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Abstract: Five machine learning (ML) approaches, i.e. K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree 

(DT), Random Forest (RF) and Artificial Neural Network (ANN) were used to classify and to predict the combination of phases, i.e. 

solid solutions (SS) and mixed solid solution and intermetallic (SS+IM) in refractory high-entropy alloys (RHEAs). Five input 

characteristic phase predicting parameters and 139 RHEAs were selected to train these models. Results show that ANN model has the 

highest accuracy of 90.72%. Experimental results of 9 quaternary and (TiVTa)xCr1–x RHEAs verify the accuracy of prediction and 

indicate that RF and ANN can predict more accurately, successfully predicting 11 SS and 3 SS+IM. SHAP (SHapley Additive 

exPlanations) model was used to interpret the ANN model which exhibits the highest accuracy and to investigate the contribution of 

each feature to phase formation. The order of importance of five features is enthalpy of mixing (ΔHmix), atomic size difference (δ), 

valence electron concentration (VEC), entropy of mixing (ΔSmix), and electronegativity difference (Δχ), where the mean SHAP value 

of ΔHmix is approximately 5 times higher than that of ∆χ and 4 times higher than that of ΔSmix. Less negative ΔHmix, smaller δ and VEC 

may contribute to the formation of SS in RHEAs.
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High entropy alloy (HEA) is a new concept of alloy design, 
first developed by Cantor[1] and Yeh[2] in 2004. By mixing 
equiatomic or near-equiatomic multi-element (≥4, usually), 
HEAs show some potentials in overcoming the constraints of 
the inherent properties of one or two main elements in 
traditional alloys, and achieve “free” design in the atomic 
level[3–4]. Among all kinds of HEAs, refractory high entropy 
alloys (RHEAs) usually consist of refractory elements: Cr, Hf, 
Mo, Nb, Ta, Ti, V, W, and Zr, sometimes with minor addition 
of Al, Ni, Si, C, O, etc[5]. Some RHEAs exhibit a variety of 
excellent properties, such as high strength[4–6], sufficient 
plasticity[7–9], wear resistance[10], radiation resistance[11–12] and 
particularly high strength at elevated temperature[13–15], which 
makes them applicable in a wider range of fields.

The formation of solid solutions (SS) instead of complex 
intermetallics (IM) is normally desired in RHEAs, because the 

formation of IM such as Laves phase[16] usually brings about 
brittleness, making RHEAs inappropriate as structural 
materials. Thus, the efficient and accurate prediction of phase 
formation in RHEAs composed of certain elements is of great 
significance in tailoring the properties and performance. Due 
to the vast combinations of elements and compositions, the 
traditional “trial and error” methods cannot meet the growing 
requirement for highly efficient development of new HEAs. 
Some empirical rules[17–18] regarding the trends of phase 
formation have been established to guide the design of HEAs. 
High ΔSmix is regarded as an important factor in promoting the 
formation of multi-principal solid solutions whereas large, 
negative values of ΔHmix will destabilize SS phases by 
competing with ΔSmix and thus be prone to IM phase 
formation[16,19]. The electronegativity difference of Δχ is 
related to the elemental segregation and the formation of 
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topologically close packed (TCP) phases[19]. Atom size 
mismatch δ and the mixing enthalpy ΔHmix are well-known 
empirical criteria for amorphous (AM) alloys[16,19], which show 
potentials in separating SS and AM phases in HEAs. The 
valence electron concentration (VEC) has been used as a 
critical parameter in determining the formation of fcc or bcc 
phase[19]. However, due to the variability of element compo-
sition and the complexity of alloy system, these empirical 
approaches seems insufficient for accurately predicting the 
phase types of HEAs[17].

Compared with the empirical methods, other computer-
aided calculation methods, such as phase diagram calculation 
(CALPHAD)[20], molecular dynamics simulation[21] and density 
functional theory calculation (DFT)[22], have also been increa-
singly used to discover correlations between material 
structures and properties. There are successful cases in the 
prediction of the structure and electronic properties of 
HEAs[20–21], but the accurate prediction is time-consuming and 
limited by computational capacity. Therefore, it is urgent to 
use new methods in order to achieve tailored HEAs with 
desired properties by establishing the relationship between 
composition and phase formation.

Machine learning (ML) is a broad class of data-driven 
algorithms used to make inferences and classifications from 
data. As a data-driven algorithm, ML is suitable for the study 
of high-dimensional problems, particularly prominent in 
HEAs design and has been successfully used in the prediction 
of phases in HEA systems[23–24]. Various properties, including 
the composing elements, thermodynamic parameters, etc, 
have been considered as input features for the phase 
prediction and ML models with overall high accuracy (>75%) 
have been trained based on dataset containing usually a few 
hundred sub-entries. For example, Islam et al[25] trained an 
ANN model to predict the formation of AM, SS and IM based 
on 118 HEAs with an average accuracy of more than 80%. 
Krishna et al[26] used Logistic regression (LR), SVM, DT, RF, 
Gradient Boosting (GB) and ANN to predict SS or SS+IM 
based on 636 HEAs data, among which SVM showed the 
highest accuracy of 83.02%. Agarwal et al[23] used adaptive 
neuro fuzzy interface system to predict the fcc and bcc phases 
in HEAs with elemental composition and thermodynamic 
parameters as input features, and the accuracy reached 
84.21%. Similar works were conducted by Dai[27] and Risal et 
al[28]. Qi et al[29] extracted more than 600 entries from binary 
alloy systems and the trained RF model showed the highest 
accuracy over 80%. However, the dataset used so far is 
heavily biased towards alloys mainly composed of 3d 
transitional metals, such as Cr, Mn, Fe, Co and Ni. The 
specific datasets of refractory HEAs and corresponding ML-
based phase prediction are relatively rare. There are many 
differences between RHEAs and the 3d-transition HEAs in 
terms of composing elements, essential physical parameters, 
possible phases and correspondingly intrinsic properties. The 
models used for successful classification and prediction of 
phases in 3d-transition HEAs may not be applicable for 
RHEAs.

Therefore, in the present study, we attempted to fill the gap 
in the research and predicted the phase formation in RHEAs 
using five ML algorithms with supervised learning, namely K-
Nearest Neighbor (KNN), Support Vector Machine (SVM), 
Decision Tree (DT), Random Forest (RF) and Artificial Neu-
ral Network (ANN) based on 139 datasets and verified the ac-
curacy of models by examining 9 quaternary and (TiVTa)xCr1–x 
RHEAs. SHAP (SHapley Additive exPlanations) model[30] was 
used to interpret the models and to shed light on the physical 
influence of different features on the phase formation, and the 
relative feature importance was obtained.

11  Materials and Methods  Materials and Methods

A schematic flow chart of the approach used for phase 
prediction of RHEAs based on ML is displayed in Fig. 1. 
Firstly, 139 RHEAs were selected from Ref.[31] which consist 
of 97 SS (there are only solid solution phases) and 42 SS+IM 
(there are both solid solution and intermetallic phases) for 
prediction and analysis. It is worth noting that alloys with a 
mixture of solid solution phases such as multiple bcc phases 
or bcc+hcp phases are considered as the SS category and 
alloys containing intermetallic phases such as Laves phase are 
considered as the SS+IM category. After screening the dataset, 
the major composing elements of 139 RHEAs are refractory 
metals, which are Ti, V, Cr, Zr, Nb, Mo, Hf and Ta. Some 
alloys also contain a minor percentage of non-refractory 
elements, such as Si, Al and C, which are usually added to 
tailor the properties of RHEAs.

Each data was labeled so that every data point had a target 
label, and the labeled dataset was then used to train the model. 
The input features include entropy of mixing (ΔSmix), enthalpy 
of mixing(ΔHmix), atomic size difference (δ), electronegativity 
difference (Δχ), and valence electron concentration (VEC) 
with definitions in Table 1. Some representative subsets are 
displayed in Table 2.

Five ML algorithms which are KNN, SVM, DT, RF and 

Fig.1　Schematic flow chart of phase prediction for RHEAs based on 

ML method
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ANN were used. Statistical analysis was carried out using the 
Matlab2018b software and the scikit-learn library[32]. Data 
imported into the Matlab2018b consisted of six attributes 
which include five features as displayed above and one output 
corresponding to the phase composition. Details of the 
application of the supervised learning approach can be found 
in Ref.[33].

In order to avoid overfitting of the models, the cross-
validation method[25] was used and the dataset was randomly 
divided into 4 subsets containing 35, 35, 35 and 34 cases. 
Fig. 2 displays the setup of the cross-validation method. The

accuracy of five ML algorithms is defined as the number of 
times by which ML approaches can correctly identify a target, 
which is type of RHEAs phases (SS or SS+IM) in this project. 
It is worth noting that the accuracy is obtained based on the 
average accuracy. These models based on the experience data 
gained through training were then used for examination of the 
formed phase in 9 quaternary and (TiVTa)xCr1‒x RHEAs. 
Lastly, SHAP model[30] was used to investigate the roles of 
different features in classifying SS and SS+IM and the relative 
importance of these features was obtained.

The predictive capability of our approach was verified by 
experimental study on 9 quaternary and (TiVTa)xCr1‒x RHEAs, 
which were prepared by arc-melting and suction-casting. 
High-purity raw metals (>99.95%) were melted in the vacuum 
furnace under a Ti-gettered argon atmosphere. The ingot was 
remelted at least six times to achieve a homogeneous 
distribution of elements and then suction-casted to obtain a 10 
mm×10 mm×70 mm ingot. The specimens with the dimension 

of 2 mm×10 mm×10 mm were firstly ground and polished to 
achieve a flat surface, and then characterized by X-ray 
diffractometer (XRD, Rigaku SmartLab 9 kW).

22  Results and Discussion  Results and Discussion

2.1  Model construction and phase prediction 

The data dependence of each design parameter is shown in 
the scatter plot (Fig. 3) with histograms of all parameters 
considered in the diagonal. The overlapping of the graph 
indicates that the identification of phases using a single 
empirical parameter is explicitly insufficient and thus all 
parameters need to be considered for ML algorithms due to 
the multi-dimensional features in alloy design. The 
interdependence of each parameter for phase prediction is 
shown by plotting the heatmap with the Pearson correlation 
coefficient[25] in Fig.4. It is well established that the value of 1 
suggests a strong positive correlation whereas ‒ 1 suggests a 
strong negative correlation between the parameters. As shown 
in Fig.4, the correlation value varies between ‒0.36 and 0.32, 
which suggests that there are no strong correlations between 
each pair of features.

In the DT classifier, Gini impurity was used as the 
criteria[34] for finding the leaf node. When the maximum depth 
(starting from the root node to the leaf node) is 7, the highest 
accuracy achieved is 85.63%.

In the RF classifier, the value of n estimators corresponding 
to the number of trees in the forest[26] varies from 10 to 100 
with an interval of 10 and the maximum depth varies from 1 
to 10. The highest accuracy obtained is 88.57% with the 
number of trees as 10 and the maximum depth (the number of 
branches) as 5.

In the KNN classifier, the Euclidean distance algorithm[35] 

Table 1　Description of the parameters used in this study

Feature

Valence electron concentration, 

VEC

Difference of the pauling, 

negativities, ∆χ
Atomic size difference, δ

Mixing enthalpy, ΔHmix

Mixing entropy, ΔSmix

Equation

VEC =∑i = 1

n ciVECi

∆χ = ∑i = 1

n ci( )χi - χ̄
2

δ = 100 × ∑i = 1

n ci( )1 -
ri

r̄

2

∆Hmix =∑i = 1,i < j

n 4Hijcicj

∆Smix = -R∑i = 1

n cilnci

Table 2　Some representative subsets in the dataset

RHEAs

MoNbTaW

Al0.75MoNbTiV

HfMo0.5NbTiV0.5

CrMo0.5NbTa0.5TiZr

Co2Cr0.5Ni2VW0.5

Mo2NbTiVZr

ΔSmix

11.53

13.33

12.97

13.37

12.02

12.98

Δχ

0.36

0.23

0.25

0.31

0.18

0.31

VEC

5.50

4.68

4.63

4.08

8.17

5.00

δ

2.17

3.86

5.94

20.27

3.19

6.58

ΔHmix

‒4.75

‒11.12

‒0.88

‒4.92

‒8.92

‒3.67

Classification

SS

SS

SS

SS+IM

SS+IM

SS+IM

Fig.2　Illustration of the 4-fold cross-validation method
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was selected to compute the distance between the testing data 

and training data. With a pre-set k value, k-nearest training 

samples were first selected, and the dominant label among 

these training data was assigned to the testing data. We 

adjusted the value of k from 1 to 10. The accuracy for 

different k values in details are listed in Table 3 and the 

highest accuracy obtained is 84.94% when k=3.

In the SVM classifier, Radial basis function kernel was 

used for the non-linearly separable data[26]. The value of the 

regularization parameter varies from 0.01 to 16, and the value 

of the kernel coefficient (γ) varies from 0.0001 to 2. The 

highest accuracy is 86.34% when the regularization parameter 

is 13 and γ=2. It is worth mentioning that the best combination 

of parameters in the RF classifier and SVM classifier are 

obtained using gridsearchcv function[32] .

In the ANN classifier, the number of the hidden layers 

changes from 1 to 3 and the number of the neurons in each 

layer changes from 3 to 6. A rectified linear unit (ReLU) 
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Fig.3　Scatter plots and histograms of design parameters used for RHEAs prediction

Fig.4　Heatmap of alloys with SS+IM phases showing no strong 

correlation between each pair of features

Table 3　Accuracy of KNN under different k values

k value

Accuracy/%

1

84.16

2

82.73

3

84.94

4

79.14

5

82.02

6

80.57

7

79.87 79.85

8

79.87

9 10

78.85
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activation function was used in the hidden layer[25], and the 
softmax activation function was used in the output layer. The 
loss was analyzed using the binary cross-entropy method[25], 
and the learning rate was set at 0.001. Fig. 5 shows the 
relationship between the loss and accuracy of ANN models. 
As shown in Fig.5, the smallest loss and the highest accuracy 
are achieved when the number of hidden layers is 2 and the 
number of neurons is 5 (2×5), which is marked by the pink 
diamond. Table 4 shows the loss and accuracy in details using 
a certain number of hidden layers and neurons in each layer. 
The minimum loss and the highest accuracy are 0.13 and 
90.72%, respectively when using 2 hidden layers and 5 
neurons in each hidden layer, which are used throughout the 
follow-up discussion.

Table 5 displays the accuracy of five different ML 
algorithms used in the present study, relevant published results 
based on different datasets and the ML model showing the 
highest accuracy in each study. All five ML algorithms in the 
present study yield high accuracy (≥85%) and the highest 
accuracy is 90.72% using the ANN model. Compared with the 
published results[26,28,35] which aim at classifying between SS 
and SS+IM, ANN and SVM models in the present study 
outperform those models. Although there are only 139 
subentries in the present dataset, slightly smaller compared 

with other studies, all models still reach overall high 
accuracies, especially ANN and SVM. The possible reasons 
behind this outperformance are higher quality of sub-entries 
(more oriented towards RHEAs) and better selection of 
hyperparameters used in the training.

The performance of five ML algorithms in terms of 
identifying SS and SS+IM was further analyzed using the 
confusion matrix[26]. Fig. 6 shows the confusion matrix with 
normalized values for actual and predicted phases using five 
algorithms regarding the classification of SS+IM and SS. The 
diagonal (dark blue) shows the true positive and negative, 
which implies that the classification is correct. ANN shows 
the highest accuracy overall in predicting both SS+IM and SS, 
reaching 89.7% and 90.9%, respectively. The second best is 
RF. It is possible that under the combined action of multiple 
trees, the RF algorithm reduces the error caused by a single 
decision tree to a certain extent, thereby improving the 
accuracy of the DT model. Apart from ANN and RF, other 
three models show higher accuracy in predicting the SS 
category with the ranking of accuracy as SVM>DT>KNN. 
However, the accuracy for the prediction of SS+IM is lower 
than 0.78 which is possibly due to the imbalanced dataset 
where there are 97 subsets for SS and only 42 subsets for SS+
IM. The more frequently types of datasets the training model 
learns, the more dominant the type of datasets during 
prediction.

Table 6 shows a summary of ML algorithms and the 
corresponding accuracies in previous HEA phase prediction 
and the present study. Like this work, most research 
simultaneously used several ML algorithms for phase 
prediction. In general, ANN has relatively high accuracy (the 
highest is in Ref.[28, 35] and the present study) in HEA phase 
prediction, which is possibly because ANN perform better in 
handling unbalanced dataset like the current case[35]. The 
performance of other ML algorithms is related to the quality 
and size of the training dataset, the input features, the 
selection of hyperparameters and the methods used to avoid 
overfitting[26–28]. All five models in the present study show high 
accuracy (≥85%) due to the specialized RHEA dataset with 
high fidelity and a careful selection of hyperparameters.
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Fig.5　Relationship between loss and accuracy of ANN model

Table 4　Average loss and accuracy of ANN method

Number of hidden 

layers

1

1

1

1

2

2

2

2

3

3

3

3

Number of 

neurons

3

4

5

6

3

4

5

6

3

4

5

6

Loss

0.27

0.29

0.19

0.18

0.61

0.22

0.13

0.19

0.61

0.62

0.14

0.16

Accuracy/%

82.76

80.15

87.56

87.56

69.85

87.56

90.72

89.63

69.85

69.85

90.72

89.63

Table 5　Comparison of model accuracy

Ref.

[25]

[26]

[27]

[28]

[29]

[35]

This work

This work

This work

This work

This work

Alloys

HEAs

HEAs

HEAs

HEAs

HEAs

HEAs

RHEAs

RHEAs

RHEAs

RHEAs

RHEAs

Dataset

118

636

407

598

614

347

139

139

139

139

139

Best accuracy/%

>80 (ANN)

83.03 (SVM)

91 (LR)

85.91 (ANN)

>80 (RF)

78.9 (ANN)

90.72 (ANN)

86.34 (SVM)

88.57 (RF)

85.63 (DT)

84.94 (KNN)

Outputs

AM/SS/IM

SS/SS+IM

FCC/BCC/HCPAM

SS/IM/SS+IM

fcc/bcc/hcp/fcc+bcc

SS/SS+IM

SS/SS+IM

SS/SS+IM

SS/SS+IM

SS/SS+IM

SS/SS+IM
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2.2  Experimental validation 

To test the applicability of our model, we prepared 9 new 
quaternary RHEAs that are not contained in the dataset. Fig.7 
shows the XRD patterns of the as-cast 9 quaternary RHEAs. 
VCrNbMo, TiVCrMo, TiVCrNb, VNbHfTa and TiVZrHf 
alloys exhibit only one set of peaks corresponding to bcc. 
There are two sets of peaks for VZrNbTa and ZrNbMoTa 
alloys which are indexed as two bcc phases, but still in the SS 
category. In contrast, the composing phases are complex 
including at least one SS phase and one Laves phase in 
CrZrNbMo and TiVCrZr alloys, and thus they are classified as 
the SS+IM category. Furthermore, due to the possible 
formation of intermetallic phases according to the Ti-Cr and 
Ta-Cr binary phase diagrams, we also prepared a series of 
(TiVTa)xCr1‒x alloys in order to investigate the effect of 
content of Cr on the formation of phases. Fig. 8 shows the 
XRD patterns of Ti32V32Ta31Cr5, Ti30V30Ta30Cr10, Ti28V28Ta29Cr15, 
Ti27V27Ta26Cr20 and TiVTaCr alloys. There are only one set of 
peaks indexed as bcc except for TiVTaCr which also shows 
another set of peaks indexed as a Laves phase.

Five trained models were used to predict the phases of 9 
quaternary and (TiVTa)xCr1‒x RHEAs. The predicted results, 
actual phases and corresponding categories are shown in Table 
7. With regards to the quaternary alloys, all five models 
predict the SS category correctly but only SVM, RF and ANN 
models correctly predict the SS+IM category (CrZrNbMo and 
TiVCrZr). In terms of the (TiVTa)xCr1‒x alloys, only RF and 
ANN models predict the phases of all five alloys correctly. RF 
and ANN exhibit higher accuracy, successfully predicting 11 
SS and 3 SS+IM. KNN and SVM models fail to grasp the 
formation of IM in TiVCrTa and DT overall performs the 
worst among the five models. Therefore, one can conclude 
that the results predicted by RF and ANN models agree well 
with the experimental results.

The results again suggest better accuracy in predicting SS 
category, in agreement with the predictive capability shown in 
Fig.6. RF and ANN show higher accuracy in predicting alloys 
belonging to SS+IM category (0.81 and 0.897, respectively), 
agree well with experimental validation. As mentioned above, 
the whole dataset is imbalanced where there are 97 SS subsets 
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Fig.6　Confusion matrix of DT (a), RF (b), KNN (c), SVM (d) and ANN (e)

Table 6　Accuracy of ML algorithms used in previous study and this work (%)

Ref.

[25]

[26]

[27]

[28]

[29]

[35]

This work

ANN

80

80.5

-

85.91

-

78.9

90.72

SVM

-

83.02

59.5

84.4

-

73.2

86.34

DT

-

77.99

78

-

-

-

85.63

RF

-

82.39

80

83.7

80

-

88.57

KNN

-

-

-

83.98

-

-

84.94

LR

-

62.89

91

-

-

-

-
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-

-

-
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and only 42 SS+IM subsets. Furthermore, the majority of 
alloys in the dataset belonging to the SS+IM category contain 
one or two minor elements, such as Si, Co, Al and C, which 

inevitably affect the trained models through learning from δ, 
VEC, ΔHmix, ΔSmix and ∆ χ. For instance, the addition of Si, 
leading to a drastic increase in δ, may overstress the 
importance of δ in classifying SS and SS+IM. Thus, when 
RHEAs are only composed of refractory elements, like the 9 
cases in the current study, the trained models may be unable to 
effectively pick up the differences of five input features and 
inaccurately categorize the original SS+IM as SS. Overall, 
SVM, RF and ANN show good generalization ability in 
predicting both SS and SS+IM, which may contribute to 
understanding and discovery of advanced RHEAs.
2.3  Feature importance analysis 

Since ANN shows the highest accuracy in prediction, the 
relative importance of each feature was investigated using 
SHAP model based on the ANN model.

The average Shapley values (SHAP value) [30] of five 
features are displayed in Fig.9a with a bees-warm diagram in 
Fig. 9b. Each point in Fig. 9b is the value of a subset in the 
dataset. According to the color bar of Fig. 9b, the darker the 
red, the larger the value, and the darker the blue, the smaller 
the value. The abscissa indicates the SHAP value of each 
subset with the value 1 as IM and the value 0 as SS, which 
means that the closer the value to 1, the easier the formation 
of IM. The more positive the value, the higher the tendency to 
form IM, whereas the more negative the value (larger absolute 
value), the higher the tendency to form SS.

As shown in Fig.9a, the order of importance of five features 
is ΔHmix, δ, VEC, ΔSmix and Δχ. The mean SHAP value of 
ΔHmix is approximately 5 times higher than that of Δχ and 4 
times higher than that of ΔSmix, showing the most important 
role of ΔHmix in distinguishing SS and SS+IM in this dataset. 
As shown in Fig. 9b, the larger the ΔHmix (smaller absolute 
value), the easier it is to form SS, and the smaller the ΔHmix, 
the easier it is to form IM. The atomic size mismatch (δ) and 
valence electron concentration (VEC) are the second and third 
important factor affecting the phase formation, and the smaller 
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Table 7　Predicted results of 9 RHEAs using five different algorithms and their actual phases characterized by XRD

Alloys

VCrNbMo

CrZrNbMo

TiVCrMo

TiVCrNb

TiVCrZr

VNbHfTa

TiVZrHf

ZrNbMoTa

VZrNbTa

Ti32V32Ta31Cr5

Ti30V30Ta30Cr10

Ti28V28Ta29Cr15

Ti27V27Ta26Cr20

Ti25V25Ta25Cr25

KNN

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SVM

SS

SS+IM

SS

SS

SS+IM

SS

SS

SS

SS

SS

SS

SS

SS

SS

DT

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS+IM

SS+IM

SS+IM

RF

SS

SS+IM

SS

SS

SS+IM

SS

SS

SS

SS

SS

SS

SS

SS

SS+IM

ANN

SS

SS+IM

SS

SS

SS+IM

SS

SS

SS

SS

SS

SS

SS

SS

SS+IM

XRD

bcc

bcc+IM

bcc

bcc

hcp +IM+unknown

bcc

bcc

bcc1+bcc2

bcc1+bcc2

bcc

bcc

bcc

bcc

bcc+Laves

Category

SS

SS+IM

SS

SS

SS+IM

SS

SS

SS

SS

SS

SS

SS

SS

SS+IM

1198



Zhao Fengyuan et al. / Rare Metal Materials and Engineering, 2023, 52(4):1192-1200

the value of them, the easier it is to form SS, which is in 
agreement with the Hume-Rothery law that has long 
emphasized the importance of VEC and δ in traditional solid-
solution alloys.

The majority of the SHAP values for ΔSmix and Δχ are 
concentrated around 0, indicating the least influence on phase 
formation among these five features. Li et al[36] showed that ∆χ 
has no direct effect on the formation of phases in eutectic 
HEAs. Yang et al[17] claimed that the mixing entropy does not 
determine the formation of solid solutions in HEAs. However, 
what is worth noting is that the calculation of ΔSmix in the 
dataset is based on the assumption that all alloys are ideal 
solid solutions, which may not grasp the true mixed entropy in 
the RHEAs with complex crystal structures and multiple 
sublattices. New metrics describing the entropy of these 
RHEAs are needed in order to assess the contribution of 
entropy in terms of phase formation, and related work is in 
progress.

33  Conclusions  Conclusions

1) Five ML approaches (KNN, SVM, DT, RF and ANN) are 
used to classify and to predict the combination of phases, i.e., 
solid solution (SS) and mixed solid solution and intermetallic 
(SS+IM) in RHEAs. Five input features, including the atomic 
size difference δ, the mixing entropy ΔSmix, the mixing 
enthalpy ΔHmix, the valence electron concentration VEC and 
the electronegativity difference Δχ, and 139 RHEAs from the 
literature are selected to train these models. ANN shows the 
highest accuracy of 90.72% whereas other four models show 
higher accuracy in predicting SS (>87%) but relatively low 
accuracy in predicting SS+IM (<81%), possibly due to the 
imbalanced dataset.

2) Nine quaternary and (TiVTa)xCr1‒x RHEAs are prepared 
and characterized by XRD, which experimentally validates the 
applicability of the trained models. RF and ANN exhibit 
higher accuracy, successfully predicting 11 SS and 3 SS+IM 
whereas SVN, DT and KNN can only accurately predict the 
SS category. SHAP model can characterize the roles of 
different features on the phase formation, in which ΔHmix, δ 
and VEC are more important in determining the phase 
formation whereas the impact of ΔSmix and ∆χ is the minimal. 

The formation of solid solution is more likely if the RHEA 
shows less negative value of ΔHmix and smaller δ and VEC.

3) Overall, this study provides an efficient ML approach in 
phase prediction of RHEAs and elucidates the specific 
influence of five different features on phase formation, which 
shows some potential in the acceleration of future RHEA 
design.
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基于可解释机器学习模型的难熔高熵合金相预测

赵凤媛，叶益聪，张周然，李亚豪，王 洁，唐 宇，李 顺，白书欣

(国防科技大学  空天科学学院 材料科学与工程系，湖南  长沙  410073)

摘 要：采用k近邻 （KNN）、支持向量机（SVM）、决策树（DT）、随机森林（RF）和人工神经网络（ANN）5种机器学习（ML）方

法对RHEAs中固溶体（SS）、混合固溶体和金属间化合物（SS+IM）进行了分类和预测。选择了5个输入相预测参数作为特征以及139

组RHEAs数据以训练ML模型。结果表明，ANN模型的预测准确率最高，达到90.72%。9组新的四元和(TiVTa)xCr1–x体系RHEAs的实验

结果显示，RF和ANN的预测精度更高，精准预测了11个SS和3个SS+IM合金的相组成。采用了SHAP（SHapley Additive exPlanations）

模型来解释精度最高的 ANN 模型，并研究每个特征对相形成的贡献。5个特征的重要性顺序是混合焓（ΔHmix）、原子尺寸差（δ）、价电

子浓度（VEC）、混合熵（ΔSmix）和电负性差（Δχ），其中ΔHmix的平均SHAP值大约是Δχ的5倍，是ΔSmix的4倍。较大的ΔHmix、较小的

δ和VEC可能有助于RHEA中固溶体的形成。

关键词：机器学习；难熔高熵合金；模型可解释性；固溶体；金属间化合物

作者简介：赵凤媛，女，1994 年生，博士生，国防科技大学空天科学学院材料科学与工程系，湖南  长沙  410073，E-mail：

1552996426@qq.com

1200


