铝合金双丝 VP-GTAW 增材构件组织和性能

孙红叶^{1,2},从保强^{1,2},祁泽武^{1,2},齐铂金^{1,2},赵 罡^{1,2},丁佳洛³

(1. 北京航空航天大学,北京 100191)(2. 航空高端装备智能制造工信部重点实验室,北京 100191)

(3. Cranfield University, UK MK430AL)

摘 要:以Al-6.3Cu和Al-5Mg为填丝材料进行铝合金双丝 VP-GTAW 增材制造试验。结果表明,采用双丝 VP-GTAW 制备试样可提高成形效率,且成形稳定;通过调节2种丝材的送丝速度可以获得不同主要合金元素含量的Al-Cu-Mg合金,合金组织主要由柱状晶和等轴枝晶组成,且呈非均匀分布特征,调节主要合金元素含量可实现对铝合金试样性能的控制。原始状态下铝合金试样的显微硬度(HV)为900~1000 MPa,抗拉、屈服强度分别可达286和183 MPa,但塑性较差,仅为4.5%。

关键词:	双丝电弧增材;	Al-Cu-Mg 合金;	微观组织;	力学性能	
中图法分	`类号: TG47	文献标识码	: A	文章编号:	1002-185X(2017)08-2203

高强铝合金以其高的比强度和良好的断裂韧性、抗 疲劳、耐腐蚀等[1]性能被广泛应用于航空航天等领域。 电弧填丝增材制造(wire+arc additive manufacturing, WAAM)技术具有成形尺寸大、设备简单、制造成本 低等特点^[2,3],将 WAAM 用于铝合金构件的制造可节省 材料、降低成本,国内外研究人员针对铝合金 WAAM 技术的研究已取得一定进展。从保强^[4-6], Gu^[7]等研究 了铝合金 WAAM 气孔问题并提出了控制气孔缺陷的 方法; Ouyang, Wang 等^[8,9]采用 VP-GTAW 电弧对 Al-5Mg、Al-5Si 成形及组织性能进行了研究。为进一 步提升铝合金 WAAM 构件性能, Gu^[10]等采用层间轧制 和热处理辅助工艺措施对 2319 铝合金 WAAM 试件进 行了增强处理,构件性能显著提高。本研究提出将双丝 WAAM 工艺应用于铝合金构件的制备。一方面,与常 规单丝相比,双丝可有效提高沉积效率^[11];另一方面, 通过控制2种丝材的送丝速度,可调节合金元素含量, 达到控制构件力学性能的目的。为保证良好的熔池可见 性及成形质量,本研究采用 VP-GTAW 电弧作为热源, 进行铝合金双丝电弧增材试验,对其适用性及构件组织 力学性能开展研究,研究结果可为 WAAM 铝合金的制 备和应用提供参考依据。

1 实 验

双丝电弧增材制造(double-wires plus arc additive manufacturing, D-WAAM)系统主要由 VP-GTAW 电源、送丝机(2台)、供气系统、焊枪及双丝送丝机构等组成。2种丝材通过专门设计的送丝装置送入熔池,其送丝角度可单独调节,从而使双丝在熔池前缘形成连续熔滴过渡,以保证成形过程的稳定和连续。

-05

通过调节 2 种不同丝材的送丝速度,可获得不同 合金元素含量的构件,2 种丝材混合后,合金中主要 元素的质量分数 ω 由下式求得:

 $\omega = v_{WFSi} D_i^2 \rho_i \omega_i / (v_{WFS1} D_1^2 \rho_1 + v_{WFS2} D_2^2 \rho_2)$ (1) 式中: ω_i — 所求元素在丝材中的质量分数(%); v_{WFSi} —送丝速度(wire feed speed); D_i —丝材直径; ρ_i —丝 材密度(g/cm³); *i*=1, 2。

基板选择尺寸规格为 320 mm×150 mm×12 mm 的 2A12 铝合金平板,试验前铝合金基板先用丙酮擦拭去 污,然后采用机械打磨方法去除表面氧化膜。采用直径 为 1.2 mm 的 ER2319 (Al-6.3Cu)和 ER5087 (Al-5Mg) 2 种焊丝为成形材料。丝材和基板的主要化学成分和密 度如表 1 所列,主要试验参数如表 2 所列,其中 v_{TS} 是 运动速度 (travel speed)。其它工艺参数分别是:焊枪 瓷嘴至基板高度 15 mm,保护气体 Ar (99.99%),流量 15 L/min,制备试样长度 280 mm。图 1 所示为制备的 试样,可以看出双丝电弧增材制备的铝合金试样表面良

收稿日期: 2016-08-11

基金项目:北京市科技计划装备制造专项(Z161100001516005);中央高校基本科研业务费专项资金(YWF-15-GJSYS-096, YWF-16-GJSYS-019)

作者简介:孙红叶,女,1992 年生,硕士,北京航空航天大学机械工程及自动化学院,北京 100191,电话: 010-82338722, E-mail: sunhongye@buaa.edu.cn

好,成形稳定;同时,其送丝速度达 2.7 m/min 以上, 与单丝电弧增材^[12]相比,成形效率可提高 25%以上。

按照图 2a 所示,利用线切割机分别制取组织观测和拉伸试样,组织试样经粗磨、抛光(SiO₂ 悬浮液)后,用 Kroll's 试剂(HNO₃ 6 mL; HF 2 mL; H₂O 92 mL)浸蚀,使用 LEICA DM4000 光学显微镜和 CamScan-3400 扫描电子显微镜观察组织并进行 EDS 能谱分析,在试样中心部位进行 XRD 物相分析。

每组参数条件下取 3 个拉伸试样,室温下进行拉伸 性能测试,加载速率为 2.0 mm/min,利用 CamScan-3400 扫描电子显微镜观察断口形貌。

按照图 2b 在组织观测试样上进行硬度测试,硬度 仪型号为 FM800,加载力 1.96 N,保持时间 10 s,间 距 0.5 mm。为表征成形构件组织的均匀性,进行硬度 梯度(hardness gradient, HG)测量,按照 HG= $|H_{i+1} - H_i|/\Delta d$ 公式计算,其中, H_{i+1} 和 H_i 分别为第 *i*+1 和第 *i* 个测试点的硬度值, Δ*d* 为两点间距。

表 1 合金丝材和基板化学成分和密度

 Table 1
 Nominal composition and density of wires and substrate

Alloy	ho/	Element content, ω /%							
Anoy	g cm ⁻³	Si	Fe	Cu	Mn	Zr	Mg	Ti	Al
ER2319	2.77	0.04	0.1	6.3	0.28	0.19	-	0.145	Bal.
ER5087	2.66	0.05	0.1	-	0.74	0.12	5.05	0.114	Bal.
2A12	2.75	0.5	0.5	4.3	0.6	-	1.5	0.20	Bal.

表 2 双丝电弧增材成形参数

Table 2 Parameters of D-WAAM process

	I/A	$v_{\rm WFS}/m {\rm min}^{-1}$		Vma/	Laver	ω /%	
Sample		ER 2319	ER 5087	mm min ⁻¹	number	Cu	Mg
1	120	1.5	1.2	300	50	3.57	2.19
2	120	1.8	1.0	300	70	4.11	1.76

图 1 D-WAAM Al-Cu-Mg 合金试件 Fig.1 As-deposited D-WAAM wall samples

图 2 取样与显微硬度测试示意图

Fig.2 Schematic diagrams of sampling positions (a) and micro hardness test (b)

2 结果与分析

2.1 D-WAAM 显微组织特征

图3为2种不同送丝速度下增材成形构件的组织,可以看出,试样1主要由柱状晶(columnar zone, CLZ)和等轴枝晶(equiaxed dentrite zone, EQZ)交替组成,且呈现非均匀条状分布特征。试样2主要由柱状晶组成,仅含有少量等轴枝晶。

根据 Al-Cu-Mg 合金系的凝固模型路径^[13](图 4) 和试样中 Cu、Mg 元素含量理论计算值可知,试样 1 (Cu-3.57; Mg-2.19) 中合金成分处在相图 α(Al)+S (Al₂CuMg)两相区内,在凝固过程中发生伪二元共 晶反应生成 α+S 两相共晶体; 试样 2 (Cu-4.11; Mg-1.76)的合金成分处于 $\alpha + \theta(Al_2Cu) + S$ 临界线,在 凝固过程中发生三元共晶反应生成 $\alpha + \theta + S$ 三相共晶 体。根据两试样的 XRD 物相分析(图 5)和 EDS 能 谱分析(图 6)结果,可以看出,试样 1 中的白色颗 粒(A1 点)为 S 相,晶界部位(B1 点)和晶界内部 (C1 点) 主要是 α (Al)固溶体。试样 2 中的白色颗粒 (A2 点)为 θ 相,沿晶界部位(B2 点)分布着的 $\alpha + \theta$ 共晶相。试样1的结果与凝固模型基本一致,合金中 主要是 α+S 两相共晶体。由于 Mg 元素在电弧燃烧过 程中易蒸发, 使 Mg 元素含量低于理论计算值, 试样 2中的S相非常少,主要是 $\alpha+\theta$ 两相共晶体。

图 3 双丝电弧增材试样显微组织

Fig.3 Microstructures of wall samples: (a) sample 1 and (b) sample 2

图 4 Al-Cu-Mg 合金系的凝固路径模型 Fig.4 Solidification pathways for Al-Cu-Mg alloys^[13]

2.2 力学性能

双丝试样的显微硬度及其硬度梯度分布曲线如图 7 所示,可以看出,双丝试样的硬度值(HV)基本在 900~1000 MPa之间,但试样1的硬度梯度变化较大。 硬度梯度变化与其组织类型和分布状态有关,试样1 组织由柱状晶和等轴枝晶组成,且2种组织呈现显著 的非均匀分布特征,而试样2组织主要由柱状晶组成, 其组织分布相对均匀,因而硬度梯度变化较小。

双丝试样的拉伸性能测试结果如表 3 所列,试样 2(Cu-4.11; Mg-1.76)的力学性能较低,抗拉、屈服 强度分别是 267 和 171 MPa,延伸率 3.5%。当 Cu 含 量降低而 Mg 含量增加时,试样 1(Cu-3.57;

图 5 2 种试样 XRD 衍射物相分析

Fig.5 XRD patterns of sample 1 (a) and sample 2 (b)

Flomont	A2,	B2,	C2,
Element	ω /%	ω /%	$\omega/\%$
Al	68.91	73.49	96.44
Cu	29.24	25.58	2.65
Mg	1.84	0.92	0.91

图 6 Al-Cu-Mg 合金 EDS 分析结果

Fig.6 EDS analysis results of sample 1 (a) and sample 2 (b)

Mg-2.19)的力学性能有一定提高,抗拉和屈服强度分 别为 286 和 183 MPa,都增加了 7%。分析认为,Cu 和 Mg 元素含量的变化,使合金中的主要强化相改变, 试样 1 中 S 相的强化效果高于 θ 相^[14](试样 2),因而 其抗拉和屈服强度较高。但同时由于 θ 相和 S 相延展 性较差,使得 2 种试样的延伸率较低。

根据作者对 2319 单丝 WAAM 试样力学性能的测 试结果^[12]可知,相比较 2319 单丝 WAAM 试样,双丝 试样的平均硬度提高 35%,抗拉强度可增强 8%以上, 屈服强度显著增加,可增加 60%以上,但延伸率低, 如图 8 中所示。这是由于在 Al-Cu 合金中加入第三组 元 Mg,在结晶过程中形成 θ 和 S 两种相,强化效果 增大,但由于 θ 和 S 相较脆,使得双丝试样的塑性较 差。由试样断口形貌可以看出,试样 1 呈现沿晶脆性 断裂特征,并可观察到部分沿晶二次裂纹;试样 2 能 看到明显的河流花样,属于准解理断裂(图 9)。

图 7 显微硬度分布与硬度梯度分布

Fig.7 Micro hardness (a) and its gradient distribution (b) of as-deposited Al-Cu-Mg alloy

表 3 Al-Cu-Mg 合金拉伸试验结果

Table 3 Tensile properties of as-deposited Al-Cu-Mg alloys

		•	0,
Sample	YS/MPa	UTS/MPa	Elongation/%
1	183	286	4.5
2	171	267	3.5

图 8 单丝 WAAM 2319 合金与双丝试样的力学性能 Fig.8 Tensile properties of WAAM alloys

图 9 2 种试样拉伸断口形貌图

Fig.9 SEM fractograph morphologies for tensile fracture specimens: (a) sample 1 and (b) sample 2

3 结 论

1)利用双丝 VP-GTAW 增材制造技术制备铝合金 试样可提高成形效率且成形稳定。

2)调节 Al-6.3Cu 和 Al-5Mg 的送丝速度,可制备 不同合金元素含量的 Al-Cu-Mg 合金。Mg 含量较低时 (1.74%),合金中主要是 α+θ 两相共晶体; Mg 含量 较高时(2.17%),合金中主要是 α+S 两相共晶体。

3)调节2种丝材(Al-6.3Cu和Al-5Mg)的送丝 速度,可实现对试样性能的控制。原始状态下试样的 显微硬度在 900~1000 MPa 之间, 抗拉、屈服强度分 别可达到 286 和 183 MPa。与单丝 2319 WAAM 相比, 双丝试样的平均硬度提高 35%; 抗拉、屈服强度可分 别增加 8%和 60%以上。

参考文献 References

- [1] Song Renguo(宋仁国). Materials Review(材料导报)[J], 2000, 14(1): 20
- [2] Williams S W, Martina F, Addison A C et al. Materials Science and Technology[J], 2016, 32(7): 641
- [3] Brandl E, Schoberth A, Leyens C. Materials Science & Engineering A[J], 2012, 532: 295
- [4] Cong Baoqiang(从保强), Ding Jialuo(丁佳洛). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2014, 43(12): 3149
- [5] Cong B Q, Ding J L, Williams S W. International Journal of Advanced Manufacturing Technology[J], 2015, 76(9-12): 1593
- [6] Cong Baoqiang(从保强), Sun Hongye(孙红叶), Peng Peng
 (彭 鹏) et al. Rare Metal Materials and Engineering(稀有 金属材料与工程)[J], 2017, 46(5): 1359

- [7] Gu J L, Ding J L, Williams S W et al. Journal of Materials Processing Technology[J], 2016, 230: 26
- [8] Ouyang J H, Wang H, Kovacevic R. Materials and Manufacturing Processes [J], 2002, 17(1): 103
- [9] Wang H J, Jiang W H, Ouyang J H et al. Journal of Materials Processing Technology[J], 2004, 148(1): 93
- [10] Gu J L, Ding J L, Williams S W et al. Materials Science & Engineering A[J], 2016, 651: 18
- [11] Zhang Xiaofeng(张晓枫). Thesis for Master(硕士论文)[D]. Tianjin: Tianjin University, 2013
- [12] Cong Baoqiang(从保强), Su Yong(苏勇), Qi Bojin(齐铂金) et al. Aerospace Manufacturing Technology(航天制造技术)[J], 2016, 3: 29
- [13] Pickin C G, Williams S W, Prangnell P B et al. Science and Technology of Welding and Joining[J], 2009, 14(8): 734
- [14] Li Niankui(李念奎), Ling Gao(凌 杲), Nie Bo(聂 波). Aluminum Alloy Material and Heat Treatment Technology (铝合金材料及其热处理技术)[M]. Beijing: Metallurgical Industry Press, 2012: 222

Microstructure and Properties of Double-Wires Plus Arc Additive Manufactured Aluminium Alloy Deposits Using VP-GTAW Process

Sun Hongye^{1,2}, Cong Baoqiang^{1,2}, Qi Zewu^{1,2}, Qi Bojin^{1,2}, Zhao Gang^{1,2}, Ding Jialuo³ (1. Beihang University, Beijing 100191, China)

(2. MIIT Key Laboratory of Aeronautics Intelligent Manufacturing, Beijing 100191, China)

(3. Cranfield University, UK MK430 AL)

Abstract: Double-wires plus arc additive manufacturing (D-WAAM) system for Al-Cu-Mg alloy using variable polarity gas tungsten arc welding (VP-GTAW) process was established. Al-6.3Cu and Al-5Mg wires were employed as filling metal. The microstructure and mechanical properties of as-deposited D-WAAM samples were analyzed. Results show that the excellent deposits wall samples can be achieved and the deposition efficiency can be improved by D-WAAM process. Al-Cu-Mg alloys with different element contents of copper and magnesium are obtained by adjusting the feed speed of the two wires. The microstructures of Al-Cu-Mg deposits are mainly composed of columnar dendrite and equiaxed dentrite grains with the non-uniform distribution characteristics. Mechanical properties can be enhanced due to the addition of alloying elements. The microhardness (HV) of as-deposited Al-Cu-Mg alloy is 900~1000 MPa. The UTS, YS and elongation of as-deposited D-WAAM alloy can be increased to 286 MPa, 183 MPa and 4.5%, respectively.

Key words: double-wires+arc additive manufacturing; Al-Cu-Mg alloy; microstructure; mechanical properties

Corresponding author: Cong Baoqiang, Ph. D., Associate Professor, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, P. R. China, Tel: 0086-10-82338722, E-mail: congbq@buaa.edu.cn