照片

Fig.1 SEM images of the different spheres: (a) PMMA template,
(b) PMMA/CeO₂ composite microspheres, (c) CeO₂ hollow nanospheres, and (d) TEM image of CeO₂ hollow nanospheres

径减小。图 1d 是 CeO₂ 空心球的透射电镜照片。从中 可以看出, 煅烧去除 PMMA 模板后, CeO₂ 微球形成 中心部分颜色较淡, 外层环形颜色较深的中空结构。 CeO₂ 空心球外层由致密的 CeO₂ 纳米粒子紧密堆积而 成, 空心球粒径约为 0.9 μm, 壳层厚度约 40 nm, 与 SEM 的分析结果基本一致。

2.2 FT-IR 分析

图 2 中 a, b, c 谱线分别为 PMMA 微球、PMMA/ CeO₂ 复合微球和 CeO₂ 空心球的红外谱图。

图 2 中 a 谱线的 2992 和 2951 cm⁻¹处分别为甲基、 亚甲基的伸缩振动峰; 1730 cm⁻¹处为 PMMA 微球中 的 C=O 伸缩振动的特征峰; 1446 及 1487 cm⁻¹处为 亚甲基弯曲振动的特征峰, 1148~1270 cm⁻¹ 范围内为 C-O-C 的伸缩振动峰。图 2 中 b 谱线的上述 PMMA 微 球的特征峰仍然存在,但有很大程度的减弱。图 2 中 c 谱线为样品经过高温煅烧后得到的纯 CeO₂空心微球 的谱线,其 3400 cm⁻¹处出现的吸收峰为样品表面吸附 的水的 O-H 的伸缩振动吸收峰,在 1300 cm⁻¹附近出现 的峰是 Ce-O-Ce 的振动峰。将所得 CeO₂空心微球样品 与 CeO₂标准样品进行对比,发现谱图基本吻合,从而 可以证明经过 600 ℃煅烧以后得到的产物为 CeO₂。

2.3 TG 分析

图 3 中 a, b, c 3 条曲线分别为 PMMA 微球, PMMA/CeO₂复合微球及 CeO₂空心球 TG 曲线。对于

PMMA 微球,在 320 ℃以下时的失重,主要是样品中 残余的溶剂以及物理吸附的水的蒸发造成的,而在 320~500℃区间内的失重是 PMMA 微球的燃烧分解所 引起的。在 450 ℃以后的区间内几乎没有残物,说明 PMMA 微球在 450 ℃分解完全。对于 PMMA/CeO₂ 复合微球,可以观察到 3 个失重区间: 300 ℃以下, 300~500 ℃,500~800 ℃; 300 ℃以下为物理吸附水 的蒸发, 300~500 ℃为 PMMA 微球的分解, 500~800 ℃区间是 CeO₂键接的基团 (如-OH)的化学 分解。CeO₂空心球几乎无失重,说明 PMMA 微球在 高温煅烧的过程中,已从 PMMA/CeO₂ 复合微球中除 去,空心球中不存在有机物质,证明得到 CeO₂空心球。

2.4 XRD 分析

图 4 是 CeO₂ 空心球样品的 XRD 图谱。从图中可 以看出,在 600 ℃下高温煅烧 4 h 以后的样品中出现 了明显的特征衍射峰。CeO₂ 空心微球在 2*θ*=28.5°, 33.2°,47.6°,56.4 °有明显的衍射峰,分别对应(111)、 (200),(220),(311)晶面,与 CeO₂ 的标准衍射卡 (JCP-DS34-0394)相一致,由此可以推断出 CeO₂的 晶体结构为立方萤石结构。

2.5 XPS 分析

图 5a, 5b 分别为 CeO₂ 空心球的 XPS 宽扫描谱 和 Ce 3d 扫描谱。从图 5a 可以看出,在 XPS 全谱中 只存在 Ce 3d 峰、O 1s 峰和 C 1s 峰,除此之外未出现 其他杂峰。其中 C 1s 来自用于校正电子结合能的污染 碳,由此证明产物中只存在铈元素和氧元素。图 5b 是 CeO₂空心球的 Ce 3d 谱,其中,在 883.8 eV 处的 峰对应于 Ce⁴⁺(Ce 3d_{5/2})的蜂位置,901.1 eV 处的峰对应 于 Ce⁴⁺(Ce 3d_{3/2})的峰位置,证明了 Ce 主要以+4 价存在。 而在图 5a 中 530.1 eV 处出现的氧特征峰,表明

样品中的氧为 O²⁻,而不是吸附在表面的氧,进一步 证明实验所得产物组成为 CeO₂ 空心球。

2.6 CeO₂ 空心球/丁基橡胶复合材料的低频阻尼 性能

CeO₂空心球作为填料加入丁基橡胶后,可以在复 合材料内部形成均匀稳定的空腔结构,有利于提高黏 弹性复合材料的机械阻尼,从而影响黏弹性复合材料 的力学和声学性能。材料的阻尼性能一般用内耗 (tanδ)表征其大小。

图 6 是测试频率为 0~100 Hz 时共混橡胶的阻尼性 能图。与纯丁基橡胶相比, CeO₂/丁基橡胶复合材料具 有多阻尼峰。当频率在 43~100 Hz 之间时, CeO₂/丁基 橡胶复合材料的阻尼性能明显提高。在 50、65、90 Hz 附近的损耗因子较大,阻尼性能较高,可用于不同的低 频环境中。这是因为空心球在橡胶内部引起的空腔共振 和空腔围壁,导致粘滞阻碍作用,增大内耗,提高了材 料的阻尼性能。当外加频率在 0~43 Hz 之间时,结果没 有明显规律。这可能是因为在较低频率时,橡胶复合材 料的阻尼性能更容易受填料粒径、外界温度、湿度和所 含氢键数等因素的综合影响, tanδ 值没有特定规律。

图 7 是测试频率为 100~180 Hz 时复合材料的阻

图 6 不同频率下(0~100 Hz)材料的阻尼性能

图 7 不同频率下(100~180 Hz)材料的阻尼性能

Fig.7 Damping capacity of composites in different frequencies (100~180 Hz)

尼性能。由图可知,在室温(25 ℃)下,复合材料只在 170 Hz时出现最大的损耗峰,即对 170 Hz 附近的声 能或振动能有最大的吸收。CeO₂/橡胶复合材料的阻尼 性能与纯丁基橡胶橡胶相比,有大幅度提高。由此可 见,将 CeO₂空心球与丁基橡胶共混可以有效提高其阻 尼性能。由空腔共振和空腔围壁共振引起的吸声作用 提高材料的低频吸声性能。该 CeO₂空心球/橡胶复合 材料宜应用于频率为 160~180 Hz 的环境下,如火车轨 道、汽车鸣笛,隔音墙等低频噪声吸收材料。

3 结 论

1) 以单分散粒径为 0.8 μm 的 PMMA 微球为模 板,通过均相沉淀和自组装可以制备出 PMMA/CeO₂ 核/壳复合微球,经过煅烧去除模板后得到 CeO₂空心 微球。空心球的粒径约为0.9 μm,壳层厚度约为40 nm, CeO₂ 空心球为立方晶系,纳米空心球的化学组成为 CeO₂。

2) 将所制备的 CeO₂ 空心球作为填料加入到丁基 橡胶中,在 0~180 Hz 的频率范围内,复合橡胶的阻尼 性能得到明显的提高,在 30~90 Hz 和 160~180 Hz 范 围内有较强的低频阻尼性能。

参考文献 References

[1] Li Peng(李 鹏), Ding Xingeng(丁新更), Chen Liangfu(陈良 辅) et al. Rare Metal Materials and Engineering(稀有金属材 料与工程)[J], 2013, 42(S1): 320

- [2] Chen G, Ma W, Liu X et al. RSC Advances[J], 2013, 3(11): 3544
- [3] Wei J J, Wang S P, Sun M et al. Materials Letters[J], 2012, 84:77
- [4] Luo F, Jia C J, Liu R et al. Materials Research Bulletin[J], 2013, 48(3): 1122
- [5] Zhao Meng(赵蒙), Jia Qiuyang(贾秋阳), Liu Hanwen(刘瀚 文) et al. Rare Metal Materials and Engineering(稀有金属材 料与工程)[J], 2013, 42(S1): 473
- [6] Li X Z, Chen F, Lu X W et al. Journal of Porous Materials[J], 2010, 17(3): 297
- [7] Chen Feng(陈 丰), Chen Zhigang(陈志刚), Li Xiazhang(李霞章) et al. Journal of the Chinese Silicate Society(硅酸盐学报)[J], 2011, 39(3): 397
- [8] Devaraju R, Murukanahally K, Liu X W et al. Journal of Solid State Chemistry[J], 2012, 194: 43
- [9] Yamaguchi I, Watanabe M, Shinagawa T et al. ACS Applied Materials and Interfaces[J], 2009, 1(5): 1070
- [10] Nicholas C S, Galen D S. Chemistry of Materials[J], 2009, 21: 4577
- [11] Chen Y, Lu J X. Journal of Porous Materials[J], 2012, 19(3): 289
- [12] Chen F, Wang W, Chen Z G et al. Journal of Rare Earths[J], 2012, 30(4): 350
- [13] Michael J W, George W S, Todd A B. Applied Acoustics[J], 2012, 73(11): 1146
- [14] Yu Ligang(于立刚), Li Chaohui(李朝晖), Wang Ren(王仁) et al. Acta Physica Sinica(物理学报)[J], 2013, 62(6): 4301

Preparation of CeO₂ Hollow Nanospheres by PMMA Template and Their Low Frequency Damping Capacity

Jiang Xueliang, Wang Wei, Guan Jian, Yang Hao, Sun Gang, Ren Jun (Wuhan Institute of Technology, Wuhan 430073, China)

Abstract: With polymethyl methacrylate (PMMA) prepared by dispersion polymerization as sacrifice template, $CeO_2/PMMA$ composite microspheres were prepared by inorganic precursor homogeneous precipitation and self-assembly. The CeO_2 hollow nanospheres were obtained after the polymer sphere template was removed through calcination at a suitable temperature. Scanning electron microscope, transmission electron microscope, fourier transform infrared spectroscopy, X-ray photoelectron spectrum, X-ray diffraction and thermogravimetry were employed to characterize the structure and morphology of the CeO_2 hollow nanospheres. The results reveal that the face-centered cubic-phase CeO_2 hollow nanospheres with a diameter of about 0.9 µm as well as the thin shell thickness about 40 nm are prepared. It indicates that adding CeO_2 hollow nanospheres in butyl rubber as packing materials can obviously improve its low frequency damping capacity in different frequency (0~180 Hz).

Key words: polymethyl methacrylate (PMMA); template; ceria; hollow nanospheres; low frequency damping capacity

Corresponding author: Jiang Xueliang, Ph. D., Associate Professor, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, P. R. China, Tel: 0086-27-87195661, E-mail: sjtujxl@163.com