热处理对 TiAl 合金挤压方棒组织与拉伸性能的影响

刘亮亮^{1,2},刘 冬¹,刘仁慈¹,崔玉友¹,杨 锐¹

(1. 中国科学院金属研究所,辽宁 沈阳 110016)(2. 中国科学技术大学 材料科学与工程学院,辽宁 沈阳 110016)

摘 要: 采用包套近等温 1300℃(*T*_α-20℃)热挤压得到 Ti-47Al-2Cr-2Nb-0.15B(at%)合金方形棒材,研究了方棒各 部位形变、后续热处理对组织及其拉伸性能的影响。结果表明:挤压比为 3:1 时,铸造片层组织未能均匀破碎,变形程 度从边缘到芯部逐渐减弱,合金组织主要由细小等轴晶粒带、残余片层及粗细不等的 γ 晶粒构成。900 ℃热处理后,合 金向等轴 γ 组织转化,但仍保留挤压态形貌,室温平均断后延伸率 3.3%,合金室温和高温(800 ℃)的抗拉强度、延 伸率与性能均一性得到最佳匹配; 1150~1350 ℃以上热处理,合金组织向近 γ→双态→片层组织转变,室温抗拉强度和 断后延伸率均降低。在 900 ℃长时间保温时,残余片层限制了 γ 晶粒的生长。

关键词: TiAl 合金; 热挤压; 热处理; 组织转变; 拉伸性能

中图法分类号: TG146.2 文献标识码: A 文章编号: 1002-185X(2017)S1-095-04

y-TiAl 基合金密度仅为镍基高温合金的一半,且 具有良好的高温强度、高温抗氧化性和蠕变抗力等性 能,有望在 600~900 ℃温度区间部分取代高温合金 制作航空航天结构件及地面动力系统转动及往复结构 件,提高发动机的推重比^[1]。但其较低的室温塑性和 较差的可加工性能是限制其进一步应用的主要障碍。 C.T.Liu 等人针对 Ti-47Al-2Cr-2Nb(at%)合金,通过对 其在 T_a 温度以上挤压变形及后续热处理得到细小全 片层组织,其室温延伸率达 5%^[2,3]。对 γ-TiAl 基合金 在热挤压变形过程中的组织特征及微观组织演变已有 文献报道^[4-6]。但若想使 γ-TiAl 基变形合金获得广泛实 际应用,还应考虑适合工业生产的变形温度不宜过高、 大尺寸样品变形后易产生组织不均匀等问题。本实验 通过对 Ti-47Al-2Cr-2Nb- 0.15B(at%)合金在 T_α温度以 下挤压变形,得到可直接加工为叶片尺寸级别的方棒, 研究了方棒在挤压态的组织均匀性,考察了其在不同 热处理后拉伸性能的差异及组织变化。

1 实 验

实验采用名义成分为Ti-47Al-2Cr-2Nb-0.15B (at%) 的TiAl 合金。合金经 2 次水冷铜坩埚真空自耗电弧熔 炼、1 次真空感应熔炼后由电火花线切割得到 Φ68mm×80 mm 坯料, 坯料经热等静压 (1260 ℃/130 MPa/3 h) 后包套、热挤压。挤压温度为 1300 ℃ (T_{a} -20 ℃),挤压比为 3:1。挤压棒去除包套后得到横 截面 47 mm×25 mm 的方棒。

挤压后样品热处理制度如下:

1) TA1: 加热速度为 20 ℃/min, 加热至 900 ℃, 保温 12 h, 然后炉冷(FC) 到室温。

 TA2:加热速度为 20 ℃/min,加热至 1150 ℃, 保温 8 h,然后炉冷(FC)到室温。

3) TA3: 加热速度为 20 ℃/min, 加热至 1310 ℃, 保温 1 h, 然后炉冷(FC) 到室温。

4)加热速度为 20 ℃/min,加热至 900 ℃,保温 持续时间分别为 2、8、24 h,然后空冷(AC)到室温。

采用电火花线切割制取沿方棒挤压方向的 M6-Φ3 拉伸试样进行力学测试,切取拉伸后试样轴向 部位、方棒不同部位进行组织分析。金相样品经研磨、 抛光后在 Kroll 腐蚀液中刻蚀。试样利用 Axiovert200MAT 型光学显微镜和 FEI-TECNAIG 型 透射电镜进行显微组织分析。室温和高温拉伸试验分 别在 Shimadzu AG-5000A 和 DCS-25T 试验机上进行。

2 结果与讨论

2.1 挤压后合金组织形貌

2.1.1 挤压后合金低倍组织

图 1a 所示为挤压后方棒 ED-ND 面的低倍金相组 织。从图中可以看出,挤压变形流线基本平行于挤压 方向,方棒从边缘到芯部变形程度逐渐递减,区域显

收稿日期: 2016-12-17

作者简介: 刘亮亮, 男, 1990 年生, 博士生, 中国科学院金属研究所钛合金部, 辽宁 沈阳 110016, 电话: 024-83970951, E-mail: Illiu13s@imr.ac.cn

微组织存在明显差异。方棒边缘区域变形更为剧烈, 变形流线细密,无粗大残余片层晶粒,在低倍视场下 因流线细小无法分辨。而方棒芯部主要为沿挤压方向 伸长变形的粗大残余片层晶粒。铸态片层晶粒虽发生 强烈扭转,但未得到充分破碎。上述观察结果与刘仁 慈^[7]等采用有限元数值模拟得到的 y-TiAl 基合金挤压 后应变分布情况相一致。

2.1.2 挤压后合金显微组织

通过观察方棒不同位置(图 1b 所示 a~e 选取点由 边缘到芯部排布)的金相组织(图 2),研究挤压方棒 稳定变形段的组织均匀性。从图 2 可以观察到,纵向 显微组织挤压流线与挤压方向一致,少量残余片层发 生扭折并与挤压方向成小角度。组织主要由细小等轴 晶粒带、残余片层及粗细不等的 y 晶粒组成。在厚度 方向 TD 上,芯部(图 2a, 2c, 2e)残余片层较多,边 缘(图 2b, 2d, 2f)以细小等轴晶粒为主并含部分粗大 残余片层,边缘流线较芯部更为平直细小。在宽度方 向 ND 上,边缘组织的差别不大,芯部 2e 处的片层相 比 2a、2c 处略显粗化。这说明在 1300℃挤压比 3:1 时, Ti-47Al-2Cr-2Nb -0.15B (at%)合金晶粒破碎不均匀,

图 1 方棒低倍组织与显微组织观察位置示意图

Fig.1 Macrostructure of extruded rod (a) and positions for microstructure observation and tensile text (b) in extruded rod 但组织构成相同。铸态组织(全片层柱状晶和晶间的

□ 呈织构成相内。 保虑组织 (呈) / 层 化 (和 相 相 向 的 富 Al 的 y 相) 都沿挤压方向变形,呈流线状,白色为 凝固过程中不均匀析出的富 Al 的 y 相破碎后拉长的遗 留形貌,灰色流线为粗大柱状晶破碎后拉伸流线状组 织,有些硬取向的片层缺少足够的变形而被保留下来。 破碎较为完全的晶粒边缘动态再结晶出细小 y 再结晶 晶粒,芯部保留较多残余片层是由于其所受的剪切应 变较小的缘故。

为进一步观察挤压组织变形特点,利用 TEM 观 察其典型变形显微组织(图 3)发现:残余片层虽然 未发生破碎,但因发生强烈扭曲,片层之间存在大量 位错,为后续热处理静态再结晶提供了畸变能;在残 余片层附近存在大量的等轴再结晶,晶粒,晶粒内部 没有观察到位错,说明其是在挤压结束后冷却过程中 形成的。

2.2 热处理后组织与拉伸性能

2.2.1 热处理后合金组织

对挤压后的方棒进行 3 种不同的热处理: TA1 (900℃/12 h/FC)、TA2 (1150 ℃/8 h/FC)、TA3 (1310 ℃/1 h/FC),挤压方向金相组织如图 4。从图 4 可以看出,随着热处理温度的升高,合金组织按近 y→双态→片层组织转变。900 ℃热处理后,合金保留 挤压流线形貌,细小等轴晶粒带的 y 晶粒有所长大。 1150 ℃热处理后,合金转变为等轴近 y 组织,挤压流 线消失,仅在局部区域留有少量类似片层的狭长 y 晶 粒。相比于

Fig.2 Microstructures of rods extruded at 1300 °C in the center (a, c, e) and near edge(b, d, f)

图 3 1300℃挤压棒材芯部组织透射电镜明场相

900 ℃热处理,此温度下 γ 晶粒尺寸明显长大。 1310 ℃热处理后,合金转变为近片层组织,且大部分 片层方向趋向于挤压方向,但是转变程度不同:部分 组织更接近双态组织(图 4e),部分组织更接近全片层 组织(图 4f)。按相变理论来说,1310 ℃(T_{α} -10 ℃) 下热处理应得到近片层组织,此现象出现的原因可能 与 Al 元素的成分偏析有关。Sternitzke^[8]等人发现铸造 γ -TiAl 的 Al 元素偏析达 1.5at%以上。而 1at%Al 元素 变化可引起 T_{α} 约 20 ℃改变。本实验采用 Φ170 mm 大尺寸铸锭,热处理温度又接近 T_{α} ,故推断由于 Al 元素微观凝固偏析造成了局部 T_{α} 波动,从而影响组织 形貌,但仍需进一步验证确认。

2.2.2 热处理后方棒拉伸性能

挤压方棒经不同热处理后,其室温和 800 ℃高温 拉伸性能列于表 1。从表 1 可以看出:在室温拉伸测 试时,经 900 ℃热处理后合金的屈服强度 *R*_{0.2}、抗拉 强度 *R*_m 及延伸率 *A* 均优于 1150 ℃和 1310 ℃热处理 后合金的拉伸性能;在 800 ℃拉伸测试时,3 种热处 理后合金的拉伸性能基本持平,但经 900 ℃热处理后 合金的屈服强度 R_{0.2}、抗拉强度 R_m略高于后两者。

以拉伸数据的标准差来衡量 3 种热处理后合金性 能的稳定性。综合来看,在室温拉伸测试时,经 1150、 900、1310 ℃热处理后合金拉伸性能的标准差值 Stdev 依次增大;在 800 ℃拉伸测试时,经 1150、1310、900℃ 热处理后合金拉伸性能的标准差值依次增大。但室温 拉伸测试时,900 ℃热处理后合金延伸率最高,标准 差值最小。

从热处理后的组织特点来看,1150 ℃热处理后合 金组织较为均匀,其拉伸性能的稳定性较好。但 900 ℃热处理后保留挤压流线的细小等轴组织比完全 等轴化的近 y 组织具有更优的拉伸性能。这是由于 900 ℃热处理后合金组织晶粒细小,晶界比较模糊且 交织在一起,整体变形协调能力好,对部分位错起着 钉扎作用,使其强度要好于完全再结晶等轴组织。经 1310 ℃热处理得到的组织中,近片层的脆性 y 相体积 分数小,近片层晶粒相对细小,晶界处片层相互交叉, 塑性得到改善,但强度因为再结晶充分而略微降低。

Fig.4 Microstructures in the center (a, c, e) and near edge (b, d, f) of rods extruded at 1300 $^{\circ}$ C after different heat treatments: TA1 (a, b), TA2 (c, d), TA3 (e, f)

表 1 挤压方棒不同热处理后其室温及高温拉伸	性能
------------------------	----

Table 1	Tensile properties at room	temperature and high	temperature of	f extruded rod after	different heat treatment
---------	----------------------------	----------------------	----------------	----------------------	--------------------------

Temperature/°C	Heat treatment	<i>R</i> _{0.2} /MPa	R _{0.2} Stdev/MPa	<i>R</i> _m /MPa	R _m Stdev/MPa	A%	A% Stdev/MPa
	TA1	614	15.2	752	26.8	3.3	0.76
25	TA2	474	9.6	570	20.6	1.9	0.85

第4	16	卷
----	----	---

	TA3	448	18.7	591	40.5	2.7	1.24
	TA1	390	10.0	527	10.4	50.8	19.4
800	TA2	373	5.8	523	2.9	64.8	5.9
	TA3	373	10.4	510	8.7	52.3	8.3

2.2.3 挤压后组织在 900 ℃的稳定性

合金在 1300 ℃挤压后,在 900 ℃分别保温 0、 2、8、24 h,其金相组织如图 5。可以观察到,随着 保温时间的延长,细小的等轴晶粒带逐渐转化为相对 较大的 y 晶粒,组织仍保留有挤压组织形貌。这说明 Ti-47Al-2Cr-2Nb-0.15B 合金在 1300 ℃挤压后空冷, 合金内部存在大量畸变能使相转变处于不稳定状态, 在 900 ℃ ($\alpha \rightarrow \alpha_2 + \gamma$ 共析点以下)热处理,合金组织 中 y 相逐渐长大,但由于片层中 α_2 相的阻挡, y 相长 大空间限制在 α_2 相之间,合金组织保留挤压态形貌。

图 5 合金 1300 ℃挤压后 900 ℃不同保温时间的金相组织
Fig.5 Microstructures of rods extruded at 1300 ℃ and then heated at 900 ℃ for different time: (a) 0 h, (b) 2 h, (c) 8 h, and (d) 24 h

3 结 论

1) Ti-47Al-2Cr-2Nb-0.15B 合金在挤压温度 1300 ℃,挤压比为 3:1 时,铸造片层组织未能被完 全均匀破碎,组织主要由细小等轴晶粒带、残余片层 及粗细不等的 y 晶粒构成,变形率由边缘到中心逐渐 减小。

2) Ti-47Al-2Cr-2Nb-0.15B 合金挤压后 900 ℃时 效热处理,室温延伸率达 3.3%,合金室温和高温的抗 拉强度、延伸率与棒材性能均一性能得到最佳匹配。

3) Ti-47Al-2Cr-2Nb-0.15B 合金挤压后在 900 ℃热处理得到保留挤压形貌的细小再结晶组 织,比在近 γ相(1150 ℃)和近片层(1310 ℃) 热处理组织具有更优的拉伸性能。

*T*_α温度以下挤压形成的残余片层界面限制了
 y 晶粒在 900 ℃的生长,使合金组织保留挤压形貌。

参考文献 References

- Yang Rui (杨 锐). Acta Metallurgica Sinica (金属学报) [J], 2015, 51(2): 129
- [2] Liu C T, Maziasz P J. Intermetallics [J], 1998, 6(7-8): 653
- [3] Liu C T, Schneibel J H, Maziasz P J et al. Intermetallics[J], 1996, 4(6): 429
- [4] Zhang W J, Lorenz U, Appel F. Acta Materialia[J], 2000, 48(11): 2803
- [5] Liu Renci(刘仁慈), Liu Dong(刘冬), Cui Yuyou(崔玉友) et al. The Chinese Journal of Nonferrous Metals(中国有色 金属学报)[J], 2010, 20(S1): 248
- [6] Peter D, Pfetzing J, Wagner M F X et al. Praktische Metallographie-Practical Metallography[J], 2008, 45(5): 210
- [7] Liu Renci(刘仁慈), Wang Zhen(王 震), Liu Dong(刘 冬) et al. Acta Metallurgica Sinica (金属学报) [J], 2013, 49(6): 641
- [8] Sternitzke M, Appel F, Wagner R. Journal of Microscopy[J], 1999, 196: 155

Effect of Heat Treatments on Microstructure and Tensile Properties of TiAl Alloy Extruded below T_{α}

Liu Liangliang^{1,2}, Liu Dong¹, Liu Renci¹, Cui Yuyou¹, Yang Rui¹

(1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China)

(2. School of Material Science and Engineering, University of Science and Technogy of China, Shenyang 11006, China)

Abstract: The Ti-47Al-2Cr-2Nb-0.15B (at%) alloy rod was fabricated by near isothermal canned hot extrusion at 1300 $^{\circ}$ C on a 3:1 extrusion ratio. With less refined microstructure including small equiaxed grain belt, remnant lamellar and coarse γ grains in the band shape, the extrusion rod was heat-treated at 900, 1150 and 1310 $^{\circ}$ C separately. The tensile results at room and elevated temperature shows that samples by heat-treatment at 900 $^{\circ}$ C have the best balanced tensile properties with 3.3% elongation at RT. For those samples heat treated at

1150 \mathbb{C} with microstructure of near γ and heat treated at 1310 \mathbb{C} with microstructure of near lamellar, their yield strength and ultimate tensile strength are lower than those heat treated at 900 \mathbb{C} . The remnant lamellar restricts the γ grains from growing freely and keeps the microstructure with extrusion morphology at 900 \mathbb{C} .

Key words: TiAl alloy; hot extrusion; heat treatment; microstructures; tensile property

Corresponding author: Liu Dong, Associate Professor, Institute of Matal Research, Chinese Academy of Science, Shengyang 110016, P. R. China, Tel: 0086-24-83970951, E-mail: dliu@imr.ac.cn