掺杂对 Ag-SnO2 触头材料润湿性及接触电阻的影响

王海涛, 霍江涛, 刘亚红, 王幸伟

(河北工业大学 电磁场与电器可靠性省部共建重点实验室, 天津 300130)

摘 要:掺杂不同的添加剂会改变 Ag-SnO₂触头材料的润湿性。选择 TiO₂、La₂O₃、Bi₂O₃3 种添加剂,每种添加剂选取 7 种不同添加比例,测量掺杂后 Ag-SnO₂触头材料的润湿性。实验结果表明,添加剂种类不同时,银对氧化物的润湿性 会呈现出不同的变化规律,同一种添加剂对 Ag-SnO₂ 触头材料润湿性的影响程度与添加含量有直接关系。然后,对 Ag-SnO₂和掺杂 3 种不同添加剂的触头材料进行电接触性能测试,结果表明接触电阻的变化趋势与润湿性的变化规律基 本吻合。

关键词: 触头材料; Ag-SnO₂; 润湿性; 接触电阻 中图法分类号: TM572 文献标识码: A 文章编号: 1002-185X(2018)02-0672-05

经过多年的研究, Ag-SnO₂ 触头材料逐渐受到了 们的广泛关注。通过进行大量的实验,发现 Ag-SnO₂ 的抗熔焊性较强,特别是在加入合适添加剂后这一性 能更是得到了极大的改善。此外, Ag-SnO₂ 是一种无 毒环保的触头材料,这正是它受到高度重视的最为重 要的一个原因^[1-4]。

然而, Ag-SnO₂ 触头材料也存在一定的缺陷: 一 是在使用过程中,材料中的 SnO₂颗粒会在电弧的作用 下富集到材料表面形成绝缘层,使得 Ag-SnO₂的接触 电阻大大增加,温升也相应升高,严重影响了材料的 使用性能。二是 Ag-SnO₂的加工性能很差,在线材拉 丝时极易出现断线的情况,在铆钉的打制过程中也经 常发生开裂,使得规模生产无法得到保证,加工成本 居高不下,推广应用也变得艰难异常。三是 Ag-SnO₂ 在电流小于 400 A 的使用条件下粉末冶金 Ag-SnO₂触 头材料的烧损率比 Ag-CdO 的高 2~3 倍,烧损率偏高, 这些缺陷在一定程度上限制了 Ag-SnO₂触头材料的应 用范围^[5-9]。

通过研究发现, Ag-SnO₂ 触头材料在电弧作用下 易形成绝缘层是由于材料中的 SnO₂ 颗粒没有被熔融 Ag 很好地润湿, 致使材料接触电阻和温升较高。同时 Ag 与 SnO₂之间润湿性差也导致 Ag-SnO₂的界面结合 力不足, 使得材料的塑性和延展性较差, 加工成型也 变得异常困难^[10-13]。由此可见, 润湿性对 Ag-SnO₂触 头材料的电接触性能具有非常重要的影响。 多年来,研究人员一直致力于通过各种手段来克服 Ag-SnO₂触头材料的缺陷,最常用的方法就是向材料中加入添加剂,以增强材料的润湿性,达到改善其电接触性能的目的^[13-17]。本研究主要是讨论掺杂不同添加剂时 Ag-SnO₂触头润湿性变化规律及对接触电阻的影响。

1 实 验

本实验选取 TiO₂、Bi₂O₃、La₂O₃ 3 种常用触头材 料添加剂。将 Ag 粉、SnO₂粉末以及 3 种添加剂粉末 按照表 1 所示的比例混合。

样品的制备过程如图1所示。

银的熔点为 961.93 ℃,为了保证在润湿过程中银 处于液体状态,实验过程中必须保证环境温度在银的

表 1 3 种添加剂粉末和 SnO₂ 粉末混合比例

Table 1	Mixture ratio of three kinds of additives and	I
	SnO2 powder	

4 ~	Mixture ratio, ω /%			
Ag	SnO ₂ :TiO ₂	SnO ₂ :La ₂ O ₃	SnO ₂ :Bi ₂ O	
88	11:1	11:1	11:1	
88	10.5:1.5	10.5:1.5	10.5:1.5	
88	10:2	10:2	10:2	
88	9.5:2.5	9.5:2.5	9.5:2.5	
88	9:3	9:3	9:3	
88	8.5:3.5	8.5:3.5	8.5:3.5	
88	8:4	8:4	8:4	

收稿日期: 2017-02-18

基金项目:河北省自然科学基金(E2016202106);天津市高等学校科技发展基金计划项目(20140419);河北省高等学校科学技术研究项目(ZD2016078)

作者简介:王海涛,女,1973 年生,博士,教授,河北工业大学电磁场与电器可靠性省部共建重点实验室,天津 300130,电话:022-60204834, E-mail:wanght@hebut.edu.cn

图 1 样品制备流程

Fig.1 Flow chart of sample preparation

熔点以上。因此实验中选择加热温度为 1050 ℃,保温时间 30 min。为了减轻重力对实验结果的影响,选取银块质量为 0.3 g。由于氧化银在 300 ℃以上时会迅速分解成银和氧气,所以在实验中不考虑氧化银对润湿效果的影响。

润湿角测量:将冷却后的试样放置在接触角测量 仪上进行拍照,在照片上进行试样轮廓描绘,并绘制 基线和左右切线,标注出银与基片的润湿角。润湿角 的大小能够反映银对该比例的氧化物润湿性的优劣。

加入不同添加剂能够改变 Ag-SnO₂触头材料的性能,其实质是通过改变 SnO₂ 与熔融银的表面张力特征,改善 Ag-SnO₂ 触头材料的浸润性能,减轻 SnO₂ 颗粒在接触面表层聚集的程度,从而可以达到间接减小接触电阻的目的。因此,本实验利用电接触触点材料综合参数测试仪对表 1 所示加入添加剂的触头材料分别进行电接触性能测试。

采用粉末冶金法制备触头材料试样。将各组混合 粉末置于 XH 三维混料机中进行充分混合后,利用普 通模压法成形,成形总压力为 38 MPa/5 min; 压坯尺 寸 Φ20 mm×5 mm。然后在真空烧结炉中进行烧结, 经 500 ℃/90 min 烧结并冷却后,再进行复压 58 MPa/5 min、复烧 500 ℃/90 min,以进一步提高其密度和导 电性。为了能与电接触触头材料测试仪的夹具相匹配, 将制作好的触头材料切割成直径 4.5 mm,厚 3.5 mm 的简单触点。

使用 JF04C 电接触触点材料测试仪对试样的电接触性能进行测试。触点接触方式为面接触,设定测试系统的电流为直流恒流 13 A,电压为 DC 24 V,接触压力为 86 cN,每对触点进行 25 000 次开合操作,测试负载是阻极,触头通断周期为 400 ms,接通时间和分开时间各为 200 ms。测试时,设定每 100 次电接触后测量一次接触电阻。在试验结束后对试验数据进行整理分析。

2 结果与分析

2.1 润湿性实验结果与分析

2.1.1 无添加剂时 Ag 与 SnO₂ 的润湿角

无添加剂时氧化物成分中只含有 SnO₂,测得银与 SnO₂的润湿角为 96.8°,如图 2 所示。润湿性很差。 2.1.2 加入不同添加剂时的润湿角

分别加入 TiO₂, La₂O₃, Bi₂O₃添加剂,测得银与 不同成分及配比时的氧化物基片的润湿角,将结果汇 总于表 2。

银与氧化物基片的润湿角随添加剂含量的变化趋势如图 3 所示。

图 2 Ag 与 SnO₂ 的润湿角

Fig.2 Wetting angle between Ag and SnO₂

unicient composition and proportion						
S=Q +14-Q	Additive					
ShO ₂ :MeO	TiO ₂	La_2O_3	Bi ₂ O ₃			
11:1	61.0°	100.4°	70.1°			
10.5:1.5	68.3°	78.1°	64.6°			
10:2	69.8°	70.7°	73.1°			
9.5:2.5	70.0°	59.1°	82.6°			
9:3	94.5°	78.5°	68.8°			
8.5:3.5	80.7°	82.6°	76.4°			
8:4	77.1°	106.5°	84.9°			

图 3 润湿角随添加剂含量变化曲线图

Fig.3 Change curves of wetting angle with additive contents

从表 2 及图 3 可知,当添加剂为 TiO₂时,银对氧 化物的润湿角随着 TiO₂含量的增加呈现出先增大后 减小的变化规律,并且在 SnO₂:TiO₂=11:1 时达到最低 为 61.0°,在 SnO₂:TiO₂=9:3 时达到最高为 94.5°。

当添加剂为 La₂O₃时,银对氧化物的润湿角随着 La₂O₃含量的增加呈现出先减小后增大的变化规律, 并且在 SnO₂:La₂O₃=9.5:2.5 时达到最低为 59.1°,在 SnO₂:La₂O₃=8:4 时达到最高为 106.5°。

当添加剂为 Bi₂O₃ 时,银对氧化物的润湿角随着 Bi₂O₃含量的增加呈现出波动增大的变化规律,并且在 SnO₂:Bi₂O₃=10.5:1.5 时达到最低为 64.6°,在 SnO₂: Bi₂O₃=8:4 时达到最高为 84.9°。

根据润湿性实验结果可以发现添加剂种类不同时,银对氧化物的润湿角会呈现出不同的变化规律,同一种添加剂的影响程度也与添加剂含量有直接关系,当添加剂为 La₂O₃ 且 SnO₂:La₂O₃=9.5:2.5 时,银对氧化物的润湿性最佳。

2.2 接触电阻试验结果与分析

2.2.1 无添加剂时 Ag-SnO2 触头材料的接触电阻

触头材料成分为 Ag:SnO₂=88:12 时,在设定的试验条件下进行 25 000 次电接触的接触电阻测试结果如图 4 所示。

从图 4 中可以看出, Ag-SnO₂触头材料的接触电 阻在 0.1634~2.306 mΩ之间变化, 平均接触电阻 0.542 mΩ。在 14 000 次电接触之前,接触电阻稳定保持在 0.2~0.4 mΩ之间,之后接触电阻逐渐增大,并开始出 现较大的波动,接触电阻数值主要在 0.6~2 mΩ之间变 动。无掺杂的 Ag-SnO₂触头材料平均电阻较高,稳定 性较差。

理论上来说,当 Ag 对 SnO₂ 的润湿性较好时,会 使 SnO₂粒子更好地悬浮在 Ag 的熔融体系中,减少形 成氧化物聚合区几率,可以有效改善 Ag-SnO₂ 的接触

电阻较大、温升高的缺陷。由此可推知, Ag-SnO₂ 触 头材料电性能变化规律应该与润湿角的变化规律大致 吻合。为此,将 Ag-SnO₂触头材料接触电阻的测试结 果与润湿性的测量结果进行对比验证。

2.2.2 Ag-SnO₂/TiO₂触头材料的接触电阻

当添加剂为 TiO₂, Ag:SnO₂:TiO₂=88:11:1 时, Ag-SnO₂触头的润湿性最好, 其接触电阻如图 5 所示。

平均接触电阻测试结果与润湿性的测量结果进行 对比分析,如图 6 所示。

没有加入任何添加剂时,经测试,Ag-SnO₂触头 材料的平均电阻为 0.542 mΩ。由图 5、6 可知,添加 TiO₂之后,加入 TiO₂的 Ag-SnO₂触头材料的平均接触 电阻比无添加剂时偏高。但是其稳定性比无添加剂要 好很多,润湿性与接触电阻的曲线基本吻合。

2.2.3 Ag-SnO₂/La₂O₃ 触头材料的接触电阻

当添加剂为 La₂O₃, Ag:SnO₂:La₂O₃=88:9.5:2.5 时, Ag-SnO₂触头的润湿性最好,其接触电阻如图 7 所示。

图 5 触头材料成分为 Ag:SnO₂:TiO₂=88:11:1 时的接触电阻

Fig.5 Contact resistance when the composition ratio of contact material is Ag:SnO₂:TiO₂=88:11:1

- 图 6 添加剂为 TiO2 时, 触头材料润湿角与平均接触 电阻变化曲线
- Fig.6 Curves of the wetting angle and the average contact resistance of the contact material with additive TiO_2

图 7 触头材料成分为 Ag:SnO₂:La₂O₃=88:9.5:2.5 时的接触电阻

图 8 添加剂为 La₂O₃ 时,触头材料润湿角与平均接触 电阻变化曲线

Fig.8 Curves of the wetting angle and the average contact resistance of the contact material with additive La_2O_3

平均接触电阻测试结果与湿性的测量结果进行对 比分析,如图 8 所示。

由图 7、8 可知,随着 La₂O₃含量的增加,接触电 阻呈现出先减小后增大的变化规律。当触头材料成分 配比为 Ag:SnO₂:La₂O₃=88:9.5:2.5 时,Ag-SnO₂触头材 料润湿角为 59.1°,接触电阻主要保持在 0.1~0.5 mΩ 之间,平均接触电阻 0.36 mΩ。接触电阻的变化趋势 与润湿性的变化规律基本吻合,接触电阻的稳定性也 较好。

2.2.4 Ag-SnO₂/Bi₂O₃ 触头材料的接触电阻

当添加剂为 Bi₂O₃, Ag:SnO₂:Bi₂O₃=88:10.5:1.5 时, Ag-SnO₂触头的润湿性最好,其接触电阻如图 9 所示。

平均接触电阻测试结果与润湿性的测量结果进行 对比分析,如图 10 所示。

由图 9、图 10 可知,随着 Bi₂O₃含量的增加,接 触电阻同润湿角都呈现出波动增大的变化规律。二者 的变化规律基本吻合,而且触头材料成分配比为

- 图 9 触头材料成分为 Ag:SnO₂:Bi₂O₃=88:10.5:1.5 时的 接触电阻
- Fig.9 Contact resistance when the composition ratio of contact material is Ag:SnO₂:Bi₂O₃=88:10.5:1.5

- 图 10 添加剂为 Bi₂O₃时,触头材料润湿角与平均接触 电阻变化曲线
- Fig.10 Curves of the wetting angle and the average contact resistance of the contact material with additive Bi₂O₃

Ag:SnO₂:Bi₂O₃=88:11:1、Ag:SnO₂:Bi₂O₃=88:10.5:1.5 时 接触电阻稳定性极好,其它配比时稳定性有所下降。

3 结 论

1)不同种类的添加剂对 Ag-SnO₂ 触头材料的润湿性的影响结果各不相同。当添加剂为 TiO₂时,银对氧化物的润湿角随着 TiO₂ 含量的增加呈现出先增大后减小的变化规律;当添加剂为 La₂O₃ 时,银对氧化物的润湿角随着 La₂O₃ 含量的增加呈现出先减小后增大的变化规律;当添加剂为 Bi₂O₃ 时,银对氧化物的润湿角随着 Bi₂O₃ 含量的增加呈现出波动增大的变化规律。

 2) 在同一种添加剂作用下,触头材料接触电阻变 化趋势与润湿性的变化规律基本吻合:当触头材料润 湿角较小时,接触电阻数值的主要变化范围较低,稳 定性也更好;而当触头材料润湿角较大时,接触电阻数值的主要变化范围较高,并且更加频繁地出现超大阻值,稳定性较差。

参考文献 References

- [1] Qiao Xiuqing(乔秀清), Shen Qianhong(申乾宏), Chen Le-sheng(陈乐生) et al. Materials Review(材料导报)[J], 2013, 27(1):1
- [2] Ma Rongjun(马荣骏). Rare Metal and Cemented Carbides(稀 有金属与硬质合金)[J], 2008, 36(4): 28
- [3] Wang Yonggen(王永根), Cao Xiaoqing(曹小青), Ni Yuping (倪玉萍) et al. Low Voltage Apparatus(低压电器)[J], 2011(10):58
- [4] Liu Songtao(刘松涛), Wang Junbo(王俊勃), Yang Minge(杨 敏鸽) et al. Ordnance Material Science and Engineering(兵器 材料科学与工程)[J], 2015, 38(3): 59
- [5] Zhao Huaren(赵华人). Electrical Engineering Materials(电工 材料)[J], 1995(3): 37
- [6] Zhang Yan(张 燕), Wang Junbo(王俊勃), Li Yingmin(李英民) et al. Materials Review(材料导报)[J], 2005, 19(5): 34
- [7] Wang Haitao, Wang Jingqin, Du Jiang et al. Rare Metal Materials and Engineering[J], 2014, 43(8): 1846
- [8] Yang Tianzu, Du Zuojuan, Gu Yingying et al. Journal of Central South University of Technology[J], 2007, 14(2): 176
- [9] Setoudeh N, Paydar M H, Sajjadnejad M. Journal of Alloys

and Compounds[J], 2015, 623: 117

- [10] Wang Yong(王勇), Xu Yonghong(徐永红), Cheng Shifang (程世芳) et al. Electrical Engineering Materials(电工材 料)[J], 2015(1): 3
- [11] Wang Haitao(王海涛), Wang Jingqin(王景芹), Zhu Yancai (朱艳彩). Transactions of China Electrotechnical Society(电 工技术学报)[J], 2014, 29(5): 265
- [12] Yu Haifeng(余海峰), Lei Jingxuan(雷景轩), Ma Xueming(马 学鸣) et al. Rare Metal Materials and Engineering(稀有金属 材料与工程)[J], 2004, 33(1): 96
- [13] Guo Tianfu(郭天福), Fu Chong(付 翀), Wang Junbo(王俊勃) et al. Electrical Engineering Materials(电工材料), 2015(2): 34
- [14] Wang Jiazhen(王家真), Wang Yaping(王亚平), Yang Zhimao(杨志懋) et al. Rare Metal Materials and Engineering(稀 有金属材料与工程)[J], 2005, 34(3): 405
- [15] Jin Gyu Kim, Ilbeom Choi, Dai Gil Lee. Journal of Adhesion Science & Technology[J], 2013, 27(7): 794
- [16] Guo Yushi(郭玉石), Ji Wanting(姬婉婷), Zhang Chenfei(张 晨飞) et al. Electrical Engineering Materials(电工材料)[J], 2015(5): 3
- [17] Wang Song(王 松), Zheng Tingting(郑婷婷), Liu Manmen (刘满门) et al. Rare Metal and Cemented Carbides(稀有金 属与硬质合金)[J], 2015, 43(5): 54

Effects of Additives Doping on the Wettability and Contact Resistance of Ag-SnO₂ Contact Material

Wang Haitao, Huo Jiangtao, Liu Yahong, Wang Xingwei

(Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin 300130, China)

Abstract: Doping with different additives can alter the wettability of the Ag-SnO₂ contact material. Three kinds of additives TiO₂, La₂O₃, Bi₂O₃, for each of which seven proportions were selected, were used to measure the wettability of Ag-SnO₂ contact material. The results show that the wetting angle of silver to oxide is different with different additives. What's more, the influence of the same type of additives on the wettability of Ag-SnO₂ contact material has a direct relationship with the addition content. Electrical properties of the contact materials of Ag-SnO₂ with three kinds of additives were tested. The results show that the variation of contact resistance is basically consistent with the change of wettability.

Key words: contact material; Ag-SnO2; wettability; contact resistance

Corresponding author: Wang Haitao, Ph. D., Professor, Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin 300130, P. R. China, Tel: 0086-22-60204834, E-mail: wanght@hebut.edu.cn