

Cite this article as: Guo Miaoxin, Wang Fengjun, Wang Chengxiong, et al. Effect of Calcination Atmospheres on Catalytic Performance of Pt/Al_2O_3 for Oxidation of CO and $C_3H_6[J]$. Rare Metal Materials and Engineering, 2021, 50(09): 3056-3061.

Effect of Calcination Atmospheres on Catalytic Performance of Pt/Al_2O_3 for Oxidation of CO and C_3H_6

Guo Miaoxin, Wang Fengjun, Wang Chengxiong, Zhang Aimin, Zhao Yunkun, Du Junchen

State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, China

Abstract: Pt/Al_2O_3 catalysts were prepared by an excess impregnation method with $Pt(NH_3)_2(NO_2)_2$ as the precursor. Then they were calcined in four different atmospheres (H₂, O₂, NO, NH₃), and characterized by N₂ adsorption and desorption test, X-ray diffraction, H₂-temperature programmed reduction (TPR) test, CO pulse adsorption test, and CO in-situ diffuse reflectance infrared Fourier transform spectroscopy (CO in situ DRIFTS). Results show that Pt/Al_2O_3 catalyst calcined in 1vol% H₂/N₂ atmosphere exhibits the best catalytic oxidation performance for CO and C₃H₆, because of the generation of numerous small-sized and highly dispersed Pt nanoparticles caused by the reducing calcination atmosphere.

Key words: Pt-based catalyst; calcination atmosphere; size effect; exhaust purification

Large amounts of CO and hydrocarbons (HC) are generated when the diesel engine is cold-started or the gas is insufficiently burned^[1-4], which seriously endangers human health and living environment. The diesel oxidation catalyst (DOC) has been designed to oxidize these harmful pollutants into CO₂ and H₂O^[5-7]. In addition, the sulfur compounds contained in diesel fuel poison and inactivate the catalyst during operation^[8,9]. Therefore, since the advent of catalytic converters for diesel locomotives, platinum has been widely used due to its strong sulfur resistance and high activity against CO and HC oxidation^[1,3,5,10]. Pt-based DOC is usually used in metal oxides. Alumina with large surface areas, good adsorption performance, moderate chemical activity, and low cost is a common support for DOC^[1,8,10,11]. Their combination makes Pt/Al₂O₃ a good model catalyst for DOC and has been reported by numerous articles.

DOC normally requires a highly dispersed Pt state, because with increasing the reaction surface area of Pt particles, the activity generally increases and the cost decreases^[7]. Previous researches have explored many factors affecting the dispersion or particle size of Pt/Al₂O₃, such as preparation method (processing conditions, atmosphere, time, temperature)^[8,12-14], precious metal precursor^[13,15,16], and modified additives^[17-21]. The catalyst structure and performance mainly depend on the preparation method^[8,22]. However, the effect of calcination atmospheres on catalyst characteristics is barely investigated.

Guo et al^[14] treated the Pt/Al₂O₃ catalyst in an atmosphere containing H₂, He, N₂, O₂, and various chlorine compounds, and confirmed that the treatment atmosphere has a significant effect on the Pt crystallite size and size distribution through H₂ chemisorption test and wide-angle X-ray diffraction (XRD) analysis. However, the research is not applied to any actual reaction. Huang et al^[23] used base metal Cu instead of precious Pt and studied the effect of calcination atmospheres on Cu/y-Al₂O₃ catalyst for CO oxidation. It is found that the oxidizing calcination atmosphere (air) leads to a re-dispersed copper surface but a dramatically reduced activity, whereas the calcination in the reducing atmosphere (10vol% H_2/N_2) produces a strong metal-support interaction which causes the substantial increase in activity. Hansen et al^[8] calcined the Pt/Al₂O₂ catalysts in N2 and/or O2 atmosphere and found that the catalyst with Pt particles of 2~4 nm in diameter has the

Received date: September 24, 2020

Foundation item: National Key Research and Development Program of China (2016YFC0204902); Open Fund of National Engineering Laboratory for Mobile Source Emission Control Technology of China (NELMS2017C02); Analysis and Testing Foundation of Kunming University of Science and Technology (2019P20181107010) Corresponding author: Du Junchen, Ph. D., Senior Engineer, State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106, P. R. China, Tel: 0086-871-68316562, E-mail: junchen.du@spmcatalyst.com

Copyright © 2021, Northwest Institute for Nonferrous Metal Research. Published by Science Press. All rights reserved.

optimal performance for CO and HC oxidation. Hu et al^[13] found that using flowing gas instead of static air during calcination leads to higher Pt dispersion.

In automobile exhaust, the gaseous atmosphere is either oxidizing or reducing atmosphere. In this research, the Pt/Al_2O_3 catalysts with Pt nanoparticles of 2~4 nm in diameter were prepared and the effects of four different flowing oxidizing or reducing calcination atmospheres on the oxidation reactions of CO and C_3H_6 related to DOC were investigated.

1 Experiment

 Pt/Al_2O_3 catalysts with a constant Pt loading amount of 1.5wt% (theoretical value) were synthesized by an excess impregnation method with $Pt(NH_3)_2(NO_2)_2$ as metal precursor. After the catalysts were dried overnight at 393 K, they were cut into blocks, calcined in different atmospheres of 1vol% H_2 , 1vol% O_2 , 0.1vol% NH₃, and 0.1vol% NO (balanced with N_2) in the muffle furnace at 823 K for 2 h, and labeled as Pt/Al (1% H₂), Pt/Al(1% O₂), Pt/Al(0.1% NH₃) and Pt/Al(0.1% NO), respectively.

The specific surface area and pore size distribution of powder specimens were determined through nitrogen adsorption and desorption test at 77 K by the Quantachrome NOVA2000e physisorption apparatus. The specific surface area was calculated by the Brunauer-Emmett-Teller (BET) method, and pore volume and pore size distributions were determined by Barrett-Joyner-Halenda (BJH) model.

The phase composition was recorded by the Rigaku D/MAX-2000 automatic XRD with Cu K α radiation ($\lambda = 0.15406$ nm), scanning range of 10°~90°, and step size of 0.02°.

Hydrogen temperature programmed reduction (H₂-TPR) experiments were carried out on a Quantachrome CHEMBET 3000 chemisorption instrument. The specimen of 100 mg was placed in a quartz U-tube reactor and pretreated in Ar at 373 K for 30 min before testing. After cooling to room temperature, the mixed H₂/Ar gas with a flow rate of 75 mL·min⁻¹ was introduced, and then the temperature was raised to 1073 K with a rate of 10 K·min⁻¹.

In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) test was conducted by a Themo Nicolet 6700 FT-IR spectrometer equipped with mercury cadmium telluride (MCT) detector. In-situ reaction cell with ZnSe window allowed specimen of 15 mg to be heated to 773 K under specific atmospheric pressure. Before each test, the pipeline was purged by N_2 for 30 min and then cooled to the desired temperature. The background was collected before switching N_2 with the reaction gas (pure CO). When the catalyst was at the saturated adsorption state, the residual and physically adsorbed CO gas in the pipeline was purged by the N_2 flow, and the spectrum was recorded (average of 32 scans at 4 cm⁻¹ resolution) at each schedule time.

The Quantachrome CHEMBET 3000 chemisorption instrument was employed in CO pulse adsorption procedure. Assuming that all CO was adsorbed by Pt atoms, the dispersion of Pt was calculated by the stoichiometric factor of 1 CO/Pt. Each specimen was pre-reduced with H_2 /He at 723 K for 2 h with a flow rate of 75 mL·min⁻¹. The reaction furnace temperature dropped to 353 K and stabilized for 30 min. Then the high-purity CO was inflated by pulsed injection until the signal detected by the thermal conductivity detector (TCD) no longer changed.

The catalytic activity for CO and C_3H_6 was evaluated in a quartz tube fixed bed continuous flow reactor (8 mm in inner diameter and 50 mm in length). The catalysts with a particle size of 380~250 µm were sieved after tableting and selected as the test medium. The reaction atmosphere consisted of 1vol% CO or 0.3vol% $C_3H_6+5vol\%$ $O_2+balance$ gas N_2 with gas hourly space velocity (GHSV) of 18 000 mL·h⁻¹·g⁻¹. A precalibrated mass flow meter was used to control the gas flow in each gas path, and a thermocouple was inserted on the fixed reaction bed to monitor the real-time reaction temperature. The exhaust gas dried by magnesium chloride entered the Agilent 7890A gas chromatograph equipped with two TCDs and a hydrogen flame ionization detector (FID) for online analysis. The detector operating temperature was 393 K, and H₂ was the carrier gas.

The catalytic conversion of CO and C_3H_6 was calculated by Eq.(1) as follows:

$$X = \frac{C_{\rm in} - C_{\rm out}}{C_{\rm in}} \times 100\% \tag{1}$$

where C_{in} and C_{out} represent the inlet and outlet concentrations of CO or C_3H_6 , respectively.

2 Results and Discussion

2.1 N₂ adsorption-desorption test

The textural properties of Pt/Al_2O_3 catalysts calcined in different atmospheres are listed in Table 1. The specific surface of Pt/Al_2O_3 catalysts is larger than that of pure Al_2O_3 support, indicating that the acidic $Pt(NH_3)_2(NO_2)_2$ solution corrodes the pore structure on the support surface and slightly increases the reaction area. All N_2 adsorption-desorption isotherms of four specimens have obvious hysteresis loops (Fig.1a), which is ascribed to the mesoporous material^[24].

The pore size distributions are also basically the same (Fig. 1b), showing that the physical properties of the prepared specimens have no significant variance despite the different calcination atmospheres.

2.2 XRD analysis

Fig. 2 shows the XRD patterns of different Pt/Al_2O_3 catalysts. Characteristic diffraction peaks of γ -Al₂O₃ (JCPDS No. 46-1131) can be clearly identified, revealing the high dispersion of platinum particles on the Al₂O₃ surface regardless of the oxidizing atmosphere (O₂ or NO) or the reducing atmosphere (H₂ or NH₃). Moreover, the peak position and peak intensity of XRD patterns of all specimens are highly similar, demonstrating that the calcination atmosphere does not affect the crystal structure of catalysts.

2.3 Pt particle size

Qualitative and semi-quantitative analyses of Pt particle size in the Pt/Al_2O_3 catalyst were performed using the CO in

Table 1 Textural parameters of support AI_2O_3 and different Pt/AI_2O_3 catalysts							
Specimen	Specific surface area/m ² ·g ⁻¹	Pore size/nm	Pore volume/cm ³ ·g ⁻¹	Pt dispersion/%	Pt particle size/nm		
Al ₂ O ₃	158.5	3.2	0.4195	-	-		
$Pt/Al(1\%H_2)$	166.4	3.1	0.4279	24.61	2.3		
$Pt/Al(1\%O_2)$	169.5	3.1	0.4293	20.21	2.8		
Pt/Al(0.1%NH ₃)	168.7	3.1	0.4278	16.65	3.4		
Pt/Al(0.1%NO)	168.9	3.0	0.4268	16.17	3.5		

 Table 1
 Textural parameters of support Al₂O₃ and different Pt/Al₂O₃ catalysts

Note: Pt particle size is estimated through dispersion data.

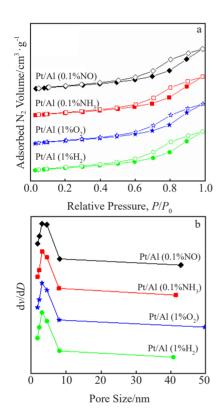


Fig.1 N₂ adsorption-desorption isotherms (a) and pore size distributions (b) of different Pt/Al₂O₃ catalysts

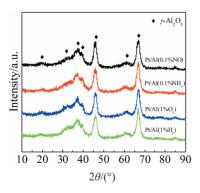


Fig.2 XRD patterns of different Pt/Al₂O₃ catalysts

situ DRIFTS characterization technique. The results are shown in Fig. 3 and Table 1. The peaks near 1825 cm⁻¹ are related to the bridge adsorption of CO by Pt atoms, while the

peaks close to 2050 cm⁻¹ refer to the linear adsorption of CO by Pt atoms in the Pt/Al₂O₃ catalyst^[25]. Based on previous researches^[26], Pt nanoparticle size is positively related to the number of Pt-Pt bonds, which leads to the fact that small Pt particles provide large charge density to the $2\pi^*$ orbital of the adsorbed CO. Hence, different intensities between linear adsorption and bridge adsorption in the spectra are associated with the Pt particle size in different catalysts. The stronger the linear adsorption, the weaker the bridge adsorption and the smaller the Pt particle size in the catalyst^[8]. As shown in Fig.3, Pt/Al(1%H₂) catalyst has the highest intensity ratio of linear adsorption to bridged adsorption, indicating that its Pt particles are the smallest. However, the conclusion should be exactly the opposite for Pt/Al(0.1%NH₃) and Pt/Al(0.1%NO).

The results of CO pulse adsorption experiment are presented in Table 1, revealing that different calcination atmospheres cause changes of Pt particle size in Pt/Al₂O₃ with the order of Pt/Al(1%H₂) <Pt/Al(1%O₂) <Pt/Al(0.1%NH₃) < Pt/Al(0.1%NO). This may be due to the decomposition of Pt(NH₃)₂(NO)₂ precursor. When the catalysts are calcined in an atmosphere containing decomposition products (NH₃ or NO), according to Le Châtelier's principle, the decomposition rate of Pt(NH₃)₂(NO)₂ slows down, resulting in the poor dispersion of Pt particles. When the catalysts are calcined under 1vol% H₂/N₂ atmosphere, H₂ not only reacts with NO to accelerate the decomposition of Pt(NH₃)₂(NO)₂ precursor, but also further reduces the PtO_x generated by the decomposition to Pt, achieving the effect of re-dispersion.

2.4 H₂-TPR test

 H_2 -TPR experiment was performed to investigate the effect of calcination atmospheres on the reduction performance of

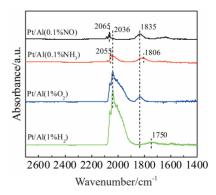


Fig.3 CO in situ DRIFTS spectra of different Pt/Al₂O₃ catalysts

 Pt/Al_2O_3 catalysts. As shown in Fig. 4, each catalyst has two distinct reduction peaks. The low-temperature hydrogen reduction peak (381~408 K) can be attributed to the reduction of highly dispersed ultrafine Pt nanoparticles, while the high-temperature hydrogen reduction peak is related to the reduction of large Pt particles^[4,27,28].

The catalysts are inevitably oxidized by the air during storage and use at room temperature; the longer the exposure time in air, and the higher the dispersion, the higher the degree of oxidation, i.e., highly dispersed Pt particles are easily to be oxidized^[29,30]. In addition, for transition metal oxides, the reduction temperature is mainly affected by the particle size. The smaller the oxide particle size, the higher the concentration of the oxygen vacancies and sites responsible for activate $H_2^{[15,31,32]}$. Among the four catalysts, the Pt/Al₂O₃ (1%H₂) catalyst has the highest dispersion and the smallest Pt particle size, which is more likely to be oxidized at room temperature, resulting in the lowest reduction temperature and highest H_2 consumption in the corresponding TPR profiles, and the results of Pt/Al(0.1%NO) catalyst are just the opposite.

Due to the difference in composition and component content, although NH_3 and H_2 both belong to the reducing calcination atmosphere, the reduction performance of the Pt/Al_2O_3 specimen calcined in the former atmosphere is still far lower than the latter.

2.5 Catalytic activity

Fig. 5 and Table 2 show that different calcination atmospheres lead to very different performances of Pt/Al_2O_3 for CO and C_3H_6 oxidation. Among these catalysts, the catalyst calcined in $1vol\% H_2/N_2$ atmosphere exhibits the best catalytic performance. As shown in Table 2 and Fig.5, the $Pt/Al(1\%H_2)$ has the highest conversion efficiency and the lowest conversion temperature for CO and C_3H_6 oxidation. The reduction ability improves (confirmed by H_2 -TPR test) and the formation of numerous fine Pt particles in the CO pulse adsorption experiment explains the improvement mechanism. The ultrafine platinum particles can effectively enhance the catalytic oxidation activity due to the cluster size effect or structural sensitivity^[27,33-35]. With the same Pt content, the smaller Pt cluster has a larger surface area to volume ratio, which can provide more potential active sites for surface Pt

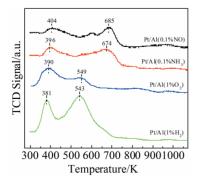


Fig.4 H2-TPR results of different Pt/Al2O3 catalysts

atoms to participate in the reaction; thus better catalytic properties are achieved^[36-38]. In addition, the enhancement mechanism may be due to hydroxyl groups (-OH). It is reported that the -OH group formed by H_2 and O_2 can promote the CO oxidation on Pt(111)^[39-41].

For the Pt/Al(1%O₂) catalyst, due to the large excess of oxygen presented during the calcination stage, smaller Pt particles are easily oxidized to PtO_x, resulting in the loss of active components in platinum metal, which has a negative influence on the catalytic performance^[1,27,42-45]. Therefore, Pt/Al (1%O₂) catalyst shows moderate CO oxidation performance (T_{s0} =420 K, T_{90} =430 K).

Catalysts with excellent reduction properties are beneficial to effective purification of CO and hydrocarbons in exhaust gases^[27]. Pt/Al(0.1%NH₃) and Pt/Al(0.1%NO) catalysts are basically equivalent and unsatisfactory for CO convention because of their large particle size and poor reduction ability for PtO_x.

Furthermore, the four catalysts show the similar regularity in the C_3H_6 oxidation experiment. However, because the length of the C=C bond is shorter and the bond energy is

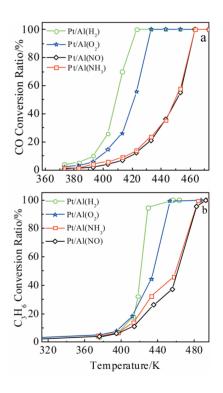


Fig.5 CO (a) and C_3H_6 (b) oxidation results of different Pt/Al_2O_3 catalysts

Table 2 T_{50} and T_{90} of different Pt/Al₂O₃ catalysts (K)

Specimen	T_{50}		T_{90}	
Specifien	СО	C_3H_6	СО	C_3H_6
$Pt/Al(1\%H_2)$	408	420	419	428
$Pt/Al(1\%O_2)$	420	434	430	449
Pt/Al(0.1%NH ₃)	449	458	460	478
Pt/Al(0.1%NO)	449	460	460	478

larger than that of C=O bond, the Pt/Al_2O_3 catalyst more easily achieves the complete CO oxidation than C_3H_6 oxidation.

3 Conclusions

1) Different oxidizing or reducing atmospheres do not affect the pore structure or crystal structure of Pt/Al_2O_3 catalysts, but cause differences in the particle size and dispersion of precious metals.

2) The catalyst calcined under 1vol% H₂/N₂ atmosphere exhibits the highest conversion efficiency and the lowest conversion temperature for CO and C₃H₆ oxidation. This research provides a simple and economical method to improve the catalytic performance of diesel oxidation catalysts.

References

- Russell A, Epling W S. Catalysis Reviews: Science and Engineering[J], 2011, 53(4): 337
- 2 Katare S R, Patterson J E, Laing P M. Industrial & Engineering Chemistry Research[J], 2007, 46(8): 2445
- 3 Twigg M V. Catalysis Today[J]. 2006, 117(4): 407
- 4 Yang Chaoqin, Wang Yaming, Wu Legang. Rare Metal Materials and Engineering[J], 2017, 46(8): 2049
- 5 Dadi R K, Luss D, Balakotaiah V. *Chemical Engineering Journal* [J], 2016, 304(6): 941
- 6 Raj R, Harold M P, Balakotaiah V. Chemical Engineering Journal[J], 2015, 281(6): 322
- 7 Haaß F, Fuess H. Advanced Engineering Materials[J], 2005, 7(10): 899
- 8 Hansen T K, Høj M, Hansen B B et al. Topics in Catalysis[J], 2017, 60(17-18): 1333
- 9 Corro G. Reaction Kinetics and Catalysis Letters[J], 2002, 75(1): 89
- 10 Hirata H. Catalysis Surveys from Asia[J], 2014, 18(4): 128
- Du Junchen, Ma Jiangli, Wang Fengjun et al. Chinese Journal of Inorganic Chemistry[J], 2018, 34(4): 800
- 12 Abedi A, Luo J Y, Epling W S. Catalysis Today[J], 2013, 207(5): 220
- 13 Hu L J, Boateng K A, Hill J M. Journal of Molecular Catalysis A: Chemical[J], 2006, 259(1-2): 51
- 14 Guo I, Yu T T, Wanke S E. Studies in Surface Science and Catalysis[J], 1988, 38(2): 21
- Borges L R, Lopez-Castillo A, Meira D M et al. ChemCatChem[J], 2019, 11(13): 3064
- 16 Svintsitskiy D A, Kibis L S, Stadnichenko A I et al. ChemCatChem[J], 2020, 12(3): 867
- 17 Zhong F L, Zhong Y J, Xiao Y H et al. Catalysis Letters[J], 2011, 141(12): 1828
- 18 Wang H, Dong J S, Allardc L F et al. Applied Catalysis B: Environmental[J], 2019, 244(11): 327
- Kolli T, Kanerva T, Huuhtanen M et al. Catalysis Today[J], 2010, 154(3-4): 303

- 20 Wan J, Ran R, Li M et al. Journal of Molecular Catalysis A: Chemical[J], 2014, 383-384(9): 194
- 21 Lee C H, Chen Y W. Industrial & Engineering Chemistry Research[J], 1997, 36(5): 1498
- 22 Monyanon S, Luengnaruemitchai A, Pongstabodee S. International Journal of Hydrogen Energy[J], 2010, 35(8): 3234
- 23 Huang T J, Yu T C, Chang S H. Applied Catalysis[J], 1989, 52(1): 157
- 24 Sing K S W, Everett D H, Haul R A W et al. Pure & Applied Chemistry[J], 1985, 57(4): 603
- 25 Bourane A, Dulaurent O, Bianchi D. Langmuir[J], 2015, 17(8): 5496
- 26 Fanson P T, Delgass W N, Lauterbach J. Journal of Catalysis[J], 2001, 204(1): 35
- 27 Yang Z Z, Li J, Zhang H L et al. Catalysis Science & Technology [J], 2015, 5(4): 2358
- 28 Haneda M, Watanabe T, Kamiuchi N et al. Applied Catalysis B: Environmental[J], 2013, 142-143(4): 8
- 29 Lee A F, Gee J J, Theyers H J. Green Chemistry[J], 2000, 2(6): 279
- 30 Lee A F, Wilson K, Lambert R M et al. Journal of Catalysis[J], 1999, 184(2): 491
- 31 Hwang C P, Yeh C T. Journal of Molecular Catalysis A: Chemical[J], 1996, 112(2): 295
- 32 Rodriguez A, Hanson J C, Frenkel A I et al. Journal of the American Chemical Society[J], 2002, 124(2): 346
- 33 Nethravathi C, Anumol E A, Rajamathib M et al. Nanoscale[J], 2011, 3(2): 569
- 34 Lu J L, Stair P C. Angewandte Chemie International Edition[J], 2010, 122(14): 2601
- 35 Murzin D Y. Catalysis Science & Technology[J], 2014, 4(9): 3340
- 36 Lei Y, Zhao H Y, Rivas R D et al. Journal of the American Chemical Society[J], 2014, 136(26): 9320
- 37 Bonanni S, Aït-Mansour K, Harbich W et al. Journal of the American Chemical Society[J], 2014, 136(24): 8702
- 38 Wei J M, Iglesia E. Journal of Physical Chemistry B[J], 2004, 108(13): 4094
- 39 Minemura Y, Ito S I, Miyao T et al. Chemical Communications[J], 2005, 25(11): 1429
- 40 Yakovkin I N, Chernyi V I, Naumovets A G. *Surface Science*[J], 1999, 442(1): 81
- 41 Bergeld J, Kasemo B, Chakarov D V. Surface Science[J], 2001, 495(3): 815
- 42 Kreuzer T, Lox E S, Lindner D et al. Catalysis Today[J], 1996, 29(1): 17
- Yang Z Z, Chen Y D, Zhao M et al. Chinese Journal of Catalysis
 [J], 2012, 33(5): 819
- 44 Hauff K, Tuttlies U, Eigenberger G et al. Applied Catalysis B: Environmental[J], 2012, 123-124(2): 107
- 45 Smeltz A D, Delgass W N, Ribeiro F H. Langmuir[J], 2010, 26(21): 16 578

焙烧气氛对 Pt/Al_2O_3 催化氧化CO和C₃H₆性能的影响

郭淼鑫,王凤军,王成雄,张爱敏,赵云昆,杜君臣 (昆明贵金属研究所 稀贵金属综合利用新技术国家重点实验室,云南 昆明 650106)

摘 要:使用Pt(NH₃)₂(NO₂)₂作为前驱体,通过过量浸渍法制备Pt/Al₂O₃催化剂,并将其在4种不同的气氛(H₂、O₂、NO或NH₃)中进 行焙烧。利用N₂吸脱附、X射线衍射、程序升温还原(H₂-TPR)、CO脉冲吸附、CO原位漫反射傅里叶变换红外光谱(CO in situ DRIFTS)等手段对催化剂的物化性质进行了表征。结果表明:由于还原性焙烧气氛导致了众多小尺寸和高分散的Pt纳米颗粒的生成, 经1%(体积分数)H₂/N₂焙烧的Pt/Al₂O₃表现出最佳的CO和C₃H₆催化氧化性能。 关键词:Pt基催化剂;焙烧气氛;尺寸效应;尾气净化

作者简介: 郭淼鑫, 男, 1997年生, 硕士生, 昆明贵金属研究所稀贵金属综合利用新技术国家重点实验室, 云南 昆明 650106, 电话: 0871-68316562, E-mail: miaoxin_guo@163.com