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Abstract: To obtain appropriate forming parameters, a thermo-mechanical finite element (FE) model using a unified viscoplastic 

damage model was set up to predict the formability of a complex-designed 6xxx aluminum alloy B-pillar. A back propagation (BP) 

neural-network combined with multi-objective genetic algorithm (GA) method was adopted to optimize the key process variables 

including blank temperature, stamping speed and die clearance during hot stamping process. The results show that after optimization, 

the thinning and thickening rates are reduced to 13.0% and 10.0% compared with the initial 56.5% and 14.2%, respectively. In 

addition, a successful hot stamping B-pillar with satisfactory mechanical performance and excellent forming accuracy is achieved 

experimentally using the optimized parameters, indicating that the finite element model can simulate the hot stamping process 

accurately, and that the optimization method utilized in this paper is feasible and effective. 
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Recently, vehicle lightweighting has become an urgent matter 

for achieving energy saving and environment protection. 

Aluminum alloys exhibit bright prospects in vehicle lightweight 

industry with a capability of high specific strength, super 

corrosion resistance and recycling

[1,2]

. However, further 

applications of aluminum alloys are restricted due to the poor 

formability and inevitable springback during the forming 

processes at room temperature

[3-5]

. It is known that the 

formability of the aluminum alloys increases with increasing the 

forming temperature

[6,7]

. Therefore, many forming techniques 

have been carried out at elevated temperature, such as warm 

forming, superplastic forming, warm hydroforming and hot 

metal gas forming. Nevertheless, these techniques mentioned 

above are far from satisfactory because the high cost, low 

efficiency and less accuracy are the main issues for the volume 

production of aluminum alloy automotive components

[8,9]

.  

Aluminum alloy hot stamping is firstly proposed by Lin

[10]

, 

which combines the forming and quenching into one operation. 

Firstly, the aluminum alloy sheet was held at its solution heat 

temperature (SHT) for a certain period to obtain a 

supersaturated solid solution (SSS), and then the SSSed sheet 

was transferred into cold stamping dies while being formed 

and quenched for several seconds. Artificial aging was finally 

carried out within 2 h to obtain full strength. Hot stamping is 

one of the most promising forming techniques for the mass 

production of complex shaped profiles with satisfactory 

formability and excellent accuracy

[11-13]

. Much attention has 

been paid to this novel aluminum alloy forming process. Fan 

et al

[14,15]

 investigated the effect of temperature and solution 

time on the mechanical properties of AA6082, and it is shown 

that the Vickers hardness improves significantly with 

increasing the solution time after artificial aging (<50 min). 

Moreover, the strengthening mechanism is revealed. The hot 

stamping speed plays an important role in the formability of 
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AA2024 due to the fact that the speed determines the 

deformation rate and the temperature distribution of the 

sheet

[16]

. Ma et al

 [17]

 studied the impact of friction on the 

thickness uniformity and failure modes during hot forming of 

AA6111. However, until recently, almost all the investigations 

are concentrated on the fundamental understanding of the 

influence of solution heat treatment and single process 

parameter on the formability or mechanical properties. Besides, 

nearly all the researches focus on the simple parts, such as 

cylindrical parts, U-shaped parts and box-shaped parts. 

Hot stamping process is a high combination of mechanical, 

thermal and microstructural fields, so that there are various 

and interactive process parameters that will influence the 

formability. Furthermore, automotive components are usually 

characterized by large size and complex-designed shape, 

which makes it difficult to ensure the formability and 

dimensional accuracy. Unreasonable process parameters can 

easily result in part invalidity including local rupture, wrinkle, 

springback or distortion. Hence, it has a very important 

practical significance to comprehensively optimize multiple 

parameters for improving the quality of hot stamping part. 

Existing researches on hot stamping process are focused 

mainly on the high strength steel. Researches on aluminum 

alloy are restricted due to the difficulty in controlling 

microstructure and properties. Zhou et al

[18]

 presented a 

multi-objective optimization method for an aluminum alloy 

anti-collision side beam during hot stamping process. Xiao et 

al

[19]

 proposed an efficient method to obtain optimal process 

parameters for a car front floor passage by integrating 

response surface methodology (RSM) and genetic algorithm. 

The aforementioned researches have accomplished the 

purpose of improving the quality of the aluminum alloy parts 

by optimizing the process parameters. However, studies on a 

clear mathematical model and a systematical optimization are 

still required during hot stamping of aluminum alloy. BP 

neural network is often used to construct the mathematical 

relation between process parameters and optimization 

objectives owing to its powerful ability of nonlinear 

interpolation and self-learning. Genetic algorithm (GA) shows 

perfect performance in solving nonlinear multi-objective 

optimization mathematical model. The BP-GA method is 

proposed to address the optimization of process parameters 

during hot stamping of aluminum alloy. It is critical to carry 

out study in this area to offer industry application guidance.  

In this work, in order to improve the formability of 

aluminum alloy during hot stamping of complex automotive 

components, hot tension tests at different temperatures (350, 

450, and 520 ºC) and different strain rates (0.01, 0.1, and 1 s

-1

) 

were carried out to investigate the rheological behavior of 

AA6061. A unified viscoplastic damage model according to 

damage mechanism was obtained and applied to non-isothermal 

FE model of a complex-designed automotive part using 

commercial software LS-DYNA. The combination of BP and 

GA was used to optimize three main hot forming parameters, 

namely blank temperature, stamping speed and die clearance. At 

last, an eligible aluminum alloy B pillar was gained by 

employing the optimal parameters. It is a demonstration of the 

FE models and the reliability of this optimization method, and 

also provides guidance for actual production. 

1  Material and Simulation 

1.1  Materials 

The as-received material is 6061-O aluminum alloy with 

1.6 mm in thickness. Table 1 shows the performance at room 

temperature. The thermal physical properties

[20,21]

 needed in 

FE simulation of 6061 hot forming are shown in Table 2 and 

Fig.1, including thermal conductivity, specific heat, and 

thermal expansion coefficient at different temperatures. 

 

Table 1  Mechanical properties of AA6061 at room temperature 

Density/kg·m

-3

 Poisson’s ratio Modulus/GPa Elongation/% σ

s

/MPa σ

b

/MPa 

2700 0.33 68.9 25 55.2 124 

 

Table 2  Mean coefficient of thermal expansion (CTE) of AA6061 

at different temperatures (×10

-6

 ºC

-1

) 

25~100 ºC 25~200 ºC 25~300 ºC 25~400 ºC 25~500 ºC 

23.4 24.3 25.3 25.4 25.5 

 

1.2  Material model for AA6061 hot stamping 

It is an undeniable fact that the flow stress increases 

significantly with the increase of strain rate for aluminum alloys 

at high temperatures. This is the result of the mixed effects of 

high temperature creep, recovery and other mechanisms, which 

needs a unified viscoplastic theory to minimize the error of the 

modeling

[22]

. The material model implemented in this study is 

the unified viscoplastic damage constitutive equations 

considering both the dislocation density and the damage effect 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1  Physical properties of AA6061 at different temperatures 
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proposed by Mohamed et al

[23,24]

, which are represented as 

follows: 
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where K

0

, k

0

, B

0

,C

0

, E

0

, D

10

 are the equation coefficients, Q

K

, Q

k

, 

Q

B

, Q

C

, Q

E

, Q

D1

 are the corresponding activation energy, R

g

 is 

the universal gas constant, and T is the absolute deformation 

temperature; ρ is the normalized dislocation density which 

varies from 0 to 1; 

d

f

�

 is the damage rate, 

d

f

 is the damage 

parameter; ε

�

is the strain rate, and 

e

ε

, 

T

ε

, 

p

ε

 are the elastic, 

total, and plastic strain, respectively; d

1

, d

2

, D

2

, A, n

2

 are the 

non-temperature-dependent material constants; R is the material 

hardening, k is the initial yield stress, n

1

 is material constant, E 

is the Young’s modulus, and 

σ

 is the flow stress. 

This model consists of highly non-linear and interconnected 

ordinary differential equations with a total of 18 material 

constants, which are very difficult to determine using the 

traditional algebraic method. The GA technique is used for 

searching the suitable values owing to its accuracy and efficiency. 

The determined material constants are listed in Table 3, and then 

the results of predicting stress-strain relationships (solid curves) 

corresponding to the experimental data (symbols) are shown in 

Fig.2. It can be clearly seen that nice agreements are achieved for 

all, indicating that these material constants obtained are 

reasonable, and that this constitutive equation is available for 

well modeling of AA6061 hot deformation behavior. 

1.3  FE model 

The geometry and FE model of a complex automotive 

component (B pillar) are shown in Fig.3. The model consists of 

upper die, lower die, binder and aluminum alloy sheet, all of 

which are defined as shell element. The dies and binder are 

regarded as a rigid body without considering deformation, 

whose temperature was set as 25 ºC. When the material is fully 

solid heat treated, the anisotropic material becomes 

isotropic

[14,23]

. The yield criterion Barlat89 was employed in this 

FE model, and the 6*MAT_THERMAL_ISOTROPIC_TD_LC 

was selected to define the thermal properties varied with 

temperatures for better characterization of the 6061 hot forming 

performance

[25]

. Both the simulation and corresponding 

experiment result of the B pillar under the same initial stamping 

conditions: blank temperature are given in Fig.4 400 ºC, 

stamping speed 300 mm/s and the clearance 0. 

Thickness is an important index for evaluating the forming 

quality. The excessive thinning indicates the crack and the 

surplus thickening reveals the wrinkling in forming process

[26]

. 

From Fig.4, the 56.5% thinning severely exceeds the 

requirement known as 30% for car panels, which is considered to 

be a rupture defect. Both the simulation and experiment of B 

pillar show cracks under the initial conditions because large 

thinning occurred in the hot stamping process (see Fig.4). On the 

one hand, the blank plasticity improves with increasing the 

forming temperature, which is beneficial for the improvement of 

formability. On the other hand, however, the lower stress level 

and the smaller deformation resistance at elevated temperature 

easily lead to local thinning and failure on the left side wall of 

the B pillar. Stamping speed determines the deformation rate, 

influences the temperature distribution of the blank, and finally 

affects the formability. It is difficult for material to flow if the die 

clearance is too narrow, which causes excessive thinning of the 

side wall. All above may result in poor formability of B pillar 

under initial conditions. In addition, the simulation results are in 

good agreement with the experimental results, indicating that the 

FE model can correctly provide training samples for the 

subsequent BP neural network, which improves the efficiency of 

process parameters optimization and saves costs. 

2  Optimization of Hot Stamping Process Para- 

meters Based on the BP/GA Method 

Hot stamping process is a combination of mechanical, 

thermal and microstructural fields, so there are various and 

interactive process parameters which will influence the part 

formability. There are many parameters determining the 

thermal field in AA6061 hot stamping, such as radiation, heat 

conduction, and thermal convection between the heated blank 

and the ambient, the heated blank and tools, and the tools and 

the cooling water, as well as the blank deformation and 

friction. The blank temperature changes and the material flow 

response changes. Temperature and strain decide the final 

microstructure and mechanical properties

[27]

 of the hot 

stamped B pillar. Consequently, it is extremely important to 

explore the relationship between the formability and the 

process parameters. 

 

Table 3  Mechanical properties of AA6061 at room temperature 
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Fig.2  Comparison of predicted (solid curves) and experimental (symbols) stress-strain relationships for AA6061 at different temperatures and 

strain rates: (a) 350 ºC, (b) 450 ºC, and (c) 520 ºC 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3  Geometry (a) and FE model (b) of B pillar 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4  Hot forming of B pillar under initial conditions: (a) finite 

element simulation and (b) experiment 

 

BP neural network integrated with GA has the powerful 

ability to deal with the nonlinear mathematical mapping 

reflecting the internal law of the experimental data, and has 

been widely used in engineering application for the prediction 

and optimization 

[28-31]

. Considering blank temperature, 

stamping speed and die clearance, the maximum thinning and 

thickening are taken as the objectives, and the orthogonal 

experimental design method was used to conduct the FE 

simulations. The BP and GA method were adopted to search 

the optimal process parameters. The network consists of one 

input layer with three neurons standing for blank temperature, 

stamping speed and clearance, one hidden layer with 11 

neurons, and one output layer with two neurons representing 

thinning rate and thickening rate of B pillar. The setting of the 

processing parameters and results can be seen in Table 4. 

The mean square error (MSE) was selected as the 

performance criterion for the BP neural network, which can be 

calculated by the following equation: 

2

1

1

MSE

N

i i

i

E P

N

=

 

= −

 

 

∑

                         (3) 

where N is the amount of samples, E

i

 is the experimental value, 

and P

i

 is the corresponding prediction value. The smaller the 

MSE, the better the capability of the network. Fig.5 shows the 

training process of the BP neural network. The training curve 

illustrates that the mean square error declines gradually and 

converges to 0.0002 interminably within 7317 epochs, 

indicating that this prediction system has an accurate and rapid 

performance. The mathematic reflection between the process 

parameters and the formability is stored in the trained net, and 

the mathematic function is as follows: 

l s

2 1

( ( ))W f fω ω=

∑

X                           (4) 

where W is the thinning rate and thickening rate of the B 

pillar;

1 2 3

[ , , ]x x x

′

=X indicates the values of blank tem- 

perature, stamping speed and clearance, respectively; 

s

f  is 

the transfer function between input layer and hidden layer; 

l

f is the liner transfer function between hidden layer and 

output layer; ω

1

 and ω

2

 represent the connection weights 

between input layer and hidden layer, and hidden layer and 

output layer, respectively. In the GA optimization process, the 

population size, the mutation rate, the crossover rate and the 

generation size are set as 100, 0.1, 0.5 and 60, respectively. 

In view of key process variables including blank temperature, 
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Table 4  Orthogonal experimental design 

Process parameters  Results 

No. 

Blank temperature/ºC Stamping speed/mm·s

-1

 Clearance/mm  Thinning (max)/% Thickening (max)/% 

1 300 150 1.6  15.73 11.84 

2 300 200 1.68  15.90 13.75 

3 300 250 1.76  15.99 13.02 

4 300 300 1.84  15.01 13.31 

5 350 150 1.68  15.77 13.98 

6 350 200 1.6  17.72 18.47 

7 350 250 1.84  15.35 12.13 

8 350 300 1.76  15.04 13.25 

9 400 150 1.76  14.79 12.62 

10 400 200 1.84  14.41 10.70 

11 400 250 1.6  15.29 11.72 

12 400 300 1.68  16.79 14.35 

13 450 150 1.84  17.93 18.41 

14 450 200 1.76  18.15 15.79 

15 450 250 1.68  18.67 18.11 

16 450 300 1.6  23.34 22.07 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5  Training process of the network 

 

stamping speed and clearance, a set of Pareto solutions based 

on multi-objective optimization genetic algorithm can be 

obtained. The final optimal process parameters are decided by 

the evaluation of satisfaction: 

1 1min 2 2min

1max 1min 2max 2min

f f f f

S

f f f f

− −

= +

− −

                  (5) 

where f

1max

 and f

1min 

are the maximum and the minimum value 

of the first one objective in Pareto set, respectively; f

2max

 and 

f

2min 

are the maximum and the minimum value of the second 

one objective in Pareto set, respectively; S is the value of 

satisfaction, and the smaller, the better. Each value of S is 

calculated according to Eq.(5). Results show that the smallest 

S value appears under the following conditions: a blank 

temperature of 386 ºC, a stamping speed of 268 mm/s, and a 

clearance of 1.84 mm. 

3  Verification 

On the purpose of estimating the precision of the FE model 

and the reliability of the optimization parameters based on the 

BP and GA, the simulation result and the experiment result 

under optimized parameters are compared in this part. The 

actual B pillar hot stamping process is as follows: heating the 

AA6061 to its solution temperature of 520 ºC and holding for 

20 min; transferring the blank to the cold die by the robot 

system immediately, then hot stamping at a stamping speed of 

268 mm/s when the blank temperature is 386 ºC, and cooling 

synchronously in the cold die. 

Under the optimized hot stamping parameters, the 

maximum thinning and the maximum thickening using 

optimized parameters in simulation are 13.0% and 10.0%, 

respectively. The relative error of thinning between the 

simulation and the BP neural network prediction is just 7.6%, 

and the relative error of thickening is only 0.2% (see Table 5). 

A Doppler ultrasound detector was used to measure the 

thickness of 30 points on the section A-A, which are 230 mm 

away from the bottom of bulge in horizontal direction. The 

points are extracted every 10 mm from the right side edge of 

the B pillar, and the thicknesses of 30 points for simulation 

and experiment are given in Fig.6. It can be seen from Fig.6 

that the FE simulation is in good agreement with the 

experiment using the optimized parameters. The maximum 

relative error 1.9% appears at test point 11, and the possible 

reason is that point 11 is close to the fillet so it is difficult to 

detect accurately for the ultrasonic detector. Besides, the 

maximum thinning decreases from initial 56.5% to 13.0%, the 

thickening declines from 14.2% to 10.0%, indicating that the 

formability is greatly improved (see Table 6). 

One of the most concerned issues is whether the mechanical 

properties of a successfully formed part in this forming 

process are comparable to those of 6061-T6. Three uniaxial 

tensile specimens (according to GB/T 228.1-2010) were cut 

from different locations and tested for mechanical property 

evaluation. Engineering stress-strain curves of these three 
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Table 5  Comparison between numerical simulation and 

optimization results 

Index 

Thinning 

(max)/% 

Thickening 

(max)/% 

Break Wrinkle 

Simulation 13.0 10.0 No No 

Optimization 12.01 10.02 No No 

Relative error/% 7.6 0.2   

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6  Thickness of test points on section A-A 

 

Table 6  Comparison of simulation results before and after 

optimization 

Index 

Thinning 

(max)/% 

Thickening 

(max)/% 

Break Wrinkle 

Before 56.5 14.2 Yes No 

After 13.0 10.0 No No 

 

tensile specimens are shown in Fig.7. It can be seen that the 

ultimate strengths range from 300 MPa to 320 MPa, which is 

consistent with that of 6061-T6 aluminum alloy

[32]

. It is 

demonstrated that the performance of the parts formed using 

the optimized process parameters can meet the requirements. 

The strength distribution of the formed B-pillar is also 

relatively uniform. 

In addition, the springback of the trimmed hot stamped B 

pillar is measured using a blue light scanner. All measured 

values at different points are within +/–0.8 mm, which can 

meet the requirements of vehicle industry. The accuracy of 

dimensions is also improved compared to 1.5 mm of the 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7  Engineering stress-strain curves at different locations 

Harrison’s

[33]

 work. It is demonstrated that the BP neural 

network can accurately reveal the nonlinear relationship 

between hot stamping process parameters and formability. The 

GA can effectively search the optimal process parameters for 

excellent formability. The combination of BP and GA is 

effective in the optimization of hot stamping process 

parameters. 

4  Conclusions 

1) Satisfactory formability of the hot stamping aluminum 

alloy B-pillar confirms the validity of the BP-GA method, 

which can be generally used in the optimization of hot 

stamping process parameters. 

2) The FE model established in this study can accurately 

simulate the actual hot stamping process of complex 6061 

aluminum alloy components by employing the unified 

viscoplastic damage constitutive equations. The FE simulation 

results match well with the experimental results, and the 

maximum relative error between them is only 1.9%. 

3) A satisfactory B pillar (1:1 with the actual one in size) 

with good formability and little springback is achieved using 

the optimized results. Combining the BP neural network with 

multi-objective genetic algorithm, the optimum parameters for 

AA6061 hot stamping process are a blank temperature of 386 

ºC, a stamping speed of 286 mm/s and a clearance of 1.84 mm. 

The maximum thinning rate and thickening rate are only 

13.0% and 10.0%, respectively. 
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