U-Rh 体系非晶合金的成分设计与形成特性

李正飞,韩录会,张 培,法 涛,黄火根

(中国工程物理研究院材料研究所,四川 江油 621907)

摘 要:为了进一步认识 U 合金体系的非晶形成规律,探究了 U-Rh 体系的非晶形成特性。在富 U 端共晶区 65%~80% U(原子分数)范围内设计了系列 U-Rh 合金,通过真空电弧熔炼制备母锭样品与甩带技术制备条带样品,采用 X 射线衍射和热分析手段研究了 2 种样品的相组成与热行为。发现 U₇₀Rh₃₀ 合金在急冷凝固条件下形成了部分非晶相,晶化温度为 642 K,晶化激活能接近 200 kJ/mol,与之共生的是 y-U 高温固溶体相,这是 U 基非晶合金通过急冷冻结高温 U 固溶体的首次证据,反映出 U-Rh 合金非平衡凝固相变行为的独特性。结果表明,U-Rh 是一个新的铀基非晶合金体系,其非晶形成能力不强,这很可能与 y-U 高温固溶体能被急冷直接捕获有关。

关键词: 非晶合金; 金属玻璃; 铀合金; 贵金属

中图法分类号: TG146.8; TB383 文献标识码: A

铀(U)是很重要的裂变金属元素,在核工业与能 源领域发挥了关键作用。不过,铀金属具有很高的化学 活性,容易被环境中的氧气、氢气或水气等气氛腐蚀。 为了提高其抗腐蚀性和力学强度,可以进行非晶合金化 处理,因而值得开展铀基非晶合金研究。20世纪70、 80年代的研究工作表明^[1-3],U与Fe、Co、Ni、Pd、Ir 或Os等元素组成的二元合金,在熔体甩带技术等提供 的急冷条件下都能够形成非晶结构,也就是形成了金属 玻璃材料。近几年来,黄火根等人^[4-19]采用甩带制备技 术,进一步探究了二元、三元乃至四元U基非晶合金 的形成规律与性能特点,证实了非晶态铀合金相比于晶 态的确更耐腐蚀,且发现这类非晶形成的普遍规律是非 晶合金成分都处于富U端的共晶区。

铑(Rh)是比较重要的工业金属材料,在工业领域中主要用作催化剂、X 射线靶材与热电偶材料^[20-24]。 它作为元素周期表中第 VIII 副族的过渡族元素,靠近 Fe、Co、Ni,也跟 Pd、Ir、Os 一样属于贵重金属元素。 而且,U-Rh 二元体系在富 U 端也存在共晶区域,且 其适宜的共晶温度有利于非晶相的形成。另外,从非 晶形成的 Inoue 规则^[25]来看,Rh 与 Ir、Os 原子半 径接近且与 U 原子尺寸差超过 12%,U-Rh 混合焓 为-46 kJ/mol,也基本符合该原则要求。但是,U-Rh 非晶合金却至今未见报道。

因此,本工作探究了 U-Rh 体系铀基非晶形成的 可能性,通过在富U端的共晶区设计系列合金成分, 文章编号: 1002-185X(2023)09-3126-06

成功找到了在甩带条件下形成非晶结构的合金成分, 不过此体系的非晶化特性与其他体系不完全一致,促 进了对铀基非晶合金形成规律的进一步认识。

1 实 验

根据的 U-Rh 二元相图^[26],本研究在 65%~80% U (原子分数)成分范围内设计6个合金,其具体成分 由表 1 列出。合金熔炼使用的原料纯度为: 99.5%以 上的低碳贫铀(含铀碳化物杂质), 99.9%的 Rh 金属棒。 按照相应成分配料后,每个合金的质量控制在10g左 右。采用 NMS-II 型小型亚稳合金制备炉制备样品。 首先,利用水冷铜模在纯度达 99.999%以上的 Ar 气氛 中熔炼合金锭,为使其成分均匀,母合金锭反复熔炼 4 次。然后,将母合金锭剪成合适尺寸后装入石英玻 璃管,在同样的 Ar 气氛保护下通过感应加热熔化锭 子,再将熔体喷至旋转线速度为 50 m/s 的 Cu 辊(直 径 260 mm, 宽 50 mm)上进行甩带,得到急冷条带 样品。对于 U₇₀Rh₃₀ 合金, 还采用 75 m/s 的 Cu 辊甩带 速率进行了试验。试验得到的系列 U-Rh 条带整体质 量较差,连续性不好,弯折容易断裂,部分合金样品 碎片化严重, 难以进行 X 射线衍射分析。

采用差示扫描量热仪(DSC)测试系列 U-Rh 条带 样品与部分母锭的热稳定性,从室温加热至 1473 K, 加热速率为 20 K/min。并针对 U₇₀Rh₃₀ 条带样品,同样 在 40、80、120、160 K/min 等 4 个不同升温速率下进

收稿日期: 2022-09-03

基金项目: 国家重点研发计划 (2021YFA1601100); 基础加强计划 (JCJQ20190415)

作者简介:李正飞,男,1991年生,博士生,中国工程物理研究院材料研究所,四川 江油 621907,电话: 0816-3626743, E-mail: lizhengfei20@gscaep.ac.cn

行了 DSC 测试,温度范围从室温加热至 873 K。采用 X 射线衍射仪 (XRD, Cu Kα)测试了 U₇₀Rh₃₀条带与母 锭样品的相组成,衍射角 2*θ* 扫描范围为 30°~80°。

2 实验结果

2.1 非晶相的热力学特征

相比于作者之前的研究中制备的 U-Fe^[18]、 U-Co^[6]、U-Ni^[14]以及 U-Pd、U-Os 体系条带材料,本 工作获得的 U-Rh 系列合金条带整体效果较差,连续 性不好,绝大部分呈碎片化效果。为此,对这些合金 的条带样品着重进行了热分析。

图 1a 为所有 U-Rh 合金条带样品在 20 K/min 升温 速率下 600~1400 K 温度区间的 DSC 曲线。可以看出, 只有 U₇₀Rh₃₀ 成分显现出 1 个放热的非晶晶化峰,初 始晶化温度 *T*_x为 642 K (见表 1),说明仅该成分合金 内部形成了非晶相。为了比较,图 1b 同时给出了 500~1300 K 范围内 U₇₀Rh₃₀ 条带与母锭样品的 DSC 曲 线,可见母锭未出现非晶的晶化信号,说明慢冷得到 的母锭材料(组织接近准平衡态)并没有得到非晶相。

由图 1a 还可以看出,这些 U-Rh 条带样品在 900 K 以上出现了 2~4 个吸热峰,分别命名为 1#、2#、3#、 4#。其中, U₆₅Rh₃₅、U₆₇5Rh₃₂5与U₇₂5Rh₂₇53个样品 仅有 2 个峰, U₇₀Rh₃₀样品有 3 个峰, 而另外 2 个 U 含量更高的样品则有 4 个峰。这些吸热峰的峰尖温度 T_p数据在表1中列出。结合这些T_p值与U-Rh相图特 征,可以推测1#、2#分别对应于铀固溶体的同素异形 体转变过程 α-(U,Rh)→β-(U,Rh)与β-(U,Rh)→γ-(U,Rh), 3#对应于 α -U₄Rh₃→β-U₄Rh₃的同素异形体转变过程, 而 4#对应于 γ -(U,Rh)与 β -U₄Rh₃的共晶熔化过程。为 此,针对4#吸热峰测定了这些条带样品的初始熔化温 度 $T_{\rm m}$ 与液相线温度 $T_{\rm L}$,并将其数值同样列于表1中。 不难看出,这些不同成分的条带样品的 T_p与 T_m数值 都出现较大的无规律波动,尤其是 U₇₀Rh₃₀ 样品,且 它们的 T_m 值与U-Rh相图中 γ -(U,Rh)与 β -U₄Rh₃的平衡 态共晶温度 1128 K 有明显差异, 这充分反映出非平衡 态凝固合金的特殊热力学行为。另外,对比图 1b 中的 结果,也可以看出由于内部组织结构接近平衡态,母 锭样品的 DSC 曲线出现完整的 4 个吸热峰, 而不是 3 个峰,进一步印证了这一观点。不过,它们的 T_L变化 情况却反映出相图的部分平衡态特征,因为从图 1a 可清晰看到共晶点 U75.5Rh24.5 及其邻近 U 一侧的 $U_{80}Rh_{20}$ 的熔化峰都很明锐(T_L 较小),而共晶点靠近 Rh 一侧的剩余 4 个合金的熔化峰都有明显拖尾现象 $(T_{\rm L}$ 较大),这实际上与共晶点左侧的液相线斜率较 小而右侧较大有关[26]。

图 1 U-Rh 合金的 DSC 曲线

表 1 U-Rh 合金母锭和条带样品的热力学温度参数

Table 1 Thermodynamic temperatures parameters of U-Rh

allov	ingot	and	ribbon	samp	les

	. 8			1				
Alloy	Sample T_x/K		$T_{\rm p}/{\rm K}/\Delta H/{\rm J}\cdot{\rm g}^{-1}$				T/V	T/V
	type	$/\Delta H/J \cdot g^{-1}$	1#	2#	3#	4#	$I_{\rm m}/{\rm K}$	IL/K
U ₆₅ Rh ₃₅	Ribbon	-	-	-	1053/ 19.4	1143/ 32.0	1130	1311
U _{67.5} Rh _{32.5}	Ribbon	-	-	-	1066/ 22.8	1148/ 46.7	1136	1274
$U_{70}Rh_{30}$	Ribbon	642/ 8.5	-	958/ 2.0	1068/ 13.2	1142/ 25.4	1115	1237
$U_{70}Rh_{30}$	Ingot	-	938/ 1.4	983/ 2.5	1063/ 15.3	1148/ 24.3	1125	1235
U72.5Rh27.5	Ribbon	-	-	-	1053/ 21.7	1143/ 55.2	1132	1293
U75.5Rh24.5	Ribbon	-	953/ 2.6	978/ 5.7	1068/ 13.0	1143/ 33.0	1132	1169
$U_{80}Rh_{20} \\$	Ribbon	-	938/ 4.2	978/ 11	1073/ 8	1148/ 30.3	1133	1178

表1还列出了图1中所有特征峰的吸放热焓值(ΔH) 数据。首先,U₇₀Rh₃₀ 条带样品的非晶放热焓为 8.5 J/g (约为1.7 kJ/mol),显著低于U-Co、U-Fe 纯非晶条带 的 6.2~8.5 kJ/mol^[6]与 3.7~5.0 kJ/mol^[18]。其次,基于 U₇₀Rh₃₀ 母锭与U_{75.5}Rh_{24.5}、U₈₀Rh₂₀ 条带的数据,可见 2# 峰 的 吸 热 焓 $\Delta H_{\beta(U,Rh)\rightarrow\gamma(U,Rh)}$ 几 乎 都 达 到 1# 的 $\Delta H_{\alpha(U,Rh)\rightarrow\beta(U,Rh)}$ 的 2 倍,说明 β -(U,Rh),与纯铀金属的实际 情况相似,这意味着表1 的数据比较可靠。结合图1 与 表1来看,U₇₀Rh₃₀ 条带的第1个吸热峰位于1#~2#之间, 但考虑到 β -(U,Rh)→ γ -(U,Rh)的热效应更强,所以有理由 认为该峰应该属于 2#,否则如果该峰为 1#,那么 2#峰 必然出现,而既然该峰就是 2#,则1#峰有可能不出现, 也许由于其热效应较小,低于热分析仪器的检测限。第 三,从系列条带样品(U₇₀Rh₃₀成分除外)的3#峰来看, U₆₅Rh₃₅、U_{67.5}Rh_{32.5}与 U_{72.5}Rh_{27.5}成分的吸热焓都大于 19 J/g,而 U_{75.5}Rh_{24.5}、U₈₀Rh₂₀成分的焓值都不大于 13 J/g,前者的热效应明显强于后者,这应该与前者缺 失了铀固溶体的同素异形体转变有关。最后,基于合金 的吸热熔化峰(4#)数据来看,U₇₀Rh₃₀合金的熔化焓 最低(24~26 J/g),尤其是几乎仅为邻近合金 U_{67.5}Rh_{32.5} (46.7 J/g)与 U_{72.5}Rh_{27.5}(55.2 J/g)的一半,这暗示着 U₇₀Rh₃₀合金的非晶形成能力很可能同其熔化焓显著偏 低有重大关联。

2.2 非晶相的 XRD 分析

为了确认 U₇₀Rh₃₀ 合金条带的非晶相形成,对其 在 2 个不同甩带速率下制备的条带样品进行 XRD 测 试,同时为了比较结构差异,还对其母锭样品进行了 测试。相应的 XRD 结果见图 2。从图 2a 可知,50 m/s 甩带速率下的 U₇₀Rh₃₀ 条带在衍射角 2*θ*=37°附近的确 得到了非晶漫散包,与 U-Fe、U-Co 等非晶合金现象 一致^[6,12,14,18]。不过,该条带样品还出现几个晶体衍射 峰,其主峰接近非晶漫散峰位置且强度很高,严重影 响了非晶漫散峰的观察效果。与之相比,母锭样品则 完全得到了晶体衍射峰,根据 U-Rh 相图的相组成特 点,准平衡态的母锭应该是形成了底心正交结构 *α*-U 固溶体与未知结构的 *α*-U₄Rh₃ 2 种相,但是仅仅前一个 相可以标定出来,后一个无法标定,这可能与*α*-U₄Rh₃ 相的存在仍有争议^[27-28],结构尚未彻底揭露有关。从图

图 2 U₇₀Rh₃₀ 合金条带与母锭样品的 XRD 图谱 Fig.2 XRD patterns of U₇₀Rh₃₀ ribbon and ingot samples: (a) ribbon and ingot samples at the strip rate of 50 m/s; (b) ribbon samples at the strip rate of 50 and 75 m/s

2b 可看出,当甩带速率由 50 m/s 提高到 75 m/s 时, U₇₀Rh₃₀合金仍未得到完全的非晶相,而得到相同的相 组成,不过所有衍射峰都往高角端偏移。通过标定可 知,这些条带样品中的晶体相都属于 bcc 结构的y-U 固溶体相γ-(U, Rh), 主峰为(110)晶面, 据此计算得到 晶格参数分别为 a=0.3435 nm 与 a=0.3393 nm, 与其衍 射峰偏移趋势相吻合。对于高温下的纯y-U相,在1033K 温度下测定的晶格参数为 0.3474 nm。显然, U-Rh 条 带样品的室温数值显著小于纯y-U 相的结果,这种差 别一方面归功于测试温度的不同,另一方面也必然与 前者引入了 Rh 原子有关。实际上, 75 m/s 条带样品 的晶格参数小于 50 m/s 条带样品,也与 Rh 原子引入 量不同有关,因为甩带速率越高则冷却速率越大,则 越能冻住更高温的γ-U 固溶体相, 捕获更高 Rh 含量的 固溶体,也就是说 75 m/s 条带样品的₂-(U.Rh)相含有更 多的 Rh 原子。Rh 元素的原子半径为 0.134 nm, 而 U 原子半径为 0.156 nm, 前者的确显著小于后者, 所以 才会出现上述晶格尺寸的变化现象。

根据图 2 所给出的结果与图 1 所表现的特征,可 以推断 U₆₅Rh₃₅、U_{67.5}Rh_{32.5} 与 U_{72.5}Rh_{27.5} 3 个合金的条 带中应该也形成了 γ-(U,Rh)相,因为它们的 DSC 曲线 都缺失了 U 固溶体的同素异形转变信号,即 1#、2# 峰; U_{75.5}Rh_{24.5} 与 U₈₀Rh₂₀ 条带是否得到了 γ-(U,Rh)难 以判断,不过既然 Rh 含量较少,那么即便二者得到 了此相,含量必然较少。

特别需要指出:一方面,在多年的U基非晶合金 研究中,不论是二元体系还是多元体系,都未能在U 合金条带中得到高温γ-U 固溶体相,本研究结果是首 次发现;另一方面,前面提到U₇₀Rh₃₀条带(对应 50 m/s 甩带速率)的非晶晶化焓为 8.5 J/g(约为1.7 kJ/mol), 低于U-Co、U-Fe纯非晶条带的数据(同样对应 50 m/s 甩带速率),这显然与前者未形成单一的非晶相有关, 而U₇₀Rh₃₀合金的75 m/s条带样品(本研究未给出DSC 曲线)的晶化焓测试结果为15.2 J/g(约 3.0 kJ/mol), 接近其 50 m/s 样品的2倍,且靠近U-Fe纯非晶条带 的较小值 3.7 kJ/mol,说明当甩带速率提高时U₇₀Rh₃₀ 合金得到了更多的非晶相,也意味着U₇₀Rh₃₀纯非晶 相的晶化焓值可能并不低。

2.3 非晶晶化激活能

为了解 $U_{70}Rh_{30}$ 合金中非晶相晶化转变的难易程度,进一步测试了其条带样品在 40、80、120、160 K/min 等 4 个升温速率下的晶化 DSC 曲线。图 3a 给出了 550~825 K 温度区间的晶化特征曲线。可见伴随升温 速率的提高,非晶相的 $T_x = T_p$ 都逐渐向高温端移动, 表现出晶化过程的动力学特征,与其它铀基体系的非

晶合金以及常规体系的非晶合金行为一致^[9,14,17]。 T_x 、 T_p 随升温速率变化的具体数值见表 2。

对这种动力学行为,可以采取 Kissinger 方程^[29] (1)进行处理分析,即:

$$\ln\frac{T^2}{\theta} = \frac{E}{RT} + \ln\frac{E}{k_0 R} \tag{1}$$

式中,T(K)为开尔文温度, $\theta(K/s)$ 为升温速率, E(J/mol)为激活能,R(取值 8.314 J/mol·K)为理想气 体常数, $k_0(s^{-1})$ 为描述特定过程中原子运动能力的频 率因子。图 3b 给出了 $U_{70}Rh_{30}$ 合金中非晶相的特征 温度 T_x 和 T_p 的 $\ln(T^2/\theta)$ -1000/T 分布结果,通过拟合 获得了对应的晶化激活能 E_x 和 E_p ,分别为 189.4 与 176.0 kJ/mol,且拟合因子 r^2 分别为 0.93 与 0.98。

另外,这种动力学行为也可采用另一种广泛应用的 Ozawa 方法^[30]进行分析,其表达式如下:

$$\ln\theta = -1.0516\frac{E}{RT} + C \tag{2}$$

式中, C为常数。

图 3c 给出了 2 个特征温度 *T*_x和 *T*_p的-ln*θ*~-1000/*T* 分布关系,并拟合得到对应的 *E*_x、*E*_p和 *r*²参数,分别 为 200.6 kJ/mol、0.95 和 187.5 kJ/mol、0.99。

由表 2 中 2 种不同理论下得到的激活能值可见, 在拟合因子都超过 0.9 的前提下, 2 种方法拟合的同一 种激活能结果相近,同时,单独一种方法得到的 E_x 都大于 E_p ,跟 U-Ni、U-Co-Al 非晶合金^[14,17]的分析结 果相同,也符合实际的物理过程,因为 E_x 与 E_p 分别 反映了初始晶化阶段与晶化中间阶段的阻力,显然晶 化启动时的阻力会更大。因此,此拟合结果意味着采 用 Kissinger 与 Ozawa 方法分析理解非晶材料的晶化 动力学行为都是可靠的。另外,U₇₀Rh₃₀ 非晶的晶化 激活能约为 200 kJ/mol,略低于 U_{69.2}Ni_{30.8} 合金(E_x 、 E_p 分别为 209、204 kJ/mol)^[14],但是显著低于 U₆₄Co_{28.5}Al_{7.5}(E_x 、 E_p 分别为 234、228 kJ/mol)^[17]与 U₆₀Fe_{27.5}Al_{12.5}(E_x 为 237 kJ/mol)^[9]合金,体现出 U-Rh 非晶相较容易发生晶化,动力学稳定性不高。

图 3 不同升温速率下 U₇₀Rh₃₀ 非晶合金的 DSC 曲线、不同特征温度的 Kissinger 图及不同特征温度的 Ozawa 图 Fig.3 DSC curves of U₇₀Rh₃₀ amorphous alloy at different heating rates (a); Kissinger plots to calculate the activation energies relative to *E_x*, *E_p*(b); Ozawa plots to calculate the activation energies relative to *E_x*, *E_p*(c)

amorphous alloy samples						
Heat rate, θ/ K·min ⁻¹	$T_{\rm x}/{ m K}$	$T_{\rm p}/{ m K}$	$E_{\rm x}/{\rm kJ}\cdot{\rm mol}^{-1}$	$E_{\rm p}/{ m kJ\cdot mol^{-1}}$		
40	663	678				
80	675	691	189.4(Ki)	176.0(Ki)		
120	679	699	200.6(Oz)	187.5(Oz)		
160	690	708				

表 2 U₇₀Rh₃₀ 非晶合金样品的热力学温度参数

Table 2 Thermodynamic temperatures parameters of $U_{70}Rh_{30}$

Note: Ki and Oz represent the Kissinger and the Ozawa method, respectively

3 讨 论

根据以上的测试分析结果,可知 U-Rh 体系得到

铀基非晶相并不容易,在本研究设计的一系列合金 中,仅U₇₀Rh₃₀合金在极高的冷速条件下(约 10⁶K/s 的冷速)实现了部分非晶化,尽管提高甩带速率可以 增加非晶含量。不仅如此,其非晶相在晶化之前也没 有观察到常见的吸热玻璃化转变特征,即便在很高的 升温速率下,如图 1a 与图 3a 所示。此外,该非晶相 的 T_x 值为 642 K,相应的约化晶化温度 T_x/T_m 、 T_x/T_L 分别为 0.576 与 0.519,跟 U-Fe、U-Co 体系中较差的 非晶合金如 $U_{75}Fe_{25}^{[18]}$ 与 $U_{62.5}Co_{37.5}^{[6]}$ 接近。另外,该 非晶相的晶化激活能也不高,容易发生结晶。这些都 说明 U-Rh 体系的非晶形成能力的确一般,可能这就 是为何早期有 U-Ir、U-Os 非晶报道而无 U-Rh 非晶报 道的原因,尽管 Rh 与 Ir、Os 都属于 Pt 族贵金属。

表 3 不同 U 二元合金体系的 y-U 相最大固溶度与固溶温度

Table 3 The maximum solution solubility in *p*U and its solution temperature in different uranium binary alloy systems

	U-Rh	U-V	U-Cr	U-Fe	U-Co	U-Ni	U-Pd	U-Os
The maximum solution solubility in γ -U/at%	~8	12	~4	1.3	< 2	2	~5	18
The maximum solution solubility temperature/K	1128	1313±5	1133	1083	1099	1063	1271	1243±5

另一方面,在作者多年的大量 U 基非晶体系研究 工作中, U-Rh 是 U 基合金经过甩带而捕获高温 y-U 固 溶体相的唯一特例,在本研究首次被发现。表3比较 了U-Rh与其他二元体系的γ-U相最大溶解度及其溶解 温度,可以看出 U-Rh 体系溶解度低于 U-V 与 U-Os 却高于其他体系,而其溶解温度却明显低于U-V、U-Pd 与 U-Os, 这很可能是 U-Rh 体系的独特性发现的缘由 之一。也就是说, U-Cr、U-Fe、U-Co、U-Ni 体系的 最大溶质溶解度较低,其y-U 固溶体相很难在急冷条 件下被冻住,而U-Pd具有接近的固溶度,U-V与U-Os 具有更大的固溶度,但它们的溶解温度过高,导致其 γ-U 固溶体相同样难以冻结到室温。另外,有研究^[31-32] 表明 U-Rh 形成的键合非常独特,是 U 与过渡族金属 元素成键最短的一类,意味着 U 原子与 Rh 原子之间 具有很强的化合作用,这可能也是 U-Rh 体系的 y-U 固 溶体相能被冻住的原因之一。

综合来看, U-Rh 合金体系拥有普通的非晶形成能 力与能够冻住高温 U 固溶体之间也许存在内在的关 联,其本质原因可能跟 Rh 元素自身的原子结构或电 子结构特殊性有关,不过仍有待深入研究。

4 结 论

1)通过研究 U-Rh 体系的富 U 端共晶区中 65%~ 80%(原子分数) U 含量的系列合金的相形成特点,发现 仅 U₇₀Rh₃₀合金在甩带急冷条件下可形成部分的非晶相, 其晶化温度为 642 K,晶化激活能接近 200 kJ/mol。

2)该合金中的非晶相与产U高温固溶体相共存,且 部分的其他 U-Rh 合金也应该通过甩带得到了此固溶体 相,这是 U基非晶合金通过急冷捕获高温固溶体的首次 发现,可能归功于 Rh 在产U 中有适宜的最大溶解度及其 溶解温度,以及 U 与 Rh 之间存在较强的化合作用。

3)本研究证实了 U-Rh 也是一个 U 基非晶形成体 系,且非晶成分处于共晶区,与其他 U 基非晶体系的 规律一致,但是它的非晶形成能力一般,或许恰跟其 能冻结γ-U 高温固溶体相有一定的内在关系。

参考文献 References

[1] Elliot R O, Giessen B C. Acta Metallurgica[J], 1982, 30: 785

[2] Giessen B C, Elliott R O. Proceedings of the 3rd International

Conference on Rapid Quenching[C]. England, Brighton: The Metals Society, 1978

- [3] Drehman A J, Poon S J. Journal of Non-Crystalline Solids[J], 1985, 76: 321
- [4] Ke Haibo(柯海波), Pu Zhen(蒲 朕), Zhang Pei(张 培) et al. Acta Physica Sinica(物理学报)[J], 2017, 66(17): 176 104
- [5] Huang Huogen(黄火根), Ke Haibo(柯海波), Liu Tianwei(刘 天伟) et al. Rare Metal Materials and Engineering(稀有金属 材料与工程)[J], 2018, 47(3): 990
- [6] Huang Huogen(黄火根), Wang Yingmin(王英敏), Chen Liang(陈亮) et al. Acta Metallurgica Sinica(金属学报)[J], 2015, 51(5): 623
- [7] Huang Huogen(黄火根), Xu Hongyang(徐宏扬), Zhang Pengguo(张鹏国) et al. Acta Metallurgica Sinica(金属学 报)[J], 2017, 53(2): 233
- [8] Huang Huogen(黄火根), Zhang Pengguo(张鹏国), Zhang Pei(张 培) et al. Acta Metallurgica Sinica(金属学报)[J], 2020, 56(6): 849
- [9] Han Luhui(韩录会), Ke Haibo(柯海波), Zhang Pei(张 培) et al. Acta Metallurgica Sinica(金属学报)[J], 2022, 58(10): 1316
- [10] Zhang Lei(张 雷), Shi Tao(施 韬), Huang Huogen(黄火根) et al. Acta Metallurgica Sinica(金属学报)[J], 2022, 58(2): 225
- [11] Zhang J Y, Zhou Z Q, Zhang Z B et al. Materials Futures[J], 2022, 1(1): 012 001
- [12] Zhang P, Pu Z, Zhang P G et al. Journal of Materials Research and Technology[J], 2020, 9(3): 6209
- [13] Ke H B, Zhang P, Sun B A et al. Journal of Alloys and Compounds[J], 2019, 788: 391
- [14] Huang H G, Ke H B, Zhang P et al. Journal of Non-Crystalline Solids[J], 2019, 511: 68
- [15] Xu H Y, Ke H B, Huang H G et al. Journal of Nuclear Materials[J], 2018, 499: 372
- [16] Huang H G, Ke H B, Zhang P et al. Materials & Design[J], 2018, 157: 371
- [17] Ke H B, Xu H Y, Huang H G et al. Journal of Alloys and Compounds[J], 2017, 691: 436
- [18] Huang H G, Ke H B, Zhang P et al. Journal of Alloys and

Compounds[J], 2016, 688: 599

- [19] Huang H G, Ke H B, Wang Y M et al. Journal of Alloys and Compounds[J], 2016, 684: 75
- [20] Li Jun(李 军), Liu Yue(刘 悦), Fang Maodong(方茂东). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2015, 44(4): 871
- [21] Fu Guangqiang(付光强), Fan Xingxiang(范兴祥), Dong Haigang(董海刚) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2014, 43(6): 1423
- [22] Dong Haigang(董海刚), Chen Jialin(陈家林), Zhao Jiachun(赵家春) et al. Journal of Central South University, Science and Technology(中南大学学报,自然科学版)[J], 2014, 45 (11): 3746
- [23] Fang Wei(方 卫), Ma Yuan(马 媛), Lu Jun(卢 军) et al. Rare Metal Materials and Engineering(稀有金属材料与工 程)[J], 2012, 41(12): 2254
- [24] Liu Qingbin(刘庆宾). Rare Metal Materials and Engineering(稀

有金属材料与工程)[J], 2000, 29(5): 357

- [25] Inoue A. Acta Materialia[J], 2000, 48: 279
- [26] Kottcamp E H, Langer E L. Alloy Phase Diagrams[M]. US: ASM International, 1992
- [27] Park J J. Journal of Research of the National Bureau of Standards-A Physics and Chemistry[J], 1968, 72A (1): 11
- [28] Naraine M G, Bell H B. Journal of Nuclear Materials[J], 1974, 50: 83
- [29] Kissinger H E. Analytical Chemistry[J], 1957, 29: 1702
- [30] Ozawa T. Bulletin of the Chemical Society of Japan[J], 1965, 38(11): 1881
- [31] Feng G F, Zhang M X, Wang P L et al. Proceedings of the National Academy of Sciences of the United States of America[J], 2019, 116(36): 17 654
- [32] Hlina J A, Wells J A L, Pankhurst J R et al. Dalton Transactions[J], 2017, 46: 5540

Composition Design and Forming Characteristics of Amorphous Alloys in U-Rh System

Li Zhengfei, Han Luhui, Zhang Pei, Fa Tao, Huang Huogen (Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China)

Abstract: In order to further understand glass forming rules of uranium alloy systems, the characteristics of glass formation in U-Rh system were studied. A series of U-Rh alloys with 65at%-80at% U were designed in the U-rich eutectic zone, and then shaped into ingot samples by vacuum arc melting and into ribbon samples by melt-spinning. Their phase constitutions and thermal behaviors were studied by XRD and thermal analysis. It is found that upon rapid solidification, partial amorphous phase is formed in $U_{70}Rh_{30}$ alloy, whose crystallization temperature is 642 K and whose crystallization activation energy is nearly 200 kJ/mol. The coexisting phase is high temperature γ -U solid solution. It is the first evidence of this kind of phase forming in U-based amorphous alloys by rapid quenching, implying unique non-equilibrium solidification phase transformation of U-Rh alloys. It is concluded that U-Rh is a new amorphous alloy system with weak glass forming ability, which is probably relevant to the capability of directly arresting high temperature γ -U solid solution during rapid cooling.

Key words: amorphous alloy; metallic glass; uranium alloy; noble metal

Corresponding author: Huang Huogen, Ph. D., Professor, Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, P. R. China, Tel: 0086-816-3626743, E-mail: hhgeng2002@sina.com