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Abstract: Five machine learning (ML) approaches, i.e. K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree
(DT), Random Forest (RF) and Artificial Neural Network (ANN) were used to classify and to predict the combination of phases, i.e.
solid solutions (SS) and mixed solid solution and intermetallic (SS+IM) in refractory high-entropy alloys (RHEAs). Five input
characteristic phase predicting parameters and 139 RHEAs were selected to train these models. Results show that ANN model has the
highest accuracy of 90.72%. Experimental results of 9 quaternary and (TiVTa) Cr, RHEAs verify the accuracy of prediction and
indicate that RF and ANN can predict more accurately, successfully predicting 11 SS and 3 SS+IM. SHAP (SHapley Additive
exPlanations) model was used to interpret the ANN model which exhibits the highest accuracy and to investigate the contribution of

each feature to phase formation. The order of importance of five features is enthalpy of mixing (AH ), atomic size difference (0),

mix

valence electron concentration (VEC), entropy of mixing (AS ), and electronegativity difference (Ay), where the mean SHAP value

mix

of AH

mix

may contribute to the formation of SS in RHEAs.

is approximately 5 times higher than that of Ay and 4 times higher than that of AS, . . Less negative AH,

smaller 0 and VEC

mix?
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High entropy alloy (HEA) is a new concept of alloy design,
first developed by Cantor'! and Yeh™ in 2004. By mixing
equiatomic or near-equiatomic multi-element (>4, usually),
HEAs show some potentials in overcoming the constraints of
the inherent properties of one or two main elements in
traditional alloys, and achieve “free” design in the atomic
level®*. Among all kinds of HEAs, refractory high entropy
alloys (RHEAS) usually consist of refractory elements: Cr, Hf,
Mo, Nb, Ta, Ti, V, W, and Zr, sometimes with minor addition
of Al, Ni, Si, C, O, etc”™. Some RHEAs exhibit a variety of
excellent properties, such as high strength®®, sufficient
plasticity”” 1
particularly high strength at elevated temperature!” ", which

, wear resistance!"”, radiation resistance'"'? and
makes them applicable in a wider range of fields.

The formation of solid solutions (SS) instead of complex
intermetallics (IM) is normally desired in RHEAs, because the
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formation of IM such as Laves phase” usually brings about
brittleness, making RHEAs inappropriate as structural
materials. Thus, the efficient and accurate prediction of phase
formation in RHEAs composed of certain elements is of great
significance in tailoring the properties and performance. Due
to the vast combinations of elements and compositions, the
traditional “trial and error” methods cannot meet the growing
requirement for highly efficient development of new HEAs.
Some empirical rules!"” ¥
formation have been established to guide the design of HEAs.
High AS, is regarded as an important factor in promoting the

formation of multi-principal solid solutions whereas large,

regarding the trends of phase

negative values of AH , will destabilize SS phases by

competing with AS

'« and thus be prone to IM phase
n1e191

formatio
related to the elemental segregation and the formation of

The electronegativity difference of Ay is
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topologically close packed (TCP) phases!
mismatch J and the mixing enthalpy AH_, are well-known
empirical criteria for amorphous (AM) alloys"®'"”), which show
potentials in separating SS and AM phases in HEAs. The
valence electron concentration (VEC) has been used as a
critical parameter in determining the formation of fcc or bee
phase!"”. However, due to the variability of element compo-
sition and the complexity of alloy system, these empirical
approaches seems insufficient for accurately predicting the
phase types of HEAs!"".,

Compared with the empirical methods, other computer-
aided calculation methods, such as phase diagram calculation
(CALPHAD)", molecular dynamics simulation” and density
functional theory calculation (DFT)®, have also been increa-
singly used to discover correlations between material
structures and properties. There are successful cases in the
prediction of the structure and electronic properties of
HEAs™ 2, but the accurate prediction is time-consuming and
limited by computational capacity. Therefore, it is urgent to
use new methods in order to achieve tailored HEAs with
desired properties by establishing the relationship between
composition and phase formation.

Machine learning (ML) is a broad class of data-driven
algorithms used to make inferences and classifications from
data. As a data-driven algorithm, ML is suitable for the study
of high-dimensional problems, particularly prominent in
HEAs design and has been successfully used in the prediction
of phases in HEA systems™ ", Various properties, including
the composing elements, thermodynamic parameters, etc,
have been considered as input features for the phase
prediction and ML models with overall high accuracy (>75%)
have been trained based on dataset containing usually a few
hundred sub-entries. For example, Islam et al® trained an
ANN model to predict the formation of AM, SS and IM based
on 118 HEAs with an average accuracy of more than 80%.
Krishna et al® used Logistic regression (LR), SVM, DT, RF,
Gradient Boosting (GB) and ANN to predict SS or SS+IM
based on 636 HEAs data, among which SVM showed the
1 used adaptive
neuro fuzzy interface system to predict the fcc and bee phases

highest accuracy of 83.02%. Agarwal et a

in HEAs with elemental composition and thermodynamic
parameters as input features, and the accuracy reached
84.21%. Similar works were conducted by Dai”” and Risal et
al®™. Qi et al® extracted more than 600 entries from binary
alloy systems and the trained RF model showed the highest
accuracy over 80%. However, the dataset used so far is
heavily biased towards alloys mainly composed of 3d
transitional metals, such as Cr, Mn, Fe, Co and Ni. The
specific datasets of refractory HEAs and corresponding ML-
based phase prediction are relatively rare. There are many
differences between RHEAs and the 3d-transition HEAs in
terms of composing elements, essential physical parameters,
possible phases and correspondingly intrinsic properties. The
models used for successful classification and prediction of
phases in 3d-transition HEAs may not be applicable for
RHEAs.

Therefore, in the present study, we attempted to fill the gap
in the research and predicted the phase formation in RHEAs
using five ML algorithms with supervised learning, namely K-
Nearest Neighbor (KNN), Support Vector Machine (SVM),
Decision Tree (DT), Random Forest (RF) and Artificial Neu-
ral Network (ANN) based on 139 datasets and verified the ac-
curacy of models by examining 9 quaternary and (TiVTa) Cr,
RHEAs. SHAP (SHapley Additive exPlanations) model™ was
used to interpret the models and to shed light on the physical
influence of different features on the phase formation, and the
relative feature importance was obtained.

1 Materials and Methods

A schematic flow chart of the approach used for phase
prediction of RHEAs based on ML is displayed in Fig. 1.
Firstly, 139 RHEAs were selected from Ref.[31] which consist
of 97 SS (there are only solid solution phases) and 42 SS+IM
(there are both solid solution and intermetallic phases) for
prediction and analysis. It is worth noting that alloys with a
mixture of solid solution phases such as multiple bcc phases
or becethep phases are considered as the SS category and
alloys containing intermetallic phases such as Laves phase are
considered as the SS+IM category. After screening the dataset,
the major composing elements of 139 RHEAs are refractory
metals, which are Ti, V, Cr, Zr, Nb, Mo, Hf and Ta. Some
alloys also contain a minor percentage of non-refractory
elements, such as Si, Al and C, which are usually added to
tailor the properties of RHEAs.

Each data was labeled so that every data point had a target
label, and the labeled dataset was then used to train the model.

The input features include entropy of mixing (AS,, ), enthalpy

of mixing(AH ), atomic size difference (J), electronegativity
difference (Ay), and valence electron concentration (VEC)
with definitions in Table 1. Some representative subsets are
displayed in Table 2.

Five ML algorithms which are KNN, SVM, DT, RF and

(" Data processing (" Feature construction )

) F vic (B2 85
40%/_' I:> Fs amy By Ay
e Fs 5

Qollcction Cleaning Data \. Correlation analysis ~/

s

(Experimental verification

(" Classification model

s ANN o
i / H1 A= (3 Rr g
A—3 "z o |-
el Biegarafian Ghissip sl RS '
esign Preparation Characterization 5] KNN SS/SS+IM
\_ 3 %

Physical explanation
ANN e
model [ o

Bees warm

Fig.1 Schematic flow chart of phase prediction for RHEAs based on
ML method
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Table 1 Description of the parameters used in this study

Feature Equation

Valence electron concentration,
VEC
Difference of the pauling,

VEC =>"_ ¢,VEC,
Ay = 27: IC[(X[ 7)?)2

[ 2
-0 [ aft %)

N

negativities, Ay
Atomic size difference, 0

Mixing enthalpy, AH, AH = z:: Li< j4H i€iC;

Mixing entropy, AS . AS,. =R 2:’: \¢;lne;

ANN were used. Statistical analysis was carried out using the
Matlab2018b software and the scikit-learn library”. Data
imported into the Matlab2018b consisted of six attributes
which include five features as displayed above and one output
corresponding to the phase composition. Details of the
application of the supervised learning approach can be found
in Ref.[33].

In order to avoid overfitting of the models, the cross-
validation method™' was used and the dataset was randomly
divided into 4 subsets containing 35, 35, 35 and 34 cases.

Fig.2 displays the setup of the cross-validation method. The

Table 2 Some representative subsets in the dataset

RHEAs AS . Ay VEC 0 i Classification
MoNbTaW 11.53 0.36 5.50 2.17 —4.75 SS
Al ,;MoNbTiV 13.33 0.23 4.68 3.86 -11.12 SS
HfMo, ,NbTiV 12.97 0.25 4.63 5.94 -0.88 SS
CrMo, NbTa, TiZr 13.37 0.31 4.08 20.27 —4.92 SS+IM
Co,Cr, Ni,VW, 12.02 0.18 8.17 3.19 -8.92 SS+IM
Mo, NbTiVZr 12.98 0.31 5.00 6.58 -3.67 SS+IM

accuracy of five ML algorithms is defined as the number of
times by which ML approaches can correctly identify a target,
which is type of RHEAs phases (SS or SS+IM) in this project.
It is worth noting that the accuracy is obtained based on the
average accuracy. These models based on the experience data
gained through training were then used for examination of the
formed phase in 9 quaternary and (TiVTa)Cr, , RHEAs.
Lastly, SHAP model® was used to investigate the roles of
different features in classifying SS and SS+IM and the relative
importance of these features was obtained.

The predictive capability of our approach was verified by
experimental study on 9 quaternary and (TiVTa) Cr, , RHEAs,
which were prepared by arc-melting and suction-casting.
High-purity raw metals (>99.95%) were melted in the vacuum
furnace under a Ti-gettered argon atmosphere. The ingot was
remelted at least six times to achieve a homogeneous
distribution of elements and then suction-casted to obtain a 10
mmx10 mmx70 mm ingot. The specimens with the dimension

SS | SS+IM| Dataset

- (139)
TS AN

| ss {ss+m| ss st ss |sstm| ss {ssam]|

DI(35)  D2(35) D335)  D4G4) Training set
‘// N Test set

Fig.2 Illustration of the 4-fold cross-validation method

of 2 mmx10 mmx10 mm were firstly ground and polished to
achieve a flat surface, and then characterized by X-ray
diffractometer (XRD, Rigaku SmartLab 9 kW).

2 Results and Discussion

2.1 Model construction and phase prediction

The data dependence of each design parameter is shown in
the scatter plot (Fig. 3) with histograms of all parameters
considered in the diagonal. The overlapping of the graph
indicates that the identification of phases using a single
empirical parameter is explicitly insufficient and thus all
parameters need to be considered for ML algorithms due to
the multi-dimensional features in alloy design. The
interdependence of each parameter for phase prediction is
shown by plotting the heatmap with the Pearson correlation
coefficient™ in Fig.4. It is well established that the value of 1
suggests a strong positive correlation whereas — 1 suggests a
strong negative correlation between the parameters. As shown
in Fig.4, the correlation value varies between —0.36 and 0.32,
which suggests that there are no strong correlations between
each pair of features.

In the DT classifier, Gini impurity was used as the
criteria® for finding the leaf node. When the maximum depth
(starting from the root node to the leaf node) is 7, the highest
accuracy achieved is 85.63%.

In the RF classifier, the value of n estimators corresponding
to the number of trees in the forest”™ varies from 10 to 100
with an interval of 10 and the maximum depth varies from 1
to 10. The highest accuracy obtained is 88.57% with the
number of trees as 10 and the maximum depth (the number of
branches) as 5.

In the KNN classifier, the Euclidean distance algorithm™”
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Fig.3  Scatter plots and histograms of design parameters used for RHEAs prediction

and training data. With a pre-set &k value, k-nearest training
samples were first selected, and the dominant label among
these training data was assigned to the testing data. We

= 0.0361 : adjusted the value of k& from 1 to 10. The accuracy for
different k& values in details are listed in Table 3 and the

E - -0.2697 | 00028 - highest accuracy obtained is 84.94% when k=3.
In the SVM classifier, Radial basis function kernel was
w 00164 | -0.2697 03673 used for the non-linearly separable data™. The value of the
regularization parameter varies from 0.01 to 16, and the value
5 02747 | 00361 = 00028  -0.3673 - 0 of the kernel coefficient (y) varies from 0.0001 to 2. The

highest accuracy is 86.34% when the regularization parameter
AS, Ay VEC 5

mix mix

is 13 and y=2. It is worth mentioning that the best combination

of parameters in the RF classifier and SVM classifier are

Fig4 Heatmap of alloys with SS+IM phases showing no strong obtained using gridsearchev function®™.

correlation between each pair of features In the ANN classifier, the number of the hidden layers
changes from 1 to 3 and the number of the neurons in each
was selected to compute the distance between the testing data layer changes from 3 to 6. A rectified linear unit (ReLU)

Table 3 Accuracy of KNN under different k values

k value 1 2 3 4 5 6 7 8 9 10
Accuracy/% 84.16 82.73 84.94 79.14 82.02 80.57 79.87 79.85 79.87 78.85
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activation function was used in the hidden layer™, and the
softmax activation function was used in the output layer. The
loss was analyzed using the binary cross-entropy method™”,
and the learning rate was set at 0.001. Fig. 5 shows the
relationship between the loss and accuracy of ANN models.
As shown in Fig.5, the smallest loss and the highest accuracy
are achieved when the number of hidden layers is 2 and the
number of neurons is 5 (2x5), which is marked by the pink
diamond. Table 4 shows the loss and accuracy in details using
a certain number of hidden layers and neurons in each layer.
The minimum loss and the highest accuracy are 0.13 and
90.72%, respectively when using 2 hidden layers and 5
neurons in each hidden layer, which are used throughout the
follow-up discussion.

Table 5 displays the accuracy of five different ML
algorithms used in the present study, relevant published results
based on different datasets and the ML model showing the
highest accuracy in each study. All five ML algorithms in the
present study yield high accuracy (=85%) and the highest
accuracy is 90.72% using the ANN model. Compared with the
published results®***** which aim at classifying between SS
and SS+IM, ANN and SVM models in the present study
outperform those models. Although there are only 139
subentries in the present dataset, slightly smaller compared

100 =T
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S " 23
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Loss

Fig.5 Relationship between loss and accuracy of ANN model

Table 4 Average loss and accuracy of ANN method

Number of hidden Number of
layers neurons Loss Accuracy/%
1 3 0.27 82.76
1 4 0.29 80.15
1 5 0.19 87.56
1 6 0.18 87.56
2 3 0.61 69.85
2 4 0.22 87.56
2 5 0.13 90.72
2 6 0.19 89.63
3 3 0.61 69.85
3 4 0.62 69.85
3 5 0.14 90.72
3 6 0.16 89.63

Table 5 Comparison of model accuracy

Ref. Alloys Dataset Best accuracy/% Outputs
[25] HEAs 118 >80 (ANN) AM/SS/IM
[26] HEAs 636 83.03 (SVM) SS/SS+IM
[27] HEAs 407 91 (LR) FCC/BCC/HCPAM
[28] HEAs 598 85.91 (ANN) SS/IM/SS+IM
[29] HEAs 614 >80 (RF) fce/bee/hep/feet+bee
[35] HEAs 347 78.9 (ANN) SS/SS+IM
This work RHEAs 139 90.72 (ANN) SS/SS+IM
This work RHEAs 139 86.34 (SVM) SS/SS+IM
This work RHEAs 139 88.57 (RF) SS/SS+IM
This work RHEAs 139 85.63 (DT) SS/SS+IM
This work RHEAs 139 84.94 (KNN) SS/SS+IM

with other studies, all models still reach overall high
accuracies, especially ANN and SVM. The possible reasons
behind this outperformance are higher quality of sub-entries
(more oriented towards RHEAs) and better selection of
hyperparameters used in the training.

The performance of five ML algorithms in terms of
identifying SS and SS+IM was further analyzed using the

confusion matrix®

!, Fig. 6 shows the confusion matrix with
normalized values for actual and predicted phases using five
algorithms regarding the classification of SS+IM and SS. The
diagonal (dark blue) shows the true positive and negative,
which implies that the classification is correct. ANN shows
the highest accuracy overall in predicting both SS+IM and SS,
reaching 89.7% and 90.9%, respectively. The second best is
RF. It is possible that under the combined action of multiple
trees, the RF algorithm reduces the error caused by a single
decision tree to a certain extent, thereby improving the
accuracy of the DT model. Apart from ANN and RF, other
three models show higher accuracy in predicting the SS
category with the ranking of accuracy as SVM>DT>KNN.
However, the accuracy for the prediction of SS+IM is lower
than 0.78 which is possibly due to the imbalanced dataset
where there are 97 subsets for SS and only 42 subsets for SS+
IM. The more frequently types of datasets the training model
learns, the more dominant the type of datasets during
prediction.

Table 6 shows a summary of ML algorithms and the
corresponding accuracies in previous HEA phase prediction
and the present study. Like this work, most research
simultaneously used several ML algorithms for phase
prediction. In general, ANN has relatively high accuracy (the
highest is in Ref.[28, 35] and the present study) in HEA phase
prediction, which is possibly because ANN perform better in
handling unbalanced dataset like the current case™. The
performance of other ML algorithms is related to the quality
and size of the training dataset, the input features, the
selection of hyperparameters and the methods used to avoid
overfitting®™ ", All five models in the present study show high
accuracy (=85%) due to the specialized RHEA dataset with
high fidelity and a careful selection of hyperparameters.
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Table 6 Accuracy of ML algorithms used in previous study and this work (%)
Ref. ANN SVM DT RF KNN LR GB
[25] 80 - - - - -
[26] 80.5 83.02 77.99 82.39 - 62.89 81.3
[27] - 59.5 78 80 - 91 82.5
[28] 85.91 84.4 83.7 83.98 - -
[29] - - 80 - - -
[35] 78.9 73.2 - - - -
This work 90.72 86.34 85.63 88.57 84.94 - -

2.2 Experimental validation

To test the applicability of our model, we prepared 9 new
quaternary RHEAS that are not contained in the dataset. Fig.7
shows the XRD patterns of the as-cast 9 quaternary RHEAs.
VCrNbMo, TiVCrMo, TiVCrNb, VNbHfTa and TiVZrHf
alloys exhibit only one set of peaks corresponding to bcc.
There are two sets of peaks for VZrNbTa and ZrNbMoTa
alloys which are indexed as two bcc phases, but still in the SS
category. In contrast, the composing phases are complex
including at least one SS phase and one Laves phase in
CrZrNbMo and TiVCrZr alloys, and thus they are classified as
the SS+IM category. Furthermore, due to the possible
formation of intermetallic phases according to the Ti-Cr and
Ta-Cr binary phase diagrams, we also prepared a series of
(TiVTa) Cr, . alloys in order to investigate the effect of
content of Cr on the formation of phases. Fig. 8 shows the
XRD patterns of Ti,,V,,Ta, Cr,, Ti, V,,Ta,Cr,,, Ti, V,;Ta,,Cr,
Ti,,V,,Ta,Cr,, and TiVTaCr alloys. There are only one set of
peaks indexed as bec except for TiVTaCr which also shows
another set of peaks indexed as a Laves phase.

Five trained models were used to predict the phases of 9
quaternary and (TiVTa) Cr, . RHEAs. The predicted results,
actual phases and corresponding categories are shown in Table
7. With regards to the quaternary alloys, all five models
predict the SS category correctly but only SVM, RF and ANN
models correctly predict the SS+IM category (CrZrNbMo and
TiVCrZr). In terms of the (TiVTa) Cr,  alloys, only RF and
ANN models predict the phases of all five alloys correctly. RF
and ANN exhibit higher accuracy, successfully predicting 11
SS and 3 SS+IM. KNN and SVM models fail to grasp the
formation of IM in TiVCrTa and DT overall performs the
worst among the five models. Therefore, one can conclude
that the results predicted by RF and ANN models agree well
with the experimental results.

The results again suggest better accuracy in predicting SS
category, in agreement with the predictive capability shown in
Fig.6. RF and ANN show higher accuracy in predicting alloys
belonging to SS+IM category (0.81 and 0.897, respectively),
agree well with experimental validation. As mentioned above,
the whole dataset is imbalanced where there are 97 SS subsets
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and only 42 SS+IM subsets. Furthermore, the majority of
alloys in the dataset belonging to the SS+IM category contain
one or two minor elements, such as Si, Co, Al and C, which

inevitably affect the trained models through learning from 9,
VEC, AH_,, AS,, and Ay. For instance, the addition of Si,
leading to a drastic increase in o, may overstress the
importance of J in classifying SS and SS+IM. Thus, when
RHEAs are only composed of refractory elements, like the 9
cases in the current study, the trained models may be unable to
effectively pick up the differences of five input features and
inaccurately categorize the original SS+IM as SS. Overall,
SVM, RF and ANN show good generalization ability in
predicting both SS and SS+IM, which may contribute to
understanding and discovery of advanced RHEAs.

2.3 Feature importance analysis

Since ANN shows the highest accuracy in prediction, the
relative importance of each feature was investigated using
SHAP model based on the ANN model.

The average Shapley values (SHAP value)

B9 of five

features are displayed in Fig.9a with a bees-warm diagram in
Fig.9b. Each point in Fig.9b is the value of a subset in the
dataset. According to the color bar of Fig.9b, the darker the
red, the larger the value, and the darker the blue, the smaller
the value. The abscissa indicates the SHAP value of each
subset with the value 1 as IM and the value 0 as SS, which
means that the closer the value to 1, the easier the formation
of IM. The more positive the value, the higher the tendency to
form IM, whereas the more negative the value (larger absolute
value), the higher the tendency to form SS.

As shown in Fig.9a, the order of importance of five features
is AH_,, 0, VEC, AS_, and Ay. The mean SHAP value of
AH , is approximately 5 times higher than that of Ay and 4
times higher than that of AS ,, showing the most important
role of AH_, in distinguishing SS and SS+IM in this dataset.
As shown in Fig. 9b, the larger the AH , (smaller absolute
value), the easier it is to form SS, and the smaller the AH
the easier it is to form IM. The atomic size mismatch (d) and
valence electron concentration (VEC) are the second and third

important factor affecting the phase formation, and the smaller

Table 7 Predicted results of 9 RHEAs using five different algorithms and their actual phases characterized by XRD

Alloys KNN SVM DT RF ANN XRD Category
VCrNbMo SS SS SS SS SS bee SS
CrZrNbMo SS SS+IM SS SS+IM SS+IM bee+IM SS+IM
TiVCrMo SS SS SS SS SS bee SS
TiVCrNb SS SS SS SS SS bee SS

TiVCrZr SS SS+IM SS SS+IM SS+IM hep +IM+unknown SS+IM
VNbHfTa SS SS SS SS SS bee SS
TiVZrHf SS SS SS SS SS bee SS
ZrNbMoTa SS SS SS SS SS beel+bece2 SS
VZrNbTa SS SS SS SS SS beel+bece2 SS
Ti,,V,,Ta, Cr, SS SS SS SS SS bee SS
Ti, V,,Ta, Cr,, SS SS SS SS SS bee SS
TiyV, Ta,,Cr s SS SS SS+IM SS SS bee SS
Ti,,V,,Ta,CCr,, SS SS SS+IM SS SS bee SS

Ti)V,Ta,Cr,, SS SS SS+IM SS+IM SS+IM beet+Laves SS+IM
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Fig.9 Average SHAP value of five features (a) and bees warm diagram of SHAP value (b) based on the ANN model

the value of them, the easier it is to form SS, which is in
agreement with the Hume-Rothery law that has long
emphasized the importance of VEC and ¢ in traditional solid-
solution alloys.

The majority of the SHAP values for AS,

mix

and Ay are
concentrated around 0, indicating the least influence on phase
formation among these five features. Li et al®” showed that Ay
has no direct effect on the formation of phases in eutectic
HEAs. Yang et al"” claimed that the mixing entropy does not
determine the formation of solid solutions in HEAs. However,

what is worth noting is that the calculation of AS_ in the

dataset is based on the assumption that all alloys are ideal
solid solutions, which may not grasp the true mixed entropy in
the RHEAs with complex crystal structures and multiple
sublattices. New metrics describing the entropy of these
RHEAs are needed in order to assess the contribution of
entropy in terms of phase formation, and related work is in

progress.
3 Conclusions

1) Five ML approaches (KNN, SVM, DT, RF and ANN) are
used to classify and to predict the combination of phases, i.e.,
solid solution (SS) and mixed solid solution and intermetallic
(SS+IM) in RHEAs. Five input features, including the atomic
size difference J, the mixing entropy AS

mix>

the mixing
enthalpy AH_ ., the valence electron concentration VEC and
the electronegativity difference Ay, and 139 RHEAs from the
literature are selected to train these models. ANN shows the
highest accuracy of 90.72% whereas other four models show
higher accuracy in predicting SS (>87%) but relatively low
accuracy in predicting SS+IM (<81%), possibly due to the
imbalanced dataset.

2) Nine quaternary and (TiVTa) Cr,  RHEAs are prepared
and characterized by XRD, which experimentally validates the
applicability of the trained models. RF and ANN exhibit
higher accuracy, successfully predicting 11 SS and 3 SS+IM
whereas SVN, DT and KNN can only accurately predict the
SS category. SHAP model can characterize the roles of
0

and VEC are more important in determining the phase

different features on the phase formation, in which AH,

nix>

formation whereas the impact of AS,, and Ay is the minimal.

The formation of solid solution is more likely if the RHEA
shows less negative value of AH_, andsmaller 6 and VEC.

3) Overall, this study provides an efficient ML approach in
phase prediction of RHEAs and elucidates the specific
influence of five different features on phase formation, which
shows some potential in the acceleration of future RHEA

design.
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