氟化物熔盐中快速电脱氧制备金属钒及其机理

孔亚鹏,李斌川,陈建设,刘奎仁,韩 庆

(东北大学 多金属共生矿生态化冶金教育部重点实验室, 辽宁 沈阳 110819)

摘 要:以偏钒酸铵为原料,采用"煤气还原+原位烧结"工艺制备高活性 V_2O_3 阴极片,在氟化物体系熔盐中实现了快速电脱氧制备金属钒,并通过测定循环伏安曲线结合恒电位电解实验,研究了电解过程的反应机理。结果表明: V_2O_3 在氟化物熔盐中可实现快速电脱氧,电解 4 h 后所得金属钒的氧含量降至 0.218% (质量分数,下同); V_2O_3 阴极电脱氧产生的 O^2 -在脱氧反应区可原位生成铝氧氟络合离子并进一步产生金属铝,从而引发阴极的铝热还原反应,导致 V_2O_3 熔盐电脱氧过程同时存在直接电还原反应和铝热还原反应,其中后者起着关键的加速作用;在熔盐中添加适量 Al_2O_3 可强化 V_2O_3 电脱氧过程,在其他条件不变的情况下电脱氧时间可缩短至 3 h。

关键词:氟化物熔盐; V₂O₃; 金属钒

中图法分类号: TF841.3 文献标识码: A

: A 文章编号: 1002-185X(2018)06-1824-06

金属钒具有熔点高、硬度大、抗疲劳强度大、耐低温腐蚀等优点,是具有战略意义的稀有金属之一^[1]。 目前,工业上金属钒的生产主要是通过金属热还原法 或碳热还原法得到粗钒,再以各种提纯手段获得金属 钒^[2],生产方法工艺复杂、污染重、成本高,严重限 制了金属钒的应用。

2000 年,《Nature》杂志报道了剑桥大学 Fray 等 在氯化物熔盐中采用固态原位还原 TiO₂ 制备金属钛 的方法 (FFC 法)^[3]。由于具有流程短、无污染、能 耗低等这些传统工艺无法比拟的优点,自提出以来就 成为世界众多研究人员的研究热点,并被广泛用于高 熔点金属的制备研究,如 Ti^[3-5]、Cr^[6]、Nb^[7]、W^[8]、 V^[9-13]等。

Suzuki 等^[9]以 V₂O₃ 为原料,采用 OS 法在 CaCl₂-CaO 熔盐中制备出了金属钒粉末,氧含量为 0.186%; S. L. Wang 等^[10]研究了 V₂O₃熔盐电解制备金 属钒的过程,以 V₂O₃ 为原料,在 CaCl₂-NaCl-CaO 熔 盐中,电解 8 h 制备出了金属钒; Z. F. Cai 等^[11]采用 V₂O₅ 作为原料,通过压制成型制成阴极,在 CaCl₂-NaCl 熔盐中采用低温电脱氧法,电解 10 h 制备出了 氧含量为 0.205%的金属钒。

需要指出的是,近年来的研究中所采用的熔盐电 解质主要是氯化物熔盐体系(CaCl₂-CaO体系),而对 氟化物熔盐体系的研究较少。相较于氯化物,氟化物 用作熔盐电解质时具有下列优点:①使用前无需深度 脱水;②电势窗口宽;③蒸气压低,挥发性小。有鉴 于此,本研究提出在氟化物熔盐中,以煤气直接还原 偏钒酸铵制备的高活性 V₂O₃片体作为阴极,通过熔盐 电脱氧法制备金属钒;并通过循环伏安曲线结合恒电 位电解实验探究在氟化物熔盐中电解 V₂O₃ 制备金属 钒的还原过程。

1 实 验

采用分析纯 NaF-AlF₃(摩尔比为 3)与分析纯 Al₂O₃组成的熔盐为电解质,以高纯偏钒酸铵作为原 料,以分析纯糊精作为粘结剂。

将偏钒酸铵、糊精和水按比例混合均匀,在 30 MPa压力下压制成片(直径 20 mm,厚度 3~4 mm),烘干后置于管式炉中升温至 750 ℃通入煤气还原 30 min,然后通入氩气,升温至1200 ℃烧结2h得到V₂O₃ 阴极片。

电解实验的电解温度为 1000 ℃,先以高纯石墨 棒为电极,在氩气气氛中于 1.0 V 电压下预电解 2 h, 以除去熔盐中的杂质。预电解结束后,将组装好的阴 极片浸入熔盐,在 3.5 V 电压下进行电解,时间为 2~4 h,电解产物经破碎、30%AlCl₃ 溶液浸洗、水洗后最 终获得金属钒。

电化学测试采用三电极体系: 高纯石墨坩埚为对

收稿日期: 2017-06-08

基金项目: 中央高校基本科研业务费(N110402007, N130102002)

作者简介: 孔亚鹏, 男, 1989 年生, 博士生, 东北大学冶金学院, 辽宁 沈阳 110819, 电话: 024-83686997, E-mail: kongyapeng@ stumail.neu.edu.cn

电极, 铂丝为参比电极, 钼丝(直径 1.5 mm)和负载 微量 V₂O₃ 粉末的钼金属电极分别为研究电极。

采用 SSX-550 型扫描电子显微镜(SEM)及能谱 仪(EDS)分析产物形貌及元素成分,以 D/max-2500PC 型(Cu Kα)X 射线衍射仪分析产物的物相,以 TC-436 氧氮测定仪测定产物的氧含量,以 Zahner IM6e 电化 学工作站进行循环伏安曲线测试和恒电位电解。

2 结果与讨论

2.1 V₂O₃ 阴极材料的表征

图 1 为经过煤气还原和原位烧结后产物的 XRD 图谱。由图可知,偏钒酸铵片已经转化为 V₂O₃,物相 均一,说明该条件下还原进行得较为彻底。图 2 为通 过煤气还原和原位烧结后得到产物的 SEM 照片。可以 看出,产物晶粒大小均一。经测量,孔隙率为 54.52%, 晶粒之间的间隙较大,在电解过程中为熔盐的扩散和 氧离子的传输提供了通道,从而加快整体电脱氧反应 的进程。

2.2 电解实验及阴极产物表征

图 3 为 V₂O₃ 阴极在 3.5 V 电压下电解时的电流与时间关系曲线。由图可以看出,电解刚开始时,反应

图 1 V₂O₃ 阴极材料的 XRD 图谱

图 2 V2O3 阴极片的 SEM 照片 Fig.2 SEM image of V2O3 cathode pellet

电流较大,随后迅速下降,在15 min 左右趋于稳定, 电流维持在1.73 A 左右;当电解时间达到100 min 时, 电流开始逐渐降低,直到160 min 电流达到最低值并 保持稳定。电流与时间曲线图的不同阶段对应着不同 的电解反应,在电解初期,电解反应主要发生在阴极 表面,物质传输速度快,并且 V₂O₃具有导电性,因此 出现了较强的电流;阴极片表面反应完成以后,由于 内部传质速度慢,反应受物质扩散控制,速度变慢; 随着反应继续向内层进行,反应速率持续降低,直到 V₂O₃电脱氧反应彻底完成,电流最终维持在1.45 A 左 右。此时熔盐发生铝氟络合离子的分解反应^[14],阴极 的电解反应主要按下式进行:

$$AlF_6^{3-} + 3e \rightarrow Al + 6F^{-} \tag{1}$$

 $AlF_4^- + 3e \rightarrow Al + 4F^-$ (2)

图 4 为 V₂O₃ 阴极在 NaF-AlF₃ 熔盐中电解 4 h 后 得到电解产物的 XRD 图谱。电解过程完成后,阴极 由黑色变为灰色,经打磨后其表面呈现金属光泽。由 图 4 可知,阴极产物为金属钒,经检测氧含量为 0.218%,说明以偏钒酸铵为原料制备的 V₂O₃ 阴极在 NaF-AlF₃ 熔盐中可以实现快速电脱氧。

图 4 阴极电解产物的 XRD 图谱

Fig.4 XRD pattern of electrolysis cathode product

图 5 为电解 2 h 后所得阴极片断面的 SEM 照片。 可以看出,阴极产物断面出现分层现象,外层部分呈 灰色(图中 a),显金属光泽;中心层颜色较深(图中 c);外层和中心层中间存在过渡层(图中 b)。

图 6 为过渡层的 SEM 照片。可以看出,过渡层为 深灰色,并且出现轻微烧结现象,呈多孔团聚状,颗 粒间有孔道。

图 7 为阴极片产物相应区域的 EDS 分析结果,其 中图 7a 为外层产物,图 7b 为过渡层产物,图 7c 中心 层产物。由图 7a 可知,外层物质为单质钒,说明阴极

图 5 阴极产物断面的 SEM 照片 Fig.5 SEM image of cathodic cross-section

图 6 阴极产物过渡层的 SEM 照片 Fig.6 SEM image of cathodic intermediate layer

外层已经基本完成电脱氧过程。图 7b 显示, 阴极过渡 层中钒、氧等元素含量低, 铝元素含量较高, 说明该 区域在电解过程中产生了大量单质铝, 而 V₂O₃ 尚未完 全脱氧。由图 7c 可知, 产物中心层灰色区域中的各元 素含量相对均一, 表明该处主要为熔盐与氧化钒的混 合物, V₂O₃ 发生了部分电脱氧反应,导致氧含量较低。 根据三相界线反应模型理论, 固态氧化物熔盐电解的 电化学反应发生在导电集流体/金属氧化物/熔盐的三 相界面上^[3], 阴极片表层首先发生脱氧还原反应, 产 生金属钒, 由于单质钒摩尔体积小于钒氧化物的摩尔 体积, 所以会生成松散多孔的金属层, 熔盐通过金属 层孔隙扩散进入片体内部继续发生电脱氧反应。

在正常的铝电解反应中,阴极放电离子为铝氧氟 络合离子,当电解质中无 Al₂O₃ 存在时,阴极很难产 生金属铝。但在此体系中,由于 V₂O₃ 阴极可不断发生 电脱氧反应,从阴极释放出的氧可作为氧源,在脱氧 反应区原位生成铝氧氟络合离子,故在此区域会原位 生成金属铝,从而引发 V₂O₃ 阴极的铝热还原反应。此 外熔盐中形成的铝氧氟络合离子,可使得阴极反应界 面的氧离子浓度迅速降低,从而加快氧离子从阴极脱 除进入熔盐。上述这些因素均有利于加快 V₂O₃ 阴极脱 氧速度。

由此可以推测,在 V₂O₃ 阴极的快速电脱氧过程中 铝热还原反应起着关键的加速作用,具体电脱氧机理 描述如图 8 所示。

2.3 循环伏安曲线及过程分析

图 9 为以钼丝为研究电极时,在 NaF-AlF₃ 熔盐中 测得的循环伏安曲线(扫描速度 100 mV/s,下同)。 由图可知,在电位达到–1.15 V 时开始有还原电流产 生,随着电位继续负移,电流强度逐渐增大,说明熔 盐中的铝离子开始发生还原反应,电位回扫时出现了 对应的氧化峰。

图 7 阴极产物的 EDS 能谱图

Fig.7 EDS results of cathode product: (a) outer layer, (b) intermediate layer, and (c) inner layer

图 8 V₂O₃熔盐电脱氧过程示意图

图 10 为以负载 V₂O₃粉的钼金属电极为研究电极时,在 NaF-AlF₃熔盐中的循环伏安曲线。由图可以看

图 10 负载 V₂O₃的钼金属电极在 NaF-AlF₃ 熔盐中的 循环伏安曲线

出,在达到铝析出电位前出现了还原峰,位置在-0.5 V 左右,推测是 V₂O₃的还原峰,继续负扫至-1.36 V 开 始有金属铝生成。

在产物不溶的电化学反应中,电位与电流之间存 在以下关系:

$$\varphi = \varphi_{\rm e} + \frac{RT}{nF} \ln \frac{i_{\rm d} - i_{\rm k}}{i_{\rm d}}$$
(3)

其中: φ_e 为平衡电极电势; i_d 为峰电流; i_k 为瞬时电流。

由式(3)可知, φ 与 ln[($i_d - i_k$)/ i_d]成线性关系, 可根据直线斜率 k=RT/nF 计算还原过程中的电子转移 数。对图 10 中 V₂O₃还原峰的数据进行拟合得到 φ 与 ln[(i_d-i_k)/ i_d]的关系曲线,如图 11 所示。由图可知,拟 合直线的斜率 k=0.095,从而算得还原过程中电子转移 数 $n=1.149\approx1$ 。因此可以推断,V₂O₃ 阴极的电解过程 存在直接电还原反应过程,并且电脱氧反应是分步进 行的,V(III)在电位达到–0.5 V 时首先失去 1 个电子被 还原成 V(II);电位达到–1.36 V 时,阴极析出金属铝, 此时钒的氧化物同时发生直接电还原反应和铝热还原 反应,后者为主反应。

2.4 低电压与不同阴极电解实验

为进一步验证 V₂O₃ 的电脱氧过程中是否存在直接电还原过程,根据循环伏安曲线的实验结果,将电解电位设定为-0.9 V(相对于铂电极),在该条件下以V₂O₃ 片为阴极进行电解实验,电解时间 3 h,对电解产物进行物相分析,结果如图 12 所示。

由图可知, 阴极产物中大量存在低价钒氧化物, 表明 V₂O₃ 阴极发生了还原反应, 而在-0.9 V 电位下熔 盐中不会有金属铝产生。由此可以断定, V₂O₃ 阴极在 没有金属铝作用的情况下主要发生直接电还原反应。

为了验证铝热还原反应与直接电还原反应对电解 过程的影响,分别以尺寸相同的 V₂O₃ 片和石墨片为阴 极,在 3.5 V 电压下进行恒电压电解。图 13 为不同阴 极电解时的电流与时间关系曲线图。由图可见,以石

图 11 $E 与 \ln[(i_d - i_k)/i_d]$ 的拟合曲线 Fig.11 Fitting curve between E and $\ln[(i_d - i_k)/i_d]$

图 12 低电压电解实验产物的 XRD 图谱

Fig.13 Current-time curves of electrolytic experiments with different cathodes

墨为阴极时,电解电流开始时达到1.25 A,之后电流 随着电解的进行逐渐减小并逐渐保持稳定。电解完成 后观察石墨片表面发现有金属铝生成,此时的电解电 流主要是熔盐中铝离子的还原引起的。

以 V₂O₃ 片为阴极进行电解时,起始电流较大,达 到了 1.6 A,随后迅速下降至 1.5 A 左右,随着电解的 进行,电流逐渐衰减,并在 120 min 处出现一个拐点。 同时由图可以看出,以 V₂O₃ 片为阴极时,电解电流相 对较高,表明 V₂O₃ 电解过程中的电解电流由 V₂O₃ 的直 接电还原反应和熔盐中铝离子的还原反应共同提供。

2.5 脱氧过程强化

鉴于铝热还原反应在 V₂O₃ 阴极电脱氧过程中起 着主导作用,本研究在 NaF-AlF₃ 熔盐中添加 Al₂O₃ 作 为电解质进行电解,图 14 为熔盐中不含 Al₂O₃ 以及含 0.5% Al₂O₃ 时的电流与时间关系曲线图。由图可以看 出,熔盐中添加 0.5%的 Al₂O₃,电解电流降低。从电 流自开始到达到最低电流值的时间对比发现,添加少 量 Al₂O₃ 时所需的时间相对较少,即电解所需时间较

图 14 不同 Al₂O₃浓度下的电流与时间关系曲线图

Fig.14 Current-time curves at different Al₂O₃ concentration

图 15 不同 Al₂O₃浓度下电解产物的 XRD 图谱

Fig.15 XRD patterns of electrolysis product obtained at different Al₂O₃ concentration

短。图 15 为不同 Al₂O₃浓度下所得电解产物的 XRD 图谱。可以看出,在 Al₂O₃浓度为 0.5%的 NaF-AlF₃ 熔盐中,只需电解 3 h, V₂O₃片体就转化为金属钒, 有效地缩短了电解时间,此时电流效率为 46.21%。

3 结 论

 高活性 V₂O₃ 阴极在氟化物体系熔盐中可实现 快速电脱氧,电解4h后所得金属钒的氧含量可降至 0.218%。

2) 在 V₂O₃ 阴极的快速电脱氧过程中同时存在直接电还原反应和铝热还原反应,其中铝热还原反应起着关键的加速作用。

3) 在 NaF-AlF₃熔盐中添加少量 Al₂O₃,可以强化 V₂O₃的熔盐电脱氧过程,电解时间可缩短至 3 h,电 流效率为 46.21%。

参考文献 References

 Moskalyk R R, Alfantazi A M. *Minerals Engineering*[J], 2003, 16(9): 793

- [2] Yang Shouzhi(杨守志). Vanadium Metallurgy(钒冶金)[M]. Beijing: Metallurgical Industry Press, 2010: 53
- [3] Chen G Z, Fray D J, Farthing T W. Nature[J], 2000, 407(6802): 361
- [4] Wang Bin(王 斌), Liu Kuiren(刘奎仁), Chen Jianshe(陈建设).
 Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2011, 40(11): 2014
- [5] Suzuki R O. Journal of Physics and Chemistry of Solids[J], 2005, 66(4): 461
- [6] Ai L, Lu Y, Wang X et al. Journal of Refractory Metals and Hard Materials[J], 2015, 51: 153
- [7] Descallar-arriesgado R F, Kobayashi N, Kikuchi T et al. Electrochimica Acta[J], 2011, 56(24): 8422
- [8] Wang Xu(王 旭), Liao Chunfa(廖春发). Chinese Journal of Rare Metals(稀有金属)[J], 2011, 35(4): 587

- [9] Suzuki R O, Ishikawa H. Mineral Processing and Extractive Metallurgy[J], 2008, 117(35): 108
- [10] Wang S L, Li S C, Wan L F et al. International Journal of Minerals, Metallurgy and Materials[J], 2012, 19(3): 212
- [11] Cai Z F, Zhang Z M, Guo Z C et al. International Journal of Minerals Metallurgy and Materials[J], 2012, 19(6): 499
- [12] Wang Shulan(王淑兰), Li Shichao(李世超), Gu Dongyan(顾 东燕). Iron Steel Vanadium Titanium(钢铁钒钛)[J], 2012, 33(1): 20
- [13] Du Jihong(杜继红), Li Qingyu(李晴宇), Yang Shenghong(杨 升红) et al. Rare Metal Materials and Engineering (稀有金 属材料与工程)[J], 2009, 38(12): 2230
- [14] Feng Naixiang(冯乃祥). Aluminum Electrolysis(铝电解)[M]. Beijing: Chemical Industry Press, 2006: 53

Preparation and Reaction Mechanism of Metallic Vanadium by Rapid Electro-deoxidization in Molten Fluorides

Kong Yapeng, Li Binchuan, Chen Jianshe, Liu Kuiren, Han Qing

(Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang 110819, China)

Abstract: With NH₄VO₃ as raw material, high-active V₂O₃ cathode pellets were prepared by reduction with coal gas and in-situ sintering, and then were directly reduced to metallic vanadium by rapid electro-deoxidization in molten fluorides. The mechanism of V₂O₃ electro-deoxidization was studied by cyclic voltammetry experiments and constant potential electrolysis experiments. The results indicate that the rapid electro-deoxidization of V₂O₃ can be realized in molten fluorides, and metallic vanadium containing 0.218 wt% oxygen can be obtained after 4 h electrolysis. The in-situ formation of aluminium-oxygen-fluorine complex ions, which further forms aluminum metal in deoxidation reaction zone, causes aluminum thermal reduction reaction of V₂O₃ cathode. So direct electro-deoxidation reduction and aluminum thermal reaction of V₂O₃ both exist in the deoxidation process of V₂O₃ cathode, and the latter reaction plays a key role in acceleration action. Electro-deoxidization process of V₂O₃ cathode can be enhanced effectively by adding aluminium oxide in molten fluorides, and the electrolytic time can be shortened to 3 h with other conditions unchanged.

Key words: molten fluorides; V2O3; metal vanadium

Corresponding author: Han Qing, Ph. D., Professor, School of Metallurgy, Northeastern University, Shenyang 110819, P. R. China, Tel: 0086-24-83686997, E-mail: hanq@smm.neu.edu.cn