Ti₃Al 单晶塑性变形行为的晶体塑性有限元模拟

赵文娟¹,唐 安¹,林启权¹,任玉平²,徐俊瑞¹,宋滨娜³

(1. 湘潭大学, 湖南 湘潭 411105)
 (2. 东北大学, 辽宁 沈阳 110819)

(3. 苏州大学, 江苏 苏州 215021)

摘 要:基于晶体塑性理论,建立了滑移变形机制下 Ti₃Al 单晶晶体塑性的细观本构关系,并利用 ABAQUS/UMAT 用 户子程序接口开发本构关系子程序,将其应用于不同取向 Ti₃Al 单晶的单向压缩模拟。分析不同取向时晶体滑移系的启 动情况,以及滑移系启动与取向的相互关系。结果表明:基面滑移系(0001) <1120>,柱面滑移系{1010}<1120>和锥 面滑移系{1121}<1126>均被激活,但由于滑移系之间临界剪切应力和施密特因子的不同,各滑移系的启动情况存在显 著差异。基面和锥面滑移系的临界剪切应力较大,仅在施密特因子较大时启动;特别是锥面滑移系,其临界剪切应力 最大,因而该滑移系只有在压缩轴接近[0001]方向时才被激活。柱面滑移系的启动较为容易,对塑性变形的贡献也最大。 同时与实验结果相比较,模拟结果基本与之吻合。

关键词: Ti₃Al 单晶;晶体塑性;位错;滑移系;有限元;本构关系

中图法分类号:	TG113.25 ⁺ 3	文献标识码:A	文章编号:	1002-185X(2018)06-1753-07

Ti₃Al 是一种具有 D0₁₉结构的金属间化合物,是 TiAl 基合金的基本组成相之一。TiAl 基合金在高温下 具有较高的强度、弹性模量和抗氧化性能,同时拥有 低密度、高比强度和抗蠕变性能优良等特点,目前已 广泛应用于航空、航天、汽车、生物技术等领域[1-3]。 各国学者针对 Ti₃Al 金属间化合物的塑性变形行为进 行了一系列的实验研究。Harry 和 Kerans 等^[4,5]的实验 结果表明,当温度低于 600 ℃时, Ti₃Al 多晶体表现 出显著的脆性;当温度高于600 ℃时,其塑性才会有 一定的改善,研究者认为主要原因是 Ti₃Al 在温度较 低时沿 c 轴方向的位错滑移极为困难。Minonishi 和 Umakoshi 等^[6,7]通过 Ti₃Al 单晶单向拉伸和压缩试验研 究 Ti₃Al 滑移系的滑移情况,发现其滑移通常发生在 柱面、基面和锥面上。其中,柱面滑移较容易被观察 到; 基面滑移系启动较为困难; 锥面滑移系很少被观 察到,只有在特定取向才能启动。同时,Ti₃Al的低温 脆性与滑移系的启动存在密切的关系。因此,深入研 究 Ti₃Al 滑移系的启动对深入理解其低温脆性的微观 机制有着重要意义。根据施密特定律,晶体取向对滑 移系启动有重要的影响,而实际微观组织中晶体取向 信息十分复杂, 仅靠实验难以全面深入探究。近年来,

基于晶体塑性理论的有限元方法是模拟材料介观尺度 塑性变形的有效手段之一,它可以在材料模型中加入 晶粒取向、晶粒尺寸和滑移系等晶体学细观信息,以 研究滑移系启动、变形织构演化和弹塑性各向异性等 问题。黄文等^[8]采用晶体塑性有限元方法模拟单晶纯 钛在高温下的单向拉伸试验,模拟结果与试验现象相 吻合,揭示了单晶纯钛的单向拉伸中滑移系对塑性变 形的贡献。赵蒙等^[9]利用晶体塑性有限元方法模拟 TA15 钛合金高温压缩试验过程,发现晶粒几何形状和 晶粒取向会造成应力和应变的非均匀性分布,晶粒取 向和晶粒间相互作用的复杂性会导致各个滑移系开动 存在差异。由此,利用晶体塑性有限元模拟探究 Ti₃Al 单晶取向对滑移系启动的影响是一种有效的方法。

本文在位错滑移变形机制下,建立 D0₁₉结构单晶 的数值本构关系。通过 ABAQUS/UMAT 用户子程序接 口,使用 FORTRAN 语言开发单晶本构关系子程序, 将其应用于不同取向 Ti₃Al 单晶的单向压缩模拟,研究 滑移系启动情况以及单晶取向对滑移系启动的影响。

1 单晶本构模型

1.1 晶体变形运动学

收稿日期: 2017-06-06

基金项目:国家自然科学基金(51175445, 51201147, 51304141);湖南省自然科学基金(14JJ6016)

作者简介: 赵文娟, 女, 1980年生, 博士, 副教授, 湘潭大学机械工程学院, 湖南 湘潭 411105, 电话: 0731-58292454, E-mail: wjzhao1024@ xtu.edu.cn

晶体变形是位错沿着特定的晶体学平面的滑移和 晶格畸变造成的^[10]。当晶体滑移时,其初始构型经过 变形梯度张量 F 变为当前构型,这一过程通过乘法分 解原理分解为[11]:

 $F = F^{e}F^{P}$ (1)式中,F[®]为晶体沿滑移方向均匀剪切所对应的变形梯 度张量,F°为晶格畸变和刚性转动所产生的变形梯度 张量。

假设滑移系α中滑移面法向和滑移方向向量分别 用 2 个正交单位向量 m^{α} 和 n^{α} 表示,那么塑性变形梯 度张量表示为:

$$\dot{F}^{\mathsf{P}}(F^{\mathsf{P}})^{-1} = \sum_{\alpha=1}^{N} \dot{\gamma}^{\alpha} m^{\alpha} \otimes n^{\alpha}$$
(2)

式中, $\dot{\gamma}^{\alpha}$ 表示滑移系 α 的剪切应变率, N 为滑移系的 总数。

1.2 率相关硬化模型和硬化公式

本研究采用基于指数函数的率相关硬化模型, 由 Asaro 和 Needlem^[12]提出,该模型建立了各滑移 系的分解剪应力 τ^{α} 与剪切应变率 $\dot{\gamma}^{\alpha}$ 之间的关系,剪 切应变率 y^α 由以下方程表示:

$$\dot{\gamma}^{\alpha} = \dot{\gamma}_{0}^{\alpha} \operatorname{sgn}\left(\tau^{\alpha}\right) \left| \frac{\tau^{\alpha}}{g^{\alpha}} \right|^{m}$$
(3)

式中, $\dot{\gamma}^{\alpha}_{0}$ 为滑移系 α 的参考剪切应变率,m为应变率 敏感系数, g^{α} 表示滑移系 α 的当前强度。

g^α与剪切应变有关,由下列方程确定:

$$g^{\alpha} = \sum_{\beta=1}^{N} h_{\alpha\beta} \left| \dot{\gamma}^{\beta} \right| \tag{4}$$

$$h_{\alpha\beta} = q_{\alpha\beta}h_{\alpha\alpha} \tag{5}$$

$$h_{\alpha\alpha} = h_0 \sec h^2 \left| \frac{h_0 \gamma}{\tau_s - \tau_0} \right|$$
(6)

其中, $h_{\alpha\beta}$ 为硬化系数, 当 $\alpha = \beta$ 时为自硬化系数 $h_{\alpha\alpha}$, 当 $\alpha \neq \beta$ 时为潜硬化系数; $q_{\alpha\beta}$ 为比例系数; h_0 为初始 硬化模量, τ_s为流动饱和应力值, τ_o为初始临界分切 应力, γ为所有滑移系上剪切应变的累积:

$$\gamma = \int_0^t \left| \dot{\gamma}^\alpha \right| \mathrm{d}t \tag{7}$$

1.3 单晶的塑性本构关系

变形中的弹性性质不受塑性变形影响^[8],由此可 以采用下列形式的弹性本构方程:

$$\sigma^{e} = L : D^{e} \tag{8}$$

式中, σ° 表示以中间构型为基准状态的 Kirchhoff 应 力张量的 Jaumann 导数^[8], L 是瞬时的弹性模量张量, D^e为变形率张量的弹性部分。

进而,单晶的塑性本构关系可描述为:

$$\stackrel{\nabla}{\sigma} = L: D - \sum_{\alpha=1}^{N} \left(L: P^{\alpha} + \beta^{\alpha} \right) \dot{\gamma}^{\alpha}$$
(9)

其中, σ 表示以初始构型为基准状态的 Cauchy 应力 张量的 Jaumann 导数, D 为变形率张量。 p^{α} 和 β^{α} 可 表示为式 (10)~(12), 式中 p^a 和 w^a 分别为 Schmid 因 子的对称部分和反对称部分, σ 为 Cauchy 应力。

$$P^{\alpha} = \frac{1}{2} \left(m^{\alpha} \otimes n^{\alpha} - n^{\alpha} \otimes m^{\alpha} \right)$$
(10)

$$\beta^{\alpha} = W^{\alpha} \sigma - \sigma W^{\alpha} \tag{11}$$

$$W^{\alpha} = \frac{1}{2} \left(m^{\alpha} \otimes n^{\alpha} + n^{\alpha} \otimes m^{\alpha} \right)$$
(12)

基于上述率相关的晶体塑性理论, 按照 ABAOUS 软件提供的用户材料子程序开发接口框架^[13],采用 FORTRAN 语言编写 Ti₃Al 单晶体的本构关系子程序 并用于之后的模拟分析。

2 单向压缩模拟过程

对 Ti₃Al 单晶滑移系的已有实验研究表明^[6,7],在 单晶体变形中一般可以观察到的滑移模式有: 3 个对 等的基面滑移系(0001) <1120>, 3 个对等的柱面滑 移系{1010}<1120>。上述的滑移系具有相同的滑移方 向<1120>,滑移方向都处在同一个平面内,不能提供 平行于 c 轴方向的变形,因而 c 轴方向的变形主要由 锥面滑移系{1121}<1126>来协调。

本研究基于位错滑移变形机制,考虑上述滑移系, 建立 Ti₃Al 单晶的晶体塑性本构关系,用于不同取向 Ti₃Al 单晶单向压缩模拟, 各滑移系如表 1 所示。

2.1 几何模型的建立和边界条件

参考实际实验中单向压缩试样的大小[14],在 ABAQUS/CAE 中建立尺寸为 3 mm×3 mm×6 mm 的几 何模型。由于几何模型形状规则,这里单元类型选用

Table 1	Table 1Slip systems of single crystal of Ti ₃ Al				
Type of slip	Slip systems	Detail			
	{0001}<1120>	B1 (0001)[2110]			
Basal		B2 (0001)[1120]			
		B3 (0001)[1210]			
	{1010}<1120>	Pr1 (0110)[2110]			
Prismatic		Pr2 (1100)[1120]			
		Pr3 (1010)[1210]			
	{1121}<1126>	Py1 (1121)[1126]			
		Py2 (1211)[1216]			
Drugonidal		Py3 (2111)[2116]			
Pyramidai		Py4 (1121)[1126]			
		Py5 (1211)[1216]			
		Py6 (2111)[2116]			

主 1 T: AI 苗目的温我亥

 C_3D_8 六面体单元。在几何模型的顶面施加 $U_X=0, U_Y=0, U_Y=0, U_Z=-0.06$ mm,底面施加 $U_X=0, U_Y=0, U_Z=0$ 的位移边界条件,名义应变为0.01,加载时间为50 s,初始应变速率为 2×10^{-4} s⁻¹,其边界条件如图1所示。

2.2 模型参数设置和单晶取向赋予

Ti₃Al 晶体的弹性常数采用 Yoo 和 Zou^[15]通过第一 性原理计算得到的结果,如表 2 所示。各滑移系的初 始临界分切应力根据 Inui 等^[14]的实验数据选取,如表 3 所示。晶体取向以压缩轴与基面的夹角 Φ 表示,如 图 2。模拟中 Φ 角分别为 0°、31°、51°、68°和 90°, 依次对应 A、B、C、D、E 5 个取向。为方便建模, 将四轴坐标系 *O-a*₁*a*₂*a*₃*C* 中的晶面法向指数和晶向指 数转换到直角坐标系 *O-xyz* 中,转换关系如图 3 所示。

3 结果与分析

本文主要研究不同取向 Ti₃Al 单晶体压缩变形中 基面、柱面和锥面滑移系的启动情况,探究各类滑移 系启动与晶体取向之间的相互关系。随着外加压应力 的施加,当滑移系滑移产生剪切应变时,表明此时滑 移系启动。为便于分析,表4列出了滑移系在各取向 时的最大施密特因子。

由于本文所建立的坐标系中(图 3),5种取向单 晶体的柱面滑移系 Pr2(见表 1,下同)相对于压缩轴

图1 位移边界条件

Fig.1 Displacement boundary condition

表 2	Ti ₃ Al 的弹性常数
EI /*	(((T) () () () () ()

	Table	L LIAS	the cons	tants of	II3AI (C	31 a)	
D_{1111}	D_{1122}	D_{2222}	D_{1133}	D_{3333}	D_{1212}	D_{1313}	D_{2323}
221	71	221	85	238	75	69	69

表 3 Ti₃Al 各滑移系的初始临界分切应力 Table 3 Initial critical shear stress of slip systems of Ti₃Al (MPa)^[14]

5		
Basal slip system	Prismatic slip system	Pyramidal slip system
330	100	910

Fig.2 Crystal orientation relative to compression axis

图 3 四轴坐标系与直角坐标系的关系

Fig.3 Relationship between four-axis and rectangular coordinate

表 4 基面、柱面和锥面滑移系的最大施密特因子 Table 4 Largest Schmid factors of basal, prismatic and pyramidal clin systems

pyramidal slip systems							
Orientation	А	В	С	D	Е		
angle, $\Phi/(^{\circ})$	0	31	51	68	90		
Basal (0001)<1120>	0	0.445	0.490	0.345	0		
Prismatic $\{10\overline{1}0\} < 11\overline{2}0 >$	0.433	0.315	0.173	0.062	0		
Pyramidal $\{11\overline{2}1\} < 11\overline{2}6 >$	0.449	0.399	0.332	0.446	0.449		

的施密特因子均为 0,因此 Pr2 不滑移;而 Pr1 和 Pr3 关于坐标面 xz 面对称,它们的滑移量在 5 个取向下均 相等,所以这里只用 Pr 来表示柱面滑移系的剪切应变 情况。图 4a 表示 A 取向单晶体各滑移系剪切应变的 变化情况。由图可见,单晶体沿此取向时只有柱面滑 移系 Pr 启动,并且随着应变的增大其所产生的剪切应

Fig.4 Average shear strain curves of slip systems ((a~e) correspond to single crystal with orientation A~E, respectively)

变也逐渐增加,而其它滑移系均未被激活。这是因为, 在此取向下基面滑移系的施密特因子为 0(施密特因 子的值见表 4,下同),塑性变形过程中滑移面上沿滑 移方向上的分切应力为零,故而该滑移系始终没有滑 移。对于柱面滑移系和锥面滑移系来说,虽然它们拥 有几乎相同的施密特因子,但锥面滑移系的临界分切 应力大约是柱面滑移系的9倍(见表 3),因而柱面滑 移系启动,锥面滑移系未能被激活。

图 4b 和图 4c 分别表示取向 B 与 C 单晶体的滑移 系启动情况。3 个基面滑移系中只有施密特因子最大 的一个滑移系启动,用符号 B 表示。这 2 种取向的单 晶体,基面滑移系和柱面滑移系都被激活。B 取向时, 柱面滑移系首先启动,当真应变达到 0.005 时,基面 滑移系才开始滑移。这是因为基面滑移系的临界分切 应力是柱面滑移系的 3 倍,而在初始时其施密特因子 大约是柱面滑移系的 1.4 倍,所以柱面滑移系先滑移, 随着塑性变形的进行,外载荷不断地增大,基面滑移 系之后也开始启动。取向 C 时,柱面滑移系和基面滑 移系几乎同步启动,在真应变达到 0.0055 之前,柱面 的滑移量大于基面(图 4c),在真应变大于 0.0055 后, 基面的滑移量开始大于柱面。此取向时柱面滑移系的 临界分切应力较小,在初始阶段它的剪切应变大于基 面滑移的剪切应变,但随着滑移的进行,位错运动会 导致滑移系硬化,单晶的两个柱面滑移系滑移比只有 一个基面滑移系滑移产生的硬化增长要快,所以在真 应变大于 0.0055 之后,基面的滑移量开始大于柱面滑 移。图 5 列出取向 C 单晶体各滑移系累积剪切应变的 分布云图。它从另一个角度说明滑移系启动结果的正 确性。图 5a,5b 和 5c 中 SDV109、SDV110、SDV111 分别代表 3 个基面滑移系 B1、B2、B3(见表 1)整个

• 1757 •

图 5 C 取向单晶体各滑移系累积剪切应变云图 Fig.5 Shear strain nephograms of slip systems for single crystal with orientation C

变形过程中的累积剪切应变,忽略边缘效应在模型底 面和顶面产生的误差。由图可知,B2 滑移系启动,而 B1 和 B3 未能被激活。图 5d,5e,5f 中 SDV112、 SDV113、SDV114 分别代表 3 个柱面滑移系 Pr1、Pr2、 Pr3(表 1)的累积剪切应变。由图可知,Pr1 和 Pr3 启动,Pr2 没有被激活。图 5g 中 SDV115 表示锥面滑 移系 Py1 的累积剪切应变。Py2~Py6 的剪切应变分布 与 Py1 类似,这里不再赘述。由图可知锥面滑移系并 未启动。

图 4d 和图 4e 分别表示 D 与 E 取向单晶体的滑移 系启动情况。对于锥面滑移系,其各滑移系的滑移量 较小,这里用施密特因子最大的滑移系表征其滑移系 启动情况,符号为 Py。SUM 表示 6 个锥面滑移系剪 切应变的总和。D 取向时,相对于柱面滑移系,基面 滑移系的施密特因子占有绝对优势,而锥面滑移系由 于临界分切应力过大,所以在此取向只有基面滑移系 启动。E 取向时,基面滑移系和柱面滑移系的施密特 因子均为零,所以只有锥面滑移系启动。

结合图 4 与图 5 可知, Ti₃Al 单晶体的滑移系启动 与晶体取向存在密切的关系。基面滑移系仅在施密特 因子较大的取向启动;锥面滑移系启动困难,只有在 压缩轴接近[0001]方向时才启动;柱面滑移系启动较 为容易。

Inui 等^[14]在室温下以 2×10⁻⁴ s⁻¹ 的应变速率对基面 与压缩轴夹角为 0°、31°、51°、68°、90°的 Ti₃Al 单晶 试样进行了单向压缩试验,观察到的实验现象如图 6 所示。图 6a, 6b 表示 0°时的滑移情况,可以看到, 在此取向只有柱面滑移系滑移;图 6c, 6d 分别表示 31°和 51°时的滑移情况,此时柱面滑移系和基面滑移 系都可以观察到;图 6e, 6f 和 6g, 6h 分别表示 68° 和 90°取向的情况,由图可知,图 6e, 6f 只有基面滑 移,图 6g, 6h 只有锥面滑移。Umakoshi 等^[16]在研究 Ti₃Al 单晶的塑性各向异性时,单向压缩 4 种不同取向 的 Ti₃Al 单晶,在光学显微镜下也观察到了类似本模

图 6 不同取向 Ti₃Al 单晶的滑移系滑移情况

Fig.6 Gliding of slip systems of Ti₃Al single crystal with different orientation angles^[14]: (a, b) 0°; (c) 31°; (d) 51°; (e, f) 68°; (g, h) 90°

拟的滑移系启动结果。同样,Kishida 等^[17]沿 *c* 轴方向 拉伸 Ti₃Al 单晶也只观察到了锥面滑移系滑移。与上 述实验结果相比较,本研究的模拟结果基本与之一致。

Ti₃Al 单晶的塑性变形与滑移系的滑移直接相关, 本研究结果表明,基面滑移系和柱面滑移系的滑移方 向均为<1120>,且处在同一平面,只能提供4个独立 的变形模式。变形如果要连续进行,则需要5个独立 的变形模式^[18],而能够协调*c*轴方向变形的锥面滑移 系只在压缩轴靠近[0001]方向时才启动,从而导致 Ti₃Al 单晶各方向的变形无法协调,这可能是Ti₃Al 低 温脆性的重要原因之一。

4 结 论

 在滑移变形机制的基础上,可建立 D0₁9 结构
 Ti₃Al 单晶体的晶体塑性本构关系,利用该本构关系模拟不同取向 Ti₃Al 单晶的单向压缩变形,模拟结果与 实验结果基本一致,表明本文所建立模型可有效地描述 Ti₃Al 单晶的塑性变形行为。

2) Ti₃Al 单晶的取向强烈地影响各滑移系在变形中的启动。除了施密特因子极其不利的取向(施密特因子接近零)柱面滑移系不启动或者滑移较少之外,其它取向时柱面滑移系启动最为容易,且滑移量较大。 基面滑移系启动较为困难,在相对于柱面滑移系取向 绝对占优的情况或者自身施密特因子较大时才启动。 锥面滑移系启动最为困难,仅在加载轴靠近[0001]方 向时才被激活。

参考文献 References

- Appel F, Wagner R. Materials Science and Engineering[J], 1998, 22(5): 187
- [2] Marketz W T, Fischer F D, Clemens H. International Journal of Plasticity[J], 2003, 19(3): 281
- [3] Chen Yuyong(陈玉勇), Su Yongjun(苏勇君), Kong fantao(孔 凡涛) et al. Rare Metal Materials and Engineering(稀有金属 材料与工程)[J], 2014, 43(3): 757
- [4] Harry Lipsitt A, Shechtman Dan, Schafrik Robert E. Metallurgical Transactions A[J], 1975, 6(11): 1991
- [5] Kerans R J. Metallurgical Transactions A[J], 1984, 15(9): 1721
- [6] Minonishi Yasuhide. *Philosophical Magazine A*[J], 1991, 63(5): 1085
- [7] Umakoshi Y, Nakano T, Takenaka T et al. Acta Metallurgica et Materialia[J], 1993, 41(4): 1149
- [8] Huang Wen(黄文), Wang Yang(汪洋), Ge Peng(葛鹏) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2010, 39(3): 469
- [9] Zhao Meng(赵蒙), Li Ping(李萍), Li Chengming(李成铭) et

al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2015, 44(4): 927

- [10] Sun Zhaoyang(孙朝阳), Guo Xiangru(郭祥如), Huang Jie(黄 杰) et al. Acta Metall Sin(金属学报)[J], 2015, 51(3): 357
- [11] Tang Bin, Xie Shao, Liu Yi et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2015, 44(2): 267
- [12] Asaro R J, Needleman A. Acta Metall[J], 1985, 33(6): 923
- [13] Huang Y. A User-Subroutine Incorporating Single Crystal Plasticity in the ABAQUS Finite Elementprogram[D]. Boston: Harvard University, 1991

- [14] Inui H, Toda Y, Yamaguchi M. Philosophical Magazine A[J], 1993, 67(6): 1315
- [15] Zou J, Fu C L, Yoo M H. Intermetallics[J], 1995, 3(4): 265
- [16] Umakoshi Y, Nakano T, Sumimoto K et al. Mat Res Soc Symp Proc[J], 1993, 288: 441
- [17] Kishida K, Yoshikawa J, Inui H et al. Acta Materialia[J], 1999, 47(12): 3405
- [18] Groves G W, Kelly A. Philosophical Magazine[J], 1963, 8(8): 877

Simulation of Plastic Deformation Behaviors of Ti₃Al Single Crystal with Crystal Plasticity Finite Element Method

Zhao Wenjuan¹, Tang An¹, Lin Qiquan¹, Ren Yuping², Xu Junrui¹, Song Binna³

(1. Xiangtan University, Xiangtan 411105, China)

- (2. Northeastern University, Shenyang 110819, China)
 - (3. Soochow University, Suzhou 215021, China)

Abstract: A crystal plasticity constitutive model for Ti₃Al single crystal was established based on slip deformation mechanism within the frame of crystal plasticity theory, and a program was compiled to describe it by means of secondary development of ABAQUS/UMAT user subroutine. Then we applied it to simulate the mechanical behaviors of Ti₃Al single crystal with different orientations during unidirectional compression deformation. The activation of slip systems and the interaction between activation and orientation has been analyzed. The simulation results show that basal slip of $(0001)<11\overline{2}0>$, prismatic slip of $\{10\overline{1}0\}<11\overline{2}0>$, and pyramidal slip of $\{11\overline{2}1\}<11\overline{2}6>$ can be activated. However, there is dramatic difference on the ease or complexity of activation of various slip systems, which is due to the difference of critical shear stress and Schmid factor. It is difficult for basal slip and pyramidal slip to be activated because of their larger critical shear stress, which causes the activation of basal slip and pyramidal slip just with a larger Schmid factor. Pyramidal slip systems can be initiated only when compression axis is close to [0001] direction due to the maximum critical shear stress. Prismatic slip is much easier to be activated and also has the largest contribution to plastic deformation. Furthermore, the simulation results are in good agreement with the experimental results.

Key words: Ti₃Al single crystal; crystal plasticity; dislocation; slip system; finite element; constitutive relationship

Corresponding author: Zhao Wenjuan, Ph. D., Associate Professor, School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, P. R. China, Tel: 0086-731-58292454, E-mail: wjzhao1024@xtu.edu.cn