Hastelloy N 合金表面激光熔覆 NiCoCrAlY 涂层在 LiF-NaF-KF 熔盐中的腐蚀行为研究

朱红梅¹,陈明慧¹,唐忠锋²,申龙章¹,邱长军¹

(1. 南华大学,湖南 衡阳 421001)(2. 中国科学院上海应用物理研究所,上海 201800)

摘 要:采用激光熔覆同步送粉技术在Hastelloy N合金表面制备了NiCoCrAlY涂层,研究了Hastelloy N基材和含 NiCoCrAlY涂层的Hastelloy N试样在900 ℃ LiF-NaF-KF熔盐中的腐蚀行为。利用失重腐蚀法评估了试样的耐熔盐腐蚀 能力,采用XRD和SEM表征了基材和涂层的物相组成、显微组织和腐蚀形貌,并结合EDS分析了微区成分。结果表明, NiCoCrAlY涂层试样的腐蚀速率仅为Hastelloy N基材的2/3。Hastelloy N基材表现为晶间腐蚀,其中Cr元素沿晶界发生选择性脱溶腐蚀,腐蚀前由γ-Ni和*M*₆C(*M*为Ni、Co、Cr等)等物相组成,腐蚀后新析出Co₉Mo₂₁Ni₂₀相。NiCoCrAlY涂层 表现为均匀腐蚀,其中Al元素充当"消耗品"由涂层均匀向外扩散,形成的腐蚀产物可阻碍涂层中其它元素的扩散从 而保护基材,腐蚀前主要由γ-Ni、Al_{0.983}Cr_{0.017}、AlNi₃等物相组成,腐蚀后只存在γ-Ni相。NiCoCrAlY涂层显著提高了基 材的耐熔盐腐蚀性能。

关键词: Hastelloy N 合金; 激光熔覆; NiCoCrAlY 涂层; 耐熔盐腐蚀 中图法分类号: TG156.99 文献标识码: A 文章编号: 1002-185X(2018)09-2767-08

LiF-NaF-KF (FLiNaK)三元混合盐具有高温稳定 性好、高热导率、高比热、高沸点、低粘度等优点^[1], 其作为一种新型高温和高热流密度的传蓄热介质可在 核裂变/聚变反应堆^[2]、太阳能热存储^[3]、核燃料后处 理^[4]等能源领域得到广泛应用。然而,FLiNaK熔盐高 温腐蚀性强的特点对材料提出了苛刻要求,国外学者 研究发现Hastelloy N合金在800 ℃以下能基本满足熔 盐耐腐蚀要求,但当合金使用温度高于800 ℃时其高 温耐蚀性和力学性能仍然有限^[5,6],采用表面涂层技术 有望解决该技术难题^[7]。

目前,应用于Hastelloy N合金表面提高其耐熔融 氟盐腐蚀性能的涂层体系文献报导较少,主要有电镀 纯Ni涂层^[7,8]、激光熔覆纯Ni涂层^[9,10]、热喷涂Mo涂 层^[10]等。研究表明,虽然Ni、Mo涂层耐熔盐腐蚀性能 较好,但存在如Ni涂层不能阻止基材中合金元素的外 扩散,Mo涂层与基材的结合力较差等不足^[7,10]。 NiCoCrAlY具有高温强度大和塑性好等优点,被广泛 用作高温抗氧化涂层和热障涂层,使用温度可达 1200 ℃^[11,12]。由于主要合金元素Ni和Co的氟化物相 对熔盐主要成分(LiF、NaF、KF)而言,ΔG绝对值 较小,故不容易被氟化物熔盐腐蚀^[13]。此外,Dasher 等^[14]研究了含Al的ODS钢在FLiNaK熔盐中的腐蚀行 为,发现Al可提高ODS钢在熔盐中的抗腐蚀性。但至 今尚未见NiCoCrAlY涂层应用于强腐蚀性FLiNaK熔 盐中的研究报道。

本实验采用激光熔覆同步送粉技术,使用高 Al 含量(12.0%,质量分数)的 NiCoCrAlY 粉末作为熔 覆材料,在 Hastelloy N 合金表面制备 NiCoCrAlY 涂 层。将 Hastelloy N 基材和含 NiCoCrAlY 涂层的 Hastelloy N 试样浸泡在 900 ℃的 FLiNaK 熔盐中进行 静态腐蚀实验。采用扫描电子显微镜、能谱仪和 X 射 线衍射仪等手段研究试样在 900 ℃ FLiNaK 熔盐中的 腐蚀行为。该研究可为 Hastelloy N 合金高温耐熔盐腐 蚀涂层的工程应用提供实验依据和理论指导,具有重 要的学术价值和工程意义。

1 实 验

46.5LiF-11.5NaF-42KF (mol%, FLiNaK) 熔盐,

收稿日期: 2017-09-10

基金项目:国家自然科学基金 (91326114);湖南省教育厅省重点实验室开放基金 (15K108);南华大学青年英才支持计划 (2014-002);湖南省重点学科建设项目 (湘教发[2011]76号)

作者简介:朱红梅,女,1982 年生,博士,副教授,南华大学机械工程学院,湖南 衡阳 421001,电话: 0734-8282034, E-mail: meizihong999@126.com

熔点 454 ℃,中国科学院上海应用物理研究所; NiCoCrAlY 粉末(粒径为 48~75 µm),长沙天久金属 材料有限公司; Hastelloy N 板材,中国科学院上海应 用物理研究所,表面经研磨、喷砂及丙酮清洗后放入 干燥箱内待用。

利用TJ-HL-T5000型5 kWCO₂激光器,采用同步送 粉多道搭接扫描工艺在Hastelloy N基材(尺寸为 60 mm×60 mm×5 mm)上激光熔覆NiCoCrAlY涂层。 在前期工作基础上,以制备的激光熔覆涂层表面质量 好且不存在气孔、裂纹等缺陷为原则,选取的激光工 艺参数如下:激光功率1.6 kW,扫描速度6 mm/s,光 斑直径3 mm,搭接率40%,送粉率6.5 g/min,熔覆过 程中用Ar作为保护气体,氩气流量为40 L/min。

激光熔覆制备涂层后,利用线切割沿涂层面纵向 切取尺寸为 15 mm×15 mm 的试样,经 SiC 砂纸 打磨除去表面的氧化膜和杂质,用感量为 0.01 mg 的 电子天平测量样品质量。腐蚀实验前依次用去离子水、 无水乙醇和丙酮超声清洗 10 min,再放置真空干燥箱 中干燥 24 h 以除去腐蚀试样中的水和氧等杂质,之后 迅速转移至真空手套箱中留待腐蚀实验用。试样放入 自制腐蚀装置(见图 1)中进行 FLiNaK 熔盐腐蚀实 验。含涂层面的试样放置在石墨坩埚内的石墨槽中, 仅将涂层表面裸露在熔盐中,在 Ar 保护下,开启加热 装置以 10 ℃/min 升温到 900 ℃,待稳定后保温 100 h,随后冷却至室温,用机械切割方法打开坩埚取 出腐蚀试样。

用 1 mol·L⁻¹Al(NO₃)₃ 溶液和去离子水清洗腐蚀后 试样中残留熔盐,试样干燥后用电子天平精确称量其 质量,以获得腐蚀前后的质量变化,同时用游标卡尺 准确测量腐蚀前后的尺寸变化。试样腐蚀 100 h 后的 腐蚀率 h 用公式(1)计算:

 $h = \left(\left| m_1 - m_2 \right| \right) / S / \rho$

(1)

m

其中: *m*₁为腐蚀前试样质量, *m*₂为腐蚀后试样质量, *S*为材料与熔盐接触表面积, *ρ*为材料密度。

Fig.1 Schematic of the corrosion device

采用带EDS的 ZEISS MERLIN Compact型SEM对 腐蚀前后试样的微观形貌和微区成分进行表征,利用 X-D6型XRD分析腐蚀前后试样的物相组成,采用Cu 靶Kα射线,电压40 kV,电流40 mA,扫描速度1°/min。

2 结果与讨论

2.1 腐蚀率变化研究

表1列出了Hastelloy N基材和含NiCoCrAlY涂层 Hastelloy N试样在900 ℃ FLiNaK熔盐中腐蚀失重变 化。从表1可以得出,Hastelloy N基材和含NiCoCrAlY 涂层Hastelloy N试样的失重分别为0.602和0.398 mg/mm²。含NiCoCrAlY涂层Hastelloy N试样的失重明 显小于Hastelloy N基材,腐蚀速率为Hastelloy N基材 的2/3。这说明NiCoCrAlY激光熔覆涂层能有效阻挡 FLiNaK熔盐对基材材料的侵蚀,其致密涂层起到了防 护作用。另一方面NiCoCrAlY熔覆涂层本身耐FLiNaK 熔盐腐蚀。在900℃高温条件下明显提高了Hastelloy N 合金基材的耐FLiNaK熔盐腐蚀性。

2.2 微观形貌及能谱分析

图 2 为 Hastelloy N 基材腐蚀前后的 SEM 形貌及 EDS 线扫描。其中,图 2a、2b 分别对应 Hastelloy N 基材腐蚀前后的表面 SEM 形貌,可见基材在 900 ℃ 的 FLiNaK 熔盐中浸泡 100 h 后,发生了明显的沿晶 腐蚀。从图 2c、2d 原始基材的横截面照片可以看出, Hastelloy N 基材中分布着少量孔隙和颗粒相,结合后 续 XRD 与 EDS 分析,可知颗粒相为 M₆C。经腐蚀后 (如图 2e、2f), 基材呈现出典型的沿晶腐蚀特点, 晶 界处腐蚀十分严重,这一结果与刘可等[15,16]对 Hastelloy N 合金在 800, 900℃下腐蚀 300 h 后观察到 的腐蚀结果相似。此外,从图 2f 高倍放大形貌清晰可 见,基材经腐蚀后在晶内析出了大量第二相颗粒。对 图 2f 中特征组织进行 EDS 能谱分析,结果见表 2。可 知,图 2f 中尺寸较大(3~5 µm)的灰色颗粒相"2" 为富 M₆C 相,尺寸约为 500 nm 的细小白色颗粒相"3" 中 Cr:Mo:Ni 原子比约为 1:2.5:2.5。该结果由后续 XRD 结果得到证实,其为 Cr₉Mo₂₁Ni₂₀相。值得一提的是, 大量细小颗粒析出相出现目前未见报道,虽然刘可等[16] 也发现了 Hastelloy N 合金经较高温度(800, 900 ℃)

		表 1	试样的腐蚀失重变化					
	~							

Table 1 Corrosion mas	s loss of substra	te and coating		
Succimons	Hastelloy N	NiCoCrAlY		
Specifiens	substrate	coating		
Mass before corrosion/g	2.800	3.124		
Mass after corrosion/g	2.617	2.991		
Corrosion mass loss rate/mg·mm ⁻²	0.602	0.398		

腐蚀后会析出颗粒相,其 EDS 成分(原子分数)为 Ni 49.2%、Cr 6.1%、C 8.3%、Fe 2.9%、Mo 12.5%、O 20.6%、Mn 0.4%,其成分与本研究相差较大。这些细 小颗粒相的精细晶体结构及其对合金性能的影响有待

于后续进一步的深入研究。

图 2g、2h 分别对应基材腐蚀前后的横截面 EDS 线扫描。对比可知,基材经腐蚀后(见图2h),近表 层区的 Cr 元素发生大量流失,由表及里含量呈上升趋

Fig.2 SEM morphologies (a~f) and EDS line scanning (g, h) of Hastelloy N substrate before (a, c, d, g) and after (b, e, f, h) corrosion: (a, b) surface; (c~f) cross section

表 2 图 2d 和 2f 中 Hastellov N 合金腐蚀前后颗粒相的 EDS 分析

Table 2	EDS an	alysis of the pa	articles of Ha	stelloy N subst	rate before a	nd after corro	sion in Fig.2d	and 2f (at%)
Parti	icles	Ni	Cr	Si	С	Fe	Мо	0
1	l	32.22	5.44	9.22	1.21	1.17	45.17	5.57
2	2	33.93	5.77	10.27	1.12	1.35	47.56	0

0

势,而Ni、Mo相对稳定,目Mo元素在多处出现富集 峰,根据前面的分析,这对应为在高温腐蚀过程中析 出的富Mo颗粒相(如图2f中的颗粒相"2")。可见, Hastelloy N基材在熔盐中的腐蚀初期,基材表面的Cr 元素首先与熔盐接触并溶解于其中,从而使基材中Cr 元素在内部与表面间形成了浓度梯度。在900 ℃高温 下,Cr元素会从基材内部不断向表面扩散。其中晶界 是Cr元素扩散的快速通道,故晶界处Cr元素大量被腐 蚀,形成晶界腐蚀的特征^[13,15]。另一方面,EDS结果 表明腐蚀过程中有少量O2侵入,而在腐蚀过程中若有 杂质(H₂O、O₂等)参与时,会大大加剧熔盐对合金 的腐蚀作用^[16]。随着腐蚀的不断进行,Cr元素在基材 内部与表面的浓度梯度逐渐减小,但腐蚀仍会不断进 行,直至Cr元素溶解度趋于饱和以及杂质的消耗完毕。 腐蚀过程中Mo、Ni 元素的稳定性较强^[17,18],故 Hastelloy N合金在熔盐中的腐蚀表现为Cr元素的沿晶 界流失以及Mo、Ni元素的富集。

33.45

3

14.01

图3为激光熔覆NiCoCrAlY涂层试样腐蚀前后的 SEM形貌,其特征组织的EDS能谱分析结果见表3。其 中,图3a、3b为涂层试样腐蚀前后的表面SEM形貌。 可见,涂层表面组织均匀,未出现如图2b的明显腐蚀 现象。图3c、3d分别对应腐蚀前后的熔覆区,可见熔 覆区组织呈柱状枝晶结构,分布均匀且密集,但生长 方向较为杂乱。这是由于激光熔池散热主要通过向环 境对流传热和向基体传导传热实现,而在熔覆区中上 部由于基体的冷却传热作用减弱,凝固速率从熔池表 面到底部逐渐降低,因此熔覆区中上部区域散热失去 方向性,导致其枝晶生长方向变得杂乱。但腐蚀后熔 覆区同一区域组织变得难以辨认,枝晶生长方向趋于 一致(由内向外),说明熔覆区的部分元素发生了向熔 盐中扩散的现象。从表3可知,图3c中亮白枝晶组织"1" 和灰色基体组织"2"的成分接近,结合后续XRD可 知,两者均为固溶了Co、Cr等元素的y-Ni固溶体,而 Mo、Fe元素则是在激光熔覆过程中由基体稀释而来。 黑色颗粒"3"富含Al和O元素,且Al与O原子比约为 2:3, 故可推测黑色颗粒附着物为Al₂O₃, 这是在高温 激光熔覆过程中产生的。经腐蚀后,图3d中Al₂O₃黑色 颗粒相未明显可见,这说明其在熔融氟盐中发生了部 分溶解[19]。

0.85

2.27

图3e、3f分别对应腐蚀前后的涂层/基体的结合 区,可见靠近结合区的组织是沿热流方向生长的柱状 枝晶,且其大部分垂直结合界面,这是激光熔覆后组 织快速凝固冷却和温度梯度共同造成的结果^[20]。值得 一提的是,腐蚀前涂层与基体之间界面较明显,呈现 出激光熔覆技术所制备的涂层与基体呈良好冶金结合 的特点^[9];腐蚀后涂层与基体的界面相对模糊,表明 在腐蚀过程中元素发生了扩散,涂层在熔盐中的腐蚀 表现为均匀腐蚀,结合区未出现任何选择性腐蚀或缺 陷,涂层/基体仍然呈良好的冶金结合。

35.04

14.37

图3g、3h分别对应激光熔覆NiCoCrAIY涂层试样 腐蚀前后的基体组织。与图2e、2f原始Hastelloy N合 金的严重沿晶腐蚀组织对比可知,经激光熔覆 NiCoCrAIY涂层后基体区晶界较为完整,结合EDS结 果,表明涂层基体区域沿晶界分布的富钼相(如图3 中的"4"和"5")未受到明显腐蚀,但腐蚀过程中 仍侵入了少量O₂。综合分析表明经腐蚀后的 NiCoCrAIY涂层,特别是基体区组织未发生明显变 化,这证实了NiCoCrAIY涂层可有效提高基体的耐高 温熔盐腐蚀性能。

图 4a、4b 分别为激光熔覆 NiCoCrAlY 涂层试样 腐蚀前后的横截面 EDS 元素线扫描,其中涂层中 Al 元素在腐蚀前后的分布情况如图 4c、4d 所示。对比可 知,在腐蚀过程中,涂层中仅有 Al 元素发生了明显的 流失现象,但在距涂层表面 0~1.2 mm 区域,Al 元素 相对浓度高,表明在腐蚀过程中 Al 元素向熔盐中发生 了扩散,同时在表面形成相对富 Al 层。

2.3 物相组成变化

图 5a 是 Hastelloy N 基材腐蚀前后的 XRD 图谱。 可以看出, Hastelloy N 基材由 γ-Ni 和 M₆C 等物相组 成。经 900 ℃熔盐腐蚀 100 h 后,除了 γ-Ni 和 M₆C 相,基材中新析出了 Cr₉Mo₂₁Ni₂₀ 相。这表明 γ-Ni 和 M₆C 具有良好的耐熔盐腐蚀性,与镍基合金在熔盐中 的相关腐蚀研究报导结论一致^[3]。对比图 5a 中腐蚀前 后的基材 XRD 图谱可见,基材经腐蚀后 XRD 峰发生 了右移,这是由于在高温下固溶了大量原子发生了晶 格畸变而引起的。

图 3 NiCoCrAlY 涂层试样腐蚀前后的表面与横截面 SEM 照片

Fig. 3 Surface (a, b) and cross-section (c~h) SEM morphologies of NiCoCrAlY coating before (a, c, e, g) and after (b, d, f, h) corrosion

图5b是激光熔覆NiCoCrAlY涂层试样腐蚀前后的XRD图谱。可见,腐蚀前涂层主要由Al_{0.983}Cr_{0.017}、

AlNi₃、γ-Ni等物相组成。Wang等人^[21]利用激光熔覆 技术在GH4033表面制备低铝含量(3.39%)的

Table 3	EDS analysis of the characteristic zones (1~5) of NiCoCrAlY coating in Fig.3 (at%)								
Zones	Ni	Cr	Si	С	Co	Fe	Мо	0	Al
1	47.12	15.68	1.60	0.32	19.10	4.56	6.45	0	5.17
2	50.12	15.37	0	0.17	21.02	4.83	4.77	0	3.72
3	20.95	7.27	0	0.13	8.45	2.31	0	35.72	23.58
4	34.12	6.32	9.71	0.48	0	1.26	48.11	0	0
5	37.83	3.58	10.49	1.2	0	1.47	32.31	13.11	0

图4 NiCoCrAlY涂层试样腐蚀前后的横截面EDS线扫描及Al元素分布图

Fig.4 EDS line scanning of cross-section (a, b) and Al element distribution (c, d) of NiCoCrAlY coating before (a, c) and after (b, d) corrosion

图5 Hastelloy N基材和NiCoCrAlY涂层试样腐蚀前后的XRD图谱 Fig.5 XRD patterns of Hastelloy N substrate (a) and NiCoCrAlY coating specimen (b) before and after corrosion

NiCoCrAlY 涂层,其 XRD 结果表明涂层主要由 AlNi₃、γ-Ni 等物相组成,而无 Al_{0.983}Cr_{0.017}相。这可 能是由于本实验所采用的 NiCoCrAlY 粉末中铝含量 较高(12%),故富余的 Al 在激光制备过程中与 Cr 反应生成了 Al_{0.983}Cr_{0.017}相。对比图 5b 可见,涂层试 样经腐蚀后,γ-Ni 因在高温下固溶了大量原子发生晶 格 畸变而导致对应的峰整体右移,而 AlNi₃、 Al_{0.983}Cr_{0.017} 相所对应的峰则已消失,表明在腐蚀过 程中含 Al 相均已被腐蚀。值得指出的是,涂层中未 出现基体中的富 Mo 相,可见基体中的合金元素 Mo 等未扩散到涂层区,稀释率小,基体受熔盐腐蚀不明 显,再次证实 NiCoCrAlY 涂层对 FLiNaK 熔盐具有 很好的防护作用。

常见金属元素被熔融氟盐腐蚀的难度按以下顺序 递减:Ni、Co、Fe、Cr、Al^[13],因此,涂层中的Al、 Cr很容易在熔融氟盐中发生脱溶,而Ni和Co较难被 熔融氟盐腐蚀。图6为HastelloyN基材和NiCoCrAlY 涂层试样在FLiNaK熔盐中的腐蚀过程示意图。结合 XRD与EDS结果可知,原始HastelloyN基材中的Cr 元素随着腐蚀的进行不断扩散至表面并溶解于氟盐 中,导致基材表面出现贫铬层而表现出较高的腐蚀速 率。而NiCoCrAlY涂层在熔融氟盐中发生了涂层中的 Al 元素的选择性脱溶腐蚀,即Al 充当"消耗品"优 先向外扩散,在涂层表面形成富Al 保护层,可有效阻 挡熔融氟盐的渗入以及其它合金元素的扩散,从而提 高耐腐蚀性能。

- 图6 Hastelloy N基材和Ni(1~5)CoCrAlY涂层试样在FLiNaK熔 盐中的腐蚀过程示意图
 - Fig.6 Corrosion schematic of the Hastelloy N matrix (a) and NiCoCrAlY coating specimen (b) in FLiNaK molten salt

此外,材料在熔融氟盐中的腐蚀不同于在空气中 氧化及热腐蚀,引起材料腐蚀的主要原因除了熔融氟 盐本身,还有体系中所含的O和H2O等杂质^[22]。在熔 融氟盐的杂质腐蚀中,O的迁移速率、Al和Cr等易腐 蚀元素的扩散速率控制着腐蚀的反应速率。其中Cr主 要沿晶界扩散,晶界处由于晶格畸变和缺陷,位错的 积聚等原因,成为Cr原子的快速扩散通道,Cr原子在 晶界及其附近脱溶并形成一个沿晶界的脱溶渠道, 宏 观上表现出晶间腐蚀的特征,这与图2c、2d的结果相 符合。如图3f所示,NiCoCrAlY涂层基体区的晶界未 被熔盐腐蚀,并析出了大量富钼相,这说明Al大量腐 蚀消耗后所形成的保护层同样限制了熔盐中杂质沿空 穴(由Cr元素脱溶后向表面扩散引起)进一步侵入到 基体以及Cr原子通过晶界快速扩散到熔盐中。综上所 述,高铝含量的NiCoCrAlY涂层能够在熔融氟盐环境 下对Hastelloy N合金起到良好的保护作用。

3 结 论

1) Hastelloy N合金和含NiCoCrAIY涂层Hastelloy N试样在900 ℃FLiNaK 熔盐中均受到持续腐蚀。 Hastelloy N合金呈典型的晶间腐蚀特点,NiCoCrAIY 涂层则为均匀腐蚀。含NiCoCrAIY涂层试样的耐腐蚀 性能优于Hastelloy N基材。

2)Hastelloy N基材和含NiCoCrAlY涂层Hastelloy N试样的腐蚀机理均为易腐蚀元素如Cr、Al由基体和 涂层向外扩散流失的过程,导致基体和涂层中Ni和Mo 相对富集。其中晶界是Hastelloy N合金中Cr元素的快 速腐蚀通道,而NiCoCrAlY涂层中Al元素则由涂层均 匀向熔盐扩散流失腐蚀。

3) NiCoCrAlY 涂 层 腐 蚀 前 主 要 由 γ-Ni 、 Al_{0.983}Cr_{0.017}、AlNi₃等物相组成,腐蚀后只存在γ-Ni相。 Hastelloy N基材腐蚀前由γ-Ni和*M*₆C等物相组成,腐蚀 后基材新析出Cr₉Mo₂₁Ni₂₀相。

参考文献 References

- Olson L C, Ambrosek J W, Sridharan K et al. Journal of Fluorine Chemistry[J], 2009, 130: 67
- [2] Furukawa K, Arakawa K, Erbay L B et al. Energy Conversion and Management[J], 2008, 49(7): 1832
- [3] Forsberg C W, Peterson P F, Zhao H. Journal of Solar Energy Engineering[J], 2007, 129(2): 141
- [4] Delpech S, Merle-Lucotte E, Heuer D et al. Journal of Fluorine Chemistry[J], 2009, 130(1): 11
- [5] Wang Y, Tang Z F, Huang S R et al. Ceramic International[J], 2015, 41(10A): 12996

- [6] Wang Yang (汪 洋), Tang Zhongfeng (唐忠锋), Xie Leidong (谢雷东) et al. Chemistry(化学通报)[J], 2013, 76(4): 307
- [7] Liu Yanhong (刘艳红), Yang Chao (杨 超), Lu Yanling (陆燕 玲) et al. Chinese Journal of Rare Metals(稀有金属)[J], 2015, 39(10): 865
- [8] Liu Yanhong (刘艳红), Yang Chao (杨 超), Li Huailin (李怀林) et al. Chinese Journal of Rare Metals(稀有金属)[J], 2016, 40(9): 908
- [9] Muralidharan G, Wilson D F, Walker L R et al. Office of Scientific & Technical Information Technical Reports[R]. America Tennessee: Oak Ridge National Laboratory, 2011
- [10] Olson L C. Thesis for Doctorate[D]. Madison, WI, USA: University of Wisconsin-Madison, 2009
- [11] Zhang Tianyou (张天佑), Wu Chao (吴 超), Xiong Zheng (熊 征) et al. Laser & Optoelectronics Progress(激光与光电 子学进展)[J], 2014, 51(3): 27
- [12] Guo Chun(郭 纯), Chen Jianmin(陈建敏), Yao Rungang(姚 润刚) et al. Rare Metal Materials and Engineering (稀有金 属材料与工程)[J], 2013, 42(8): 1547
- [13] Lin Jianbo (林建波), Li Aiguo (李爱国), He Shangming (何

上明) et al. Nuclear Techniques(核技术)[J], 2014, 37(5): 56

- [14] Dasher B E, Farmer J, Ferreira J et al. Journal of Nuclear Materials[J], 2011, 419(1-3): 15
- [15] Ouyang Fan-Yi, Chang Chi-Hung, Kai Ji-Jung. Journal of Nuclear Materials[J], 2014, 446: 81
- [16] Liu Ke (刘 可), Xu Liang (徐 良), Liu Zhe (刘 哲) et al. Nuclear Techniques(核技术)[J], 2015, 38(2): 63
- [17] Sylvie Delpech, Céline Cabet, Cyrine Slim. Materials Today[J], 2010, 13(12): 34
- [18] Ye Xiangxi, Ai Hua, Guo Zhi et al. Corrosion Science[J], 2016, 106: 249
- [19] Watanabe T, Kondo M, Nagasaka T et al. J Plas Fusion Res[J], 2010, 9: 342
- [20] Li Mingxi (李明喜), He Yizhu (何宜柱), Sun Guoxiong (孙 国雄). Rare Metal Materials and Engineering (稀有金属材 料与工程)[J], 2005, 34(2): 248
- [21] Wang Hongyu, Zuo Dunwen, Sun Yuli. Transactions of Nonferrous Metals Society of China[J], 2009, 19(3): 586
- [22] Peng Haijian (彭海健), Jin Jun(金 军), Li Defu (李德富) et al. Acta Metallurgica Sinica(金属学报)[J], 2011, 47(9): 1195

Corrosion Behavior in Molten LiF-NaF-KF Salt of NiCoCrAlY Coating Prepared by Laser Cladding on Hastelloy N

Zhu Hongmei¹, Chen Minghui¹, Tang Zhongfeng², Shen Longzhang¹, Qiu Changjun¹

(1. University of South China, Hengyang 421001, China)

(2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China)

Abstract: A NiCoCrAlY coating has been prepared on Hastelloy N substrate by the powder-feeding laser cladding technique. The corrosion behaviors in molten LiF-NaF-KF (FLiNaK) salt at 900 °C for 100 h were studied for both the substrate and the coating. The corrosion resistance in molten FLiNaK salt was evaluated by the corrosion mass loss method, while the microanalysis on phase constitution, morphologies and composition were carried out by XRD, SEM and EDS. The results show that the corrosion rate of the NiCoCrAlY coating is merely two thirds of that of the Hastelloy N substrate. The substrate is characterized by intergranular corrosion and the element Cr is selectively corroded along the grain boundary. The original Hastelloy N consists of γ -Ni and M_6C , and a new Cr₉Mo₂₁Ni₂₀ phase is precipitated after the corrosion test. The NiCoCrAlY coating exhibits homogeneous corrosion, in which the element Al diffuses outwards and the corresponding Al-rich corrosion products act as the barrier and thus protect the substrate by impeding the diffusion of other elements. The laser-cladded coating is composed of γ -Ni, AlNi₃ and Al_{0.983}Cr_{0.017}, and only γ -Ni remains after the corrosion test. The corrosion test. The laser-cladded NiCoCrAlY coating.

Key words: Hastelloy N; laser cladding; NiCoCrAlY coating; corrosion resistance in molten FLiNaK salt

Corresponding author: Zhu Hongmei, Ph. D., Associated Professor, School of Mechanical Engineering, University of South China, Hengyang 421001, P. R. China, Tel: 0086-734-8282034, E-mail: meizihong999@126.com